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Abstract

This paper introduces Rudder, a peer-to-peer agent framework for supporting autonomic
applications in decentralized distributed environments. The framework provides agents to
discover, select, and compose elements, and defines agent interaction and negotiation protocols
to enable appropriate application behaviors to be dynamically negotiated and enacted. The
implementations of these protocols as well as agent coordination and negotiation activities
are supported by Comet, a scalable decentralized coordination substrate. The operation and
experimental evaluation of Rudder is presented.

1 Introduction

Emerging decentralized distributed Grid environments, such as pervasive information systems
and global computational infrastructures are aimed at providing seamless access to hardware,
software and information resources and services, and are enabling a new generation of applica-
tions. However, designers and programmers of these applications have to deal with significant
development and management challenges stemming from the highly dynamic computational and
interaction behaviors of the applications as well as the complexity and uncertainty inherent in the
underlying distributed computing infrastructure. These challenges range from conceptual models
to implementation architectures, and span all levels including programming system, runtime,
middleware, and operating systems. Autonomic applications and systems that are capable of
managing (configuring, optimizing, healing, protecting) themselves based on high-level guidance
from users, have been proposed to address these challenges. Autonomic systems and applications
are typically formulated as dynamic compositions of discrete autonomic elements that interact
and coordinate their individual actions to achieve overall self-managing behaviors. Consequently,
supporting dynamic compositions of the elements and coordinations of their actions in Grid
environments is a critical requirement.

Dynamic composition enables applications or parts of an application to be composed on-the-
fly from discrete elements to meet the changing application requirements, system state and/or
availability of elements, deal with element failures, optimize performance, etc. In distritbuted
environments, enabling dynamic composition is challenging due to the large numbers of available
elements, and their heterogeneity and dynamism. Furthermore, maintaining common knowledge
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numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS
0430826.
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about the names/identifiers and addresses of these elements as well as the syntax and semantics
of their interfaces in such environment is infeasible. Coordination is the management of runtime
dependencies and interactions among the elements in the application. In the case of autonomic
applications, these dependencies and interactions can be complex and various, such as producer-
consumer, peer-to-peer, collaborative, etc. Further, these relationships and interactions can be
ad hoc, ephemeral and opportunistic, may be defined by policies and context, and may be
negotiated. Clearly, realizing these behaviors using low-level protocols to cope with the issues
of data communication and synchronization as well as process cooperation and competition is
non-trivial.

Software agents provide effective high-level mechanisms for information discovery and sys-
tem/application management and adaptation in distributed environments. This paper presents
Rudder, a peer-to-peer agent framework that addresses the issues discussed above. The objective
of Rudder is to enable the runtime composition and coordination of autonomic elements in Grid
environments. This framework consists of software agents and agent interaction and negotiation
protocols. Peer agents in Rudder discover and select elements, and locally control element
behaviors and interactions. New elements can be dynamically registered and discovered at runtime
by the agents, and appropriate adaptation plans can be negotiated, selected and enacted by
cooperating agents. The framework is supported by a fully decentralized shared-space substrate
Comet (Li, Z. & Parashar, M. 2005), which provides the core messaging services for connecting
agent networks and scalably supporting various agent interactions, such as mutual exclusion,
consensus, and negotiation.

The rest of this paper is organized as follows. Section 2 presents the Rudder agent framework
and describes the agent classification and coordination protocols. It then introduces the Comet
substrate and describes the implementation of Rudder using Comet. Section 3 describes
application self-managing behaviors enabled by Rudder. Section 4 describes the operation of
Rudder and presents an experimental evaluation. In section 5, related research work and projects
are described. Section 6 presents a conclusion.

2 Rudder: An Agent Framework for Autonomic Applications

Rudder addresses element compositions and coordinations using agent cooperations, interactions,
and negotiations. It provides protocols to enable peer agents to individually and collectively
achieve application adaptiveness. This framework is supported by a shared-space substrate
Comet. A conceptual overview of this system is illustrated in Figure 1.
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Figure 1 A conceptual overview of Rudder.

