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The Grid is rapidly emerging as the dominant paradigm for wide
area distributed application systems. As a result, there is a need
for modeling and analyzing the characteristics and requirements
of Grid systems and programming models. This paper adopts the
well-established body of models for distributed computing systems,
which are based upon carefully stated assumptions or axioms, as a
basis for defining and characterizing Grids and their programming
models and systems. The requirements of programming Grid ap-
plications and the resulting requirements on the underlying virtual
organizations and virtual machines are investigated. The assump-
tions underlying some of the programming models and systems cur-
rently used for Grid applications are identified and their validity in
Grid environments is discussed. A more in-depth analysis of two
programming systems, the Imperial College E-Science Networked
Infrastructure (ICENI) and Accord, using the proposed definitions’
structure is presented.
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I. INTRODUCTION

Goals: The goal of the Grid [39] concept is to enable
a new generation of applications combining intellectual and
physical resources that span many disciplines and organiza-
tions, providing vastly more effective solutions to important
scientific, engineering, business and government problems.
These new applications must be built on seamless and se-
cure discovery, access to, and interactions among resources,
services, and applications owned by many different orga-
nizations and institutions. One family of such applications
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includes scientific and engineering simulations of complex
physical phenomena that symbiotically and opportunistically
combine computations, experiments, observations, and real-
time data. Examples include weather prediction, earthquake
models, interacting black holes and neutron stars, forma-
tions of galaxies, and subsurface flows in oil reservoirs and
aquifers. Another family of Grid applications includes per-
vasive applications that leverage the pervasive information
Grid to continuously manage, adapt, and optimize our living
context, crisis management applications that use pervasive
conventional and unconventional information for crisis pre-
vention and response, medical applications that use in vivo
and in vitro sensors and actuators for patient management,
and business applications that use anytime–anywhere infor-
mation access to optimize profits.

Requirements: The requirements for attaining this
goal include a conceptual framework for realization of such
global scale applications, a set of standards defining and
specifying the entities in this framework and their inter-
actions, and implementations of middleware/infrastructure
for realizing entities that conform to the standards. The
elements1 of the conceptual framework are the following.

• Virtual organizations: organizations composed from re-
sources provided by multiple concrete organizations
for an agreed-upon purpose.

• Programming systems: the models and abstractions to
support the formulation, instantiation, and manage-
ment of an application.

• Execution environments: the specific resource config-
urations and system services for the execution of an
application.

Standards are operational definitions of the entities in the
framework including policies and procedures for life-cycle
management of virtual organizations, applications, and exe-
cution environments. Middleware and infrastructure services

1See Section II for definitions of some of these entities and the relation-
ships among them.
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support the definition, instantiation, and life-cycle manage-
ment of virtual organizations, applications, and execution en-
vironments in conformance with the standards.

Current Status: A service-oriented architecture for
defining virtual organizations and execution environments
for applications has been formulated and is available as
standards documents proposed by the Global Grid Forum
[3]. Further, toolkits (middleware/infrastructure systems)
enabling life-cycle management of virtual organizations
in conformance to the standards are also available (e.g.,
Globus [4], Unicore [11]). The situation with respect to
programming systems is much less satisfactory. Several
programming systems have been proposed and implemented
(see Section IV-D for representative systems), spanning
a variety of programming models and ranging in robust-
ness from commercially supported to research prototypes.
However, these programming systems are mostly based
on programming models carried over from programming
systems developed for sequential or multiprocessor pro-
gramming systems. As a result, these systems are based
on system abstractions and assumptions that may not be
realizable in a Grid environment.

Grid environments are inherently large, heterogeneous,
dynamic, and unreliable. Furthermore, Grid applications
are similarly complex, heterogeneous, and highly dynamic
in their behaviors and interactions. Together, these chal-
lenges result in application development, configuration, and
management complexities and uncertainties, which must
be addressed by the Grid programming system, the Grid
middleware infrastructure, or both.

This paper has three objectives: 1) to understand the
programming requirements of Grid environments and the
characteristics of the underlying virtual organizations; 2) to
investigate the assumptions made by the abstract machines
underlying existing programming models for distributed
systems, and to study their validity in Grid environments;
and 3) to study existing Grid programming systems that
address key requirements identified in this paper.

Related Work: Recent years have seen many efforts
focused on the definition and analysis of Grid system con-
cepts [17], [40], [41], [83] and programming models and
systems [64], [66], [67]. Reference[41] outlines the archi-
tecture of a virtual organization, while [40] defines the
structure of a Grid application. Nemeth and Sunderam in
[83] focus attention on the differences between “conven-
tional distributed systems” and Grids and develop abstract
models of both in terms of abstract state machines [52]. This
work is most similar in goals to this paper. In [66], Lee et al.
give an analysis and survey of Grid programming models
from the perspective of parallel/distributed programming.
In [67], Lee and Talia survey existing models which are
currently used to implement applications on Grids. Their
classification includes state models, message passing models,
Remote Procedure Call (RPC) models, workflow models,
peer-to-peer models, frameworks, component models, Web
services, and coordination models. Bal et al. [20] survey
tools for building Grid applications. They also present a
survey of existing Grid programming models and systems
with a viewpoint similar to Lee and Talia [67], and pro-

vide case studies of the application of some of the Grid
application development tools.

