
An Infrastructure for Dynamic
Services

Zhen Li and Manish P
The Applied Software Systems

Dept. of Electrical and Computer Engineerin
{zhljenny, parashar}@caip.

I. INTRODUCTION

As Grid computing has evolved, multi-organization collab-
oration has shifted from primarily file exchange to decentral-
ized, seamless and scalable service-oriented approaches [3].
Dynamic service composition that enables an application or
parts of an application to be dynamically composed from ex-
isting Grid elments/services is emerging as a desired paradigm.
However, enabling dynamic service composition requires
infrastructure support for element discovery and workflow
composition and enactment. This poster presents Rudder, an
agent-based composition infrastructure for Grid services using
associative composition space abstractions. Rudder supports
dynamic workflow enactment using software agents to seman-
tically discover and select services required by the workflow,
and to compose the selected services. Further, the agents man-
age the workflow at runtime and adapt the workflow reactively
to address the dynamism of the Grid execution environment
and application requirements. The composition space abstrac-
tions in Rudder are realized by the Comet substrate [1], which
provides a robust and scalable, decentralized shared-space for
wide area environments. Comet supports a two level shared
space abstraction for workflow composition and execution:
a global persistent space supports scalable registration and
semantic discovery of services; and dynamically constructed
contextually local spaces provide the communication medium
to support workflow enactment.

II. ARCHITECTURE

Workflow Polices

Service

Elements

SA

Composite

Service

Registration

Discovery

Selection
Invoke

Monitor

Dynamic Composition,

Adaptation

Global Space

Decentralized

Repository

CSA
Interaction

Space

Task Execution

Plans

Fig. 1. A conceptual overview of the Rudder infrastructure.

A conceptual overview of the Rudder infrastructure is shown
in Figure 1, and consists of 4 key components:

• GlobalSpace, which is a persistent space that supports the
registration, publishing and semantic discovery of service
elements. A service provider can access the GlobalSpace
to register and publish its service in Rudder. Details of

th
pr

• In
co
pa
tio
a
th

• Se
an
se
se
to
tat

• Co
wo
se
a S
ica
on
ex

I

Rudd
figurati
der, a
adaptat
may be
require
tuples.
plan an
name,
can be
the tas
success
and all
specifie
events.
data (h
matchin
generat
compos
SA age

1-4244-0344-8/06/$20.00  2006 IEEE 315
Composition of Grid

arashar
Laboratory

g, Rutgers University, USA
rutgers.edu

e semantic discovery and dynamic selection have been
esented in [2].
teractionSpace, which is a dynamically constructed
ntextually localized space that is dedicated to a
rticular workflow. This space provides the interac-
n/coordination medium for configuring and enacting
workflow, and only includes the providers of services
at are a part of the workflow.
rvice agent (SA), which manages a service element
d the execution of the workflow task assigned to that
rvice. This agent is also responsible for monitoring the
rvice and enforcing the workflow adaptation to respond
application/system dynamics based on specified adap-
ion policies.
mposition agent (CSA), which manages one or more
rkflows. This agent is responsible for discovering

rvice elements to perform workflow tasks, instantiating
A to manage each discovered service element, dynam-
lly negotiating with the SAs to select elements based
system context and user preferences, and generate task

ecution plans to enact the workflows.

II. DYNAMIC WORKFLOW COMPOSITION AND

ADAPTATION IN RUDDER

er views dynamic composition, as the runtime con-
on, enactment, and adaptation of workflows. In Rud-
service workflow is specified using XML, along with
ion policies that define how a task or the workflow

adapted during execution to satisfy non-functional
ments, and enacted using two types of composition
A plan tuple describes a workflow task execution
d is generated by the CSA. It consists of 5 fields:
which identifies the task in workflow; status, which
“Activated” or “Stopped”; dependencies, which specify
k’s relationships to its immediate predecessor(s) and
or(s); SAlist, which includes the selected SA identifier
candidate SA identifiers; and adaptation policy, which
s how to adapt the workflow in response to specific
A task tuple has 3 fields: name, predecessor, and input
ost and port). A task tuple can be retrieved using a
g task template. The task tuples and templates are

ed by the SAs based on task execution plans. Workflow
ition and adaptation in Rudder is enabled by CSA and
nts using the composition tuples as described below.

Grid Computing Conference 2006

A. Dynamic Workflow Composition

Dynamic workflow composition in Rudder consists of 3
phases. Figure 2 illustrates the discovery and selection phase,
which has 4 steps. The user submits the workflow and adapta-
tion polices of the service. A CSA is instantiated to process the
user inputs. It parses the workflow specification and generates
a discovery request for each workflow task. It then uses the
GlobalSpace to discover a group of candidate services for each
task, and instantiates a SA for each discovered service. The
CSA negotiates with each SA group to dynamically select an
appropriate service and marks others as backups. Finally, the
CSA generates a task execution plan for each workflow task.