2.1 Classification of Rudder Agents

The agents in Rudder are categorized as Component Agent (CA) and Composition Agent (CSA).
CAs represent discrete elements and use OWL-S (OWL-S 2004) profile to identify and control
elements. An element may be an application, service or resource unit (e.g., computer, instrument,
and data store). Such an element along with its CA represents a managed element in Rudder.
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A CA is responsible for advertising the capabilities of the element, providing uniform access
to the element, configuring the element based on its execution context, and managing its
execution. CAs manage the computations performed locally within elements and their interactions
and operations. The CAs individually controls the element autonomic behaviors by executing
predefined rules. Rules incorporate high-level guidance and practical human knowledge in the
form of an IF-THEN expression. A rule fires when its condition expression evaluates to be true
and the corresponding actions are executed. For example, CAs use behavioral-rules (Liu, H. &
Parashar, M. 2004) to control the runtime functional behaviors of an element (e.g., the dynamic
selection of algorithms, data representation, input/output format used by the element).

A CSA is transiently generated. It employs predefined composition plans to dynamically
discover relevant elements and negotiate with the CAs to select, configure, and compose the
elements to realize applications. In Rudder, composition plans are generated from the application
process and are available to the CSA 2. Further, the semantics of terms and concepts used in
the composition plans as well as the application specific ontology are common knowledge among
agents. A composition plan has three components: (1) a set of atomic tasks, each of which has
a semantic description, using the application ontology, that can be used to discover and select
elements to fulfill the task; (2) a process description describing the dependencies and interactions
between tasks; (3) constraints, which reflect user requirements and may be defined at the task
level (e.g., minimize the execution time of a task) as well as the plan level (e.g., minimize total
cost). A composition plan is enacted by a CSA by using the task descriptions to semantically
discover elements, selecting and configuring appropriate elements, composing these elements using
the process description and coordinating with other agents to satisfy constraints and application
requirements.

2.2 Coordination Protocols in Rudder

A set of coordination protocols are defined in Rudder for agents to discover elements and
coordinate with each other.

The Discovery Protocol allows the agents to register, unregister, and semantically discover
elements using domain specific ontologies. When an element is added to the system, its associated
CA uses this protocol to register the element’s profile. The agent parses the element’s OWL-S
profile description, and creates a registry entry that uniquely identifies the element in Rudder.
The attributes form the coordinates of a semantic space. For example, a computational storage
resource may belong to the 3D storage space with coordinates “space”, “band width”, and “cost”.
The process is shown in Figure 2. The registry itself is decentralized and is implemented using the
Comet substrate. The CA is also responsible for maintaining the consistency of this information
in the registry and updates the registry when one or more of the element’s attributes change.
A periodic heart-beat message is used to ensure the liveliness of elements. When the element
permanently leaves the system, the agent unregisters the service and deletes the corresponding
registry entry.

The discovery protocols allow agents to search for elements. In Rudder, a discovery process
consists of two steps: (1) the agent generates the request description identifying the semantic
space and consisting of relevant keywords, partial keywords, and/or wildcards. It navigates this
semantic space within the decentralized repository and narrows an element query to a small
set of potential matching profiles; (2) the semantic matching (Tang, S. 2004) are performed on
these profiles by evaluating the similarity between the request and matched element profiles. The
matching elements are returned to the requesting agent.

The Interaction Protocol allows a group of distributed agents to interact, cooperate,
and negotiate during the composition in order to reach a mutually acceptable agreement.

2Plans may be automatically generated through AI planning and deductive theorem proving. However,
this is not currently addressed in Rudder.
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Figure 2 Discovery message for registering/unregistering an element.

Existing agent interaction protocols (Bussmann, et al. 2002), such as those for consensus,
mutual exclusion, bargaining, auctions, distributed constraint satisfaction, coalition formation,
distributed planning, etc., can be supported and customized for specific application or system
context. For example, the simple and efficient Contract-Net Protocol(CNP) (Smith, R. G. 1988)
is employed for element selection. The CSA can make a decision based on a fixed criteria (e.g.,
minimum execution time). In the non-functional element property configurations, a Marketplace
like service-oriented negotiation protocol (Sierra, C. et al. 1997) is used when the agents need to
achieve a mutually acceptable agreement within a dynamic context.

2.3 The Comet Coordination Substrate

Comet (Li, Z. & Parashar, M. 2005) is a scalable peer-to-peer content-based coordination space
for wide-area distributed environments. This substrate provides an abstraction of a Linda-like
(Carriero, N. & Gelernter, D. 1989) shared semantic space that can be associatively accessed by
all peer agents without requiring the physical location of the tuples or identifiers of the host.