The approach taken in the current paper both complements
and contrasts these studies by applying a distributed sys-
tems perspective to Grid systems. In contrast to [83], we uti-
lize the similarities between distributed systems and Grids
as a starting point for our definitions and models of Grids.
We incorporate in our analysis issues such as uncertainty of
common knowledge, faults, unreliability of resources, and
self-management of behaviors. These issues have previously
received relatively little attention in the context of Grids and
Grid programming models and systems.

Paper Outline: The rest of this paper is organized as
follows. In Section II we present a formal view of Grid com-
puting and define its components. In Section III we review
the fundamentals of distributed systems and programming in
the context of Grid computing. In Section IV we outline the
challenges and requirements of programming Grid applica-
tions and discuss current research in Grid programming. In
Section V we present case studies of two programming sys-
tems that address some of the core challenges of program-
ming Grid applications identified in this paper. Section VI
presents a conclusion.

II. FORMAL DEFINITIONS OF GRID CONCEPTS

As illustrated in Fig. 1, Grid computing builds on imple-
mentation and conceptual models. Implementation models
address the virtualization of organizations which leads to
Grids, the creation and management of virtual organization
as goal-driven compositions of organizations, and the instan-
tiation of virtual machines as the execution environment for
an application. Conceptual models define abstract machines
that support programming models and systems to enable ap-
plication development. These concepts are formally defined
below.

Definition: Organization
An organization is a tuple (RS, I, PY, PL) where

is the set of resources and services supported
by o;
is the interface for accessing ;
is the set of policies for the operation of ;
is the set of protocols for the implementation
of .

Definition: Interface
The interface of an is the set of externally visible
operations through which the resources and services of the
are accessed.

Definition: Policy
A policy is a set of rules specifying the admissible pat-
terns of use for some type of resource and/or service.

Definition: Protocol
A protocol defines the sequence of interactions among the
resources and services of an to implement a policy .

Discussion:

• An organization is an entity that is established to ac-
complish some goals and that provides resources and
services to enable the goals to be achieved.

• Policies also control access to services and resources.
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Fig. 1. Conceptual and implementation models for Grid computing.

Definition: Virtual Organization
A virtual organization is a tuple
where

is a set of concrete organizations that collab-
orate as peers to form an instance of a ;
is the set of resources and services supported
by .
is the interface for accessing ;
is the set of policies for the operation of ;
is the set of protocols for the implementation
of .

Definition: Policy
A policy is a set of rules specifying the admissible pat-
terns of use for some type of resource and/or service for some
subset of the comprising the .

Definition: Protocol
A protocol defines the sequence of interactions among
some subset of the comprising the that imple-
ment a policy .

Discussion:

• A virtual organization is created to enable attainment
of goals (e.g., execution of applications) or implemen-
tation of services that are not feasible within the capa-
bilities of a single concrete organization.

• A virtual organization is a collaboration among peers.
The collaborating organizations have agreed-upon a
commonly desired set of goals. Each peer within the
virtual organization may both contribute resources and
services to the virtual organization and use resources
and services provided through the virtual organization.

Definition: Virtual Machine
A virtual machine is a tuple where

is the set of resources and services belonging
to the virtual organization from which the
is composed;
is the set of operations executed by a .
An is specified as a functional interface and a
behavior;
is the set of sequencing rules which con-
strain ordering and composition of operations.

Discussion:

• A virtual machine is a composition of resources within
a virtual organization and defines an instance of the
execution environment of an application.

• A virtual machine is implemented using the set of mid-
dleware services made available through its
containing .

• The behaviors of an operation include quality of ser-
vice guarantees made by the virtual machine for this
operation. Quality of service guarantees should cover
reliability and performance. The implementation of
the virtual machine must ensure conformance to these
specified behaviors. For example, if message delivery
is guaranteed to be reliable, ordered and exactly once,
then the implementation of the virtual machine must
ensure that this behavior is followed without exception.

Definition: Programming System
A programming system is a tuple where

is a programming model;
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is a language syntax for instantiating the program-
ming model.2

is an abstract machine on which the of the pro-
gramming system is defined.

Definition: Abstract Machine
An abstract machine is a tuple where

is the set of operations executed by an .
An is specified as a functional interface and a
behavior;
is the set of sequencing rules which con-
strain ordering and composition of operations.

Discussion:

• An abstract machine is defined independent of a virtual
machine and may be realized on many different virtual
machines.

• The definitions of behaviors of an operation include
specification of attributes such as completion, atom-
icity, reliability, etc., that are assumed by the program-
ming model.

• The operations and behaviors of the virtual machine
upon which the abstract machine is realized must sup-
port realization of the behaