An Infrastructure for Dynamic Composition of Grid
Services

Zhen Li and Manish Parashar
The Applied Software Systems Laboratory
Dept. of Electrical and Computer Engineering, Rutgers University, USA
{zhljenny, parashar}@caip.rutgers.edu

I. INTRODUCTION

As Grid computing has evolved, multi-organization collab-
oration has shifted from primarily file exchange to decentral-
ized, seamless and scalable service-oriented approaches [3].
Dynamic service composition that enables an application or
parts of an application to be dynamically composed from ex-
isting Grid elments/services is emerging as a desired paradigm.
However, enabling dynamic service composition requires
infrastructure support for element discovery and workflow
composition and enactment. This poster presents Rudder, an
agent-based composition infrastructure for Grid services using
associative composition space abstractions. Rudder supports
dynamic workflow enactment using software agents to seman-
tically discover and select services required by the workflow,
and to compose the selected services. Further, the agents man-
age the workflow at runtime and adapt the workflow reactively
to address the dynamism of the Grid execution environment
and application requirements. The composition space abstrac-
tions in Rudder are realized by the Comet substrate [1], which
provides a robust and scalable, decentralized shared-space for
wide area environments. Comet supports a two level shared
space abstraction for workflow composition and execution:
a global persistent space supports scalable registration and
semantic discovery of services; and dynamically constructed
contextually local spaces provide the communication medium
to support workflow enactment.

II. ARCHITECTURE

Decentralized
Repository

Service
Elements

Invoke
Monitor
Interaction @
pace

Task Execution Dynamic Composition,
Plans Adaptation

Registration

Composite

Service Global Space

¢ Discovery

= Selection,

Workflow Polices

Fig. 1.

A conceptual overview of the Rudder infrastructure.

A conceptual overview of the Rudder infrastructure is shown

in Figure 1, and consists of 4 key components:

e GlobalSpace, which is a persistent space that supports the
registration, publishing and semantic discovery of service
elements. A service provider can access the GlobalSpace
to register and publish its service in Rudder. Details of

1-4244-0344-8/06/$20.00 © 2006 IEEE

315

the semantic discovery and dynamic selection have been
presented in [2].

o InteractionSpace, which is a dynamically constructed
contextually localized space that is dedicated to a
particular workflow. This space provides the interac-
tion/coordination medium for configuring and enacting
a workflow, and only includes the providers of services
that are a part of the workflow.

o Service agent (SA), which manages a service element
and the execution of the workflow task assigned to that
service. This agent is also responsible for monitoring the
service and enforcing the workflow adaptation to respond
to application/system dynamics based on specified adap-
tation policies.

o Composition agent (CSA), which manages one or more
workflows. This agent is responsible for discovering
service elements to perform workflow tasks, instantiating
a SA to manage each discovered service element, dynam-
ically negotiating with the SAs to select elements based
on system context and user preferences, and generate task
execution plans to enact the workflows.

III. DYNAMIC WORKFLOW COMPOSITION AND
ADAPTATION IN RUDDER

Rudder views dynamic composition, as the runtime con-
figuration, enactment, and adaptation of workflows. In Rud-
der, a service workflow is specified using XML, along with
adaptation policies that define how a task or the workflow
may be adapted during execution to satisfy non-functional
requirements, and enacted using two types of composition
tuples. A plan tuple describes a workflow task execution
plan and is generated by the CSA. It consists of 5 fields:
name, which identifies the task in workflow; status, which
can be “Activated” or “Stopped”; dependencies, which specify
the task’s relationships to its immediate predecessor(s) and
successor(s); SAlist, which includes the selected SA identifier
and all candidate SA identifiers; and adaptation policy, which
specifies how to adapt the workflow in response to specific
events. A task tuple has 3 fields: name, predecessor, and input
data (host and port). A task tuple can be retrieved using a
matching task template. The task tuples and templates are
generated by the SAs based on task execution plans. Workflow
composition and adaptation in Rudder is enabled by CSA and
SA agents using the composition tuples as described below.

Grid Computing Conference 2006

A. Dynamic Workflow Composition

Dynamic workflow composition in Rudder consists of 3
phases. Figure 2 illustrates the discovery and selection phase,
which has 4 steps. The user submits the workflow and adapta-
tion polices of the service. A CSA is instantiated to process the
user inputs. It parses the workflow specification and generates
a discovery request for each workflow task. It then uses the
GlobalSpace to discover a group of candidate services for each
task, and instantiates a SA for each discovered service. The
CSA negotiates with each SA group to dynamically select an
appropriate service and marks others as backups. Finally, the
CSA generates a task execution plan for each workflow task.