In Comet, tuples are defined as simple XML strings. This lightweight format is flexible enough
to represent information required by all kinds of applications. Comet provides coordination and
communication abstractions. The communication abstraction provides scalable content-based
messaging and manages system heterogeneity and dynamism. It guarantees that information
queries, specified using flexible content descriptors, are served with bounded cost. The coor-
dination abstraction supports the shared-space based coordination model providing Linda-like
coordination primitives.

Comet is designed as a distributed hash table (DHT) constructed on a 1-dimensional structured
overlay. The recursive and locality-preserving Hilbert Space-Filling Curve (Moon, B. et al. 2001)
is used as a hashing function to deterministically map tuples from a semantic information space
(defined by the application ontology) to indices in the DHT index space, and to a dynamic set of
nodes in the peer overlay. The Comet coordination layer provides primitives to support shared-
space based coordination model including Out, In, Rd, InAll, and RdAll. Each tuple is associated
with k keywords selected from its tag and attribute names. This set of k keywords can be viewed
as a point in a k-dimensional information space and can be mapped to an index in the DHT
index space and a node in the overlay.

2.4 Implementation of Rudder

The current prototype of Rudder has been implemented on Project JXTA (Project JXTA), a
platform-independent peer-to-peer framework. Each peer node in Rudder provides an agent envi-
ronment responsible for generating, configuring, and destroying agents. Agents are implemented
in JAVA as single thread processing units with predefined rule sets. The agents communicate
with each other by associatively reading, writing, and extracting tuples, and interact through
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coordination protocols which are implemented using the abstractions and services provided by
Comet substrate.

The Rudder discovery protocol is implemented as follows. When an element is added to the
system, its CA registers the element by writing its profile into the global tuple space using
the Comet Out (tsname, t) operation, where tsname identifies the semantic space and tuple
t encapsulates the registration request. The registration request is routed by Comet to the
appropriate peer node in the overlay and the profile is stored in a local repository at that node.
Similarly, an element can be unregistered using the In operator.

Agents can query a single matching element using the Rd operator or all matching elements
using the RdAll operator. As in the registration case, the query is routed by Comet to the
appropriate peer node(s) in the overlay, where semantic matching is used to check the similarity
between the request and available profiles. The semantic matching process compares the syntactic
and semantic composability of the elements. It is similar to semantic web service matching and
ensures that the interacting elements are compatible in aspects of operation modes (request-
response), messages, number of parameters, data types, binding protocols, etc. This matching
can be implemented using OWL-S matching tools such as OWL-S Matcher (OWLSM 2005).

Interaction protocols are implemented using the communication abstractions provided by
Comet as follows. For each negotiation, the first step involves session setup where the initiating
agent creates a session identifier. This agent then sends the setup message to the selected agents
and waits for their acceptance. Once the negotiation has been setup, the initiator informs
the participants of the interaction protocol and related information, such as negotiation item,
bargaining strategies, roles, etc. After the setup is complete, the agents engaged in the negotiation
can directly interact in a peer-to-peer manner.

3 Enabling Autonomic Applications

In Rudder, individual agents select local plans based on local information, and then negotiate
with peer agents to reach global agreement on the overall plan to enact. Rudder provides
mechanisms for supporting existing negotiation models (Shen, W. et al. 2002), such as Game
Theory Based Model, Contract-Net Protocol(CNP), Auction Model, etc. For example, in the
illustrations presented below, the CNP is used to enable dynamic composition and Marketplace
based negotiation is adopted for supporting multi-stage self-adaptation.

3.1 Enabling Dynamic Composition

Rudder enables dynamic composition using CNP based negotiations among CSAs and CAs,
assuming that the CSA has an application workflow-plan to enact and that there are several
CAs capable of executing it. The CSA dynamically discover and select the most suitable CA to
execute the workflow-plan through negotiation.

In the negotiation process illustrated in Figure 3 , the CSA acts as the manager and the CAs
act as contractors. It consists of the following steps: (1) The CSA searches for potential CAs using
the discovery protocol and advertises the specified task information to all candidate CAs; (2) CAs
analyze the received task information and respond with a bid; (3) The CSA evaluates received
bids, assigns the task to the CA with the best bid, and refuses the others; (4)The CA delegates the
task to its associated element and informs the CSA of the execution result(s) within a bounded
time, otherwise the CSA terminates the process explicitly. This protocol is implemented using
Comet. The associative communication abstraction and the semantic discovery protocol are used
by the CSA to obtain the identifiers of all the potential CAs, and subsequent interactions between
the CSA and these CAs use direct peer-to-peer communication.