CSA

The user submit workflows

and adaptation polic ies .

A CSA is instantiated to process the

input workflow and polices .

 CSA discovers a group of

services for each task and

instantiates a SA for each

service.

Global Space

SA SA SA

 CSA maps each workflow task

to a task execution plan .

planplan

1 2 3

4

3user

Fig. 2. Phase 1: Discovery and selection.

Figure 3 illustrates the composite service setup phase. The
CSA initiates a transient Comet space as the InteractionSpace,
and invites all the selected SAs to join this space. Each SA
accepts the invitation and executes the Comet join protocol [1].
After joining the space, the SA locally accesses it to read its
task execution plan tuple. Once all SAs have joined, the CSA
inserts the “Activated” plan tuples into the space, which will
be extracted by the corresponding SAs. The SAs generate the
task templates and wait for their task tuples.

CSA initiates an

InteractionSpace.

The selected SAs

join the space .

CSA inserts the plan

tuples into the space .

SAs consume their task

execution plan tuples .

1

3 4

2Interaction

Space
CSA SA

Fig. 3. Phase 2: Composite service setup.

Figure 4 illustrates the workflow execution phase. The CSA
inserts the first task tuple to start the execution, and waits for
an end task tuple or a “Stopped” plan tuple. The SAs then
coordinate to execute the workflow by taking and writing task
tuples. The SA corresponding to the last task inserts an end
task tuple, which will be consumed by the CSA. Finally, the
CSA collects the output data and returns to user. Once the
composite service is permanently terminated, the CSA informs
the infrastructure to destroy the InteractionSpace and the SAs.

B. Workflow Adaptation

The SA supports workflow adaptation using element switch-
ing, which allows a failed or an active element to be replaced
with a single element at run time to obtain good performance.

CS

tu

ex

CS

ta

th

A SA
task ma
executi
the task
resultin
elemen
executi
the task
from th
dynami
a task
manage

This
for the
based o
support
The ag
by the
agents
adapt t
Comet
service

The re

Foundatio

CNS 0305

grant num

[1] Z. L
traliz
Work

[2] Z. L
auto
- An

[3] M. P
the G
volu

316
Interaction
Space

A inserts the first task

ple to trigger the workflow

ecution.

SA consumes the

required task tuples.

A consumes the end

sk tuple to terminate

e workflow.

SA invokes

the task

execution.

SA inserts task tuples to

trigger the successor.

1 2

45
3

CSA SA

Fig. 4. Phase 3: Workflow execution.

has 3 main components, shown in Figure 5. The
nager accesses the InteractionSpace and manages task

on. It extracts the plan tuple from the space, generates
templates, dispatches the retrieved task, generates the

g task tuples, and inserts them into the space. The
t controller monitors the element and invokes the task
on. If execution is successful, it returns the results to

manager. The element proxy forwards the task request
e task manager to a replacement candidate element. It
cally selects a candidate SA as a replacement, sends it
execution request, and forwards the results to the task
r.

Task Manager

Element

Proxy

Element

Controller

Elementcomposition

tuples

request

reply

invoke

monitor

return

Interaction

Space

Fig. 5. The structure of a service agent (SA).

IV. CONCLUSION

poster presented Rudder, an agent-based infrastructure
dynamic composition of Grid services. Rudder is

n an associative composition space abstraction, and
s dynamic workflow enactment using software agents.
ents semantically discover and select services required

workflow, and compose the selected services. The
manage the execution of the workflow at runtime, and
he workflow reactively. Prototypes of Rudder and the
substrate have been developed and deployed as Java

s within the JXTA framework.

ACKNOWLEDGMENT

search presented in this paper is supported in part by National Science

n via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244,

495, CNS 0426354 and IIS 0430826, and by Department of Energy via the

ber DE-FG02-06ER54857.

REFERENCES

i and M. Parashar. Comet: A scalable coordination space for decen-
ed distributed environments. In Proceedings of the 2nd International
shop on Hot Topics in Peer-to-Peer Systems, pages 104 – 112, 2005.
i and M. Parashar. Rudder: An agent-based infrastructure for

nomic composition of grid applications. Multiagent and Grid Systems
International Journal, 1(3):183 – 195, 2005.
arashar and J. Browne. Conceptual and Implementation Models for
rid. In Proceedings of the IEEE, Special Issue on Grid Computing,

me 93, pages 653–668, 2005.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Manish Parashar