Global Space

CSA discovers agroup of
services for each task and
instantiates a SA for each

service

A CSA s instantiated to process the
inputworkflow and polices .

%w

The user submitworkflows
and adaptation policies .

CSA maps each workflow task
to atask execution plan .

Fig. 2. Phase 1: Discovery and selection.

Figure 3 illustrates the composite service setup phase. The
CSA initiates a transient Comet space as the InteractionSpace,
and invites all the selected SAs to join this space. Each SA
accepts the invitation and executes the Comet join protocol [1].
After joining the space, the SA locally accesses it to read its
task execution plan tuple. Once all SAs have joined, the CSA
inserts the “Activated” plan tuples into the space, which will
be extracted by the corresponding SAs. The SAs generate the
task templates and wait for their task tuples.

CSA initates an
InteractionS pace.

The selected SAs
join the space .

Interaction

CSA inserts the plan
tuples into the space .

SAs consume their task
execution plan tuples .

Fig. 3. Phase 2: Composite service setup.

Figure 4 illustrates the workflow execution phase. The CSA
inserts the first task tuple to start the execution, and waits for
an end task tuple or a “Stopped” plan tuple. The SAs then
coordinate to execute the workflow by taking and writing task
tuples. The SA corresponding to the last task inserts an end
task tuple, which will be consumed by the CSA. Finally, the
CSA collects the output data and returns to user. Once the
composite service is permanently terminated, the CSA informs
the infrastructure to destroy the InteractionSpace and the SAs.

B. Workflow Adaptation

The SA supports workflow adaptation using element switch-
ing, which allows a failed or an active element to be replaced
with a single element at run time to obtain good performance.

CSAinserts the first task
tuple to trigger the workflow
execution.

SA consumes the
required task tuples

SAinvokes
the task
execution.
CSA consumes the end
task tuple to terminate
the workflow.

SAinserts task tuples to
trigger the successor.

Fig. 4. Phase 3: Workflow execution.

A SA has 3 main components, shown in Figure 5. The
task manager accesses the InteractionSpace and manages task
execution. It extracts the plan tuple from the space, generates
the task templates, dispatches the retrieved task, generates the
resulting task tuples, and inserts them into the space. The
element controller monitors the element and invokes the task
execution. If execution is successful, it returns the results to
the task manager. The element proxy forwards the task request
from the task manager to a replacement candidate element. It
dynamically selects a candidate SA as a replacement, sends it
a task execution request, and forwards the results to the task
manager.

invoke

Interaction
o ey P
composition retun | Element
tuples Element Element
Proxy Controller
1S
request
replyy

—
==

monitor

Fig. 5. The structure of a service agent (SA).

IV. CONCLUSION

This poster presented Rudder, an agent-based infrastructure
for the dynamic composition of Grid services. Rudder is
based on an associative composition space abstraction, and
supports dynamic workflow enactment using software agents.
The agents semantically discover and select services required
by the workflow, and compose the selected services. The
agents manage the execution of the workflow at runtime, and
adapt the workflow reactively. Prototypes of Rudder and the
Comet substrate have been developed and deployed as Java
services within the JXTA framework.

ACKNOWLEDGMENT

The research presented in this paper is supported in part by National Science
Foundation via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244,
CNS 0305495, CNS 0426354 and IIS 0430826, and by Department of Energy via the
grant number DE-FG02-06ER54857.

REFERENCES

[1] Z. Li and M. Parashar. Comet: A scalable coordination space for decen-
tralized distributed environments. In Proceedings of the 2nd International
Workshop on Hot Topics in Peer-to-Peer Systems, pages 104 — 112, 2005.

[2] Z. Li and M. Parashar. Rudder: An agent-based infrastructure for
autonomic composition of grid applications. Multiagent and Grid Systems
- An International Journal, 1(3):183 — 195, 2005.

[3] M. Parashar and J. Browne. Conceptual and Implementation Models for
the Grid. In Proceedings of the IEEE, Special Issue on Grid Computing,
volume 93, pages 653-668, 2005.

316

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Manish Parashar