The reasons of using this protocol are its efficiency and flexibility. The cost of the Contract-Net
Protocol is O(N), where N denotes the number of participating agents. Further, the process can
be customized to meet specific application requirements. For example, the criteria used by the



6 li z. and parashar m.

CSA

CA1 CA2 CA3

CSA

CA1 CA2 CA3

bi
d

b
id

bid

CSA

CA1 CA2 CA3

loser

lose
r

winner

CSA

CA1

CA2
CA3

execcached

(discovery) (plan)

(analyze) (execute)

Figure 3 Dynamic composition using CNP-based negotiation.

CSA for choosing CAs can be dynamically specified. Further, the CSA may cache information
about discovered elements, and can negotiate with these cached elements if a selected element
can not perform the task due to unexpected reasons. The overall process can be further tailored
by allowing the CSA to evaluate bids after receiving a percentage of the bids instead of waiting
for all responses to reduce the composition overhead.

3.2 Enabling Multi-stage Self-Adaptation

The runtime self-adaptation behaviors of applications must be decided based on current states
and context, and may have a global scope. Agents, in this case, will have to reach consensus on the
plan to enact and the new system/application configurations to enforce. In Rudder, Marketplace
negotiation model is used, where a finite set of issues are exchanged iteratively between buyer
and seller agents. When an agent receives a “plan” from another agent, the agent evaluates
the received plan and decides either to accept it and stop the negotiation with an agreement,
or reject it and propose a counter plan. This mechanism enables the agents to resolve locally
decided strategies and achieve a mutually acceptable strategy considering all factors.

In Rudder, each negotiation is allocated a limited resource (e.g., iteration times). The
negotiating agents use the remaining amount of this resource to determine its plan in successive
negotiation iteration (Sierra, C. et al. 1997) based on the following function:

f(curr) = k
( maxr−curr

maxr−minr
)
β

(1)

in which the value of the allocated resource is between [minr, maxr], the current value is curr,
the preference factor k (0 < k < 1) determines the initial value of the issue under negotiation, and
the conceding rate β(β > 0) determines the agent behaviors. If β > 1, the function concedes faster
and results in a greedy agent. If β <= 1, the agent is selfless. In case of unsuccessful negotiations
in which no agreement is reached when the resource is exhausted, the participating agents can
choose to be further coordinated by a mediator, which can be an agent or a system administrator.

Using the mechanisms described above, Rudder enables applications to dynamically tune
their configurations and operations to ensure that they continue to meet the performance
objective despite system dynamism and uncertainty. For example, a desired adaptive behavior of
a distributed Video-On-Demand application is to choose an appropriate level of network service
that can best meet the user requirement and pricing constrains. In such a scenario, the desired
value must be negotiated between the video file server element and the end-user client element.
For instance, the server has an acceptable range [10, 25] and the client can accept the value in
the range of [15, 60]. In Rudder, the appropriate value is decided by the two component agent
negotiation. The initiator agent has β = 10 and the other agent has β = 5. The resource-driven
function with k = 0.1 used by both agents are plotted in Figure 4(b). As shown in Figure 4(a),
an agreement is reached after 6 iterations and the negotiated value is 21. The effectiveness and
efficiency of the negotiation process can be tailored using different agent configurations.
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Figure 4 Example of two agent negotiation using the marketplace model.

4 System Operation and Evaluation

This section presents the overall system operation and experimental evaluations. The experiments
were conducted by deploying Rudder over a distributed network of Linux-based computers in
Rutgers University as well as a wide-area environment using PlanetLab (Planetlab) test bed.
PlanetLab is a large scale heterogeneous distributed environments composed of interconnected
sites with various resources on a global scale.

In the experiments, each machine ran an instance of Rudder, serving as a peer node in the
Comet overlay. The overall operation of the system consists of two phases: bootstrap and running.
During the bootstrap phase, a peer node joins the system and exchanges messages with the rest of
the group. The running phase consists of stabilization and user modes. In the stabilization mode,
a peer node responds to queries issued by other peers in the system to ensure that routing tables
of peer nodes are up to date, and to verify that other peer nodes in the system have not failed
or left the system. In the user mode, each peer node interacts as part of the system to provide
the agent generation and coordination services.

The experimental evaluation of the system performance focuses on the element discovery and
selection for dynamic composition. The execution time is measured for systems with different
number of peer nodes, and for different numbers of elements and agents. In case of two agent
negotiation, the overall communication cost is based on the number of negotiation iterations and
the latency of peer-to-peer messaging, which is independent of the system size.
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Figure 5 Scalability of element discovery.

Element discovery: This experiment was conducted on the Rutgers campus network. Each
machine was a peer node in Rudder. The experiment measures the time required to semantically
discover registered elements, which is the interval between when a CSA issues a discovery request
and when results containing all element profiles matching the query are returned. This time
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includes the time for routing the templates to peers, matching the profile repository within the
node memory, and returning matched results. Note that this measurement does not include
the cost of semantic matching. The template used in this experiment is specified using element
attributes, including service type, location, and performance/QoS guarantees, etc. with size at
least 440 bytes. The average execution time shown in Figure 5 illustrates that the discovery time
increase (from 0.1s to 65s) is much slower than the increase in the number of elements (from 3
to 2700), and is independent of the system size. This demonstrates the scalability of the system
and its suitability to distributed decentralized systems.

Element selection: These set of experiments were conducted on the PlanetLab test bed. The
experiments evaluate element selection using the Contract-Net Protocol. In this experiment, CAs
representing elements are randomly distributed at peer nodes, and a CSA attempts to find the
best CA to execute arriving tasks. The length of a task is fixed and is independent of the element
selection time. Tasks are generated through a Possion process with an inter-arrival mean time of
10 seconds. The CSA begins the bid evaluation process (1) when it receives all the bids or (2)
when it receives a certain percentage of bids. The element selection overhead is measured from
the time when the CSA announces a task to the time when it gets the results from the selected
CA to which the task is assigned, excluding the task execution time. This time includes the time
for task announcement, element selection, and returning the results from task execution.

Figure 6 plots the average execution time for the two cases: (1) the CSA begins evaluating
bids after it receives all the bids; and (2) the CSA begins evaluating bids after it receives only
50% of the bids (i.e., Eva r=0.5). Figure 6(a) plots the element discovery time. Once again, the
plots show that element discovery scales well and is fairly independent of the system size - the
discovery time increases by only about 28% when the number of matched profiles increases by
600%. Further, the plots in Figure 6(b) show that the execution overhead increases linearly with
the number of CAs, which is expected. Also, the performance of evaluation process improves in
case (2).
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Figure 6 Average CNP-based element selection and execution time.

5 Related Work

Research efforts related to this paper can be divided into related works coordination substrate
based system management architectures, and agent-based service discovery and negotiation.
These efforts are briefly discussed below.

The TuCSoN (Omicini, A. & Zambonelli, F. 1999) and MARS (Cabri, G. et al. 1998) systems
adopt programmable tuple spaces to support interaction among co-located mobile agents. These
systems have been exploited to support the applications in the areas of Internet information
retrieval, workflow management and E-Commence. The tuple space implemented by these systems
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is centralized and has a client-server architecture, making scalability a seriously limitation of these
systems. Project MARE (Storey, M. et al. 2002) exploits mobile agents and the L2imbo tuple
space (Davies, N. et al. 1998) to address resource discovery and configuration in mobile ad hoc
environments.

Software agents have been demonstrated to be an effective mechanism for service discovery
and negotiation in various computing environments. An agent marketplace architecture (Bircher,
E. & Braun, T. 2004) for wireless networks has been proposed and implemented on FIPA-OS
(Poslad, S. et al. 2000) for automating service detection, selection, price and service feature
negotiation. The negotiating based approach presented in (Soh, L. & Tsatsoulis, C. 2001) is
used in sensor networks to allocate sensor and computational resources so as to optimize the
accuracy of multi-sensor target tracking. Adaptive agent negotiations based on multiple models
and strategies has also been proposed in (Shen, W. et al. 2002) to support system adaptations to
changing computing needs and resources in Grid environments. However, the proposed approach
is not implemented or evaluated.

6 Conclusion

This paper presented Rudder, a peer-to-peer agent framework for autonomic grid applications.
This research investigated key issues in the developing and executing of autonomic systems and
applications, which include dynamic discovery, selection, and composition of discrete elements
as well as negotiation based system adaptive behaviors. A prototype implementation, operation,
and evaluation were also discussed. Experimental results showed the scalability and flexibility of
this framework as well as the feasibility of operating on wide area environment.
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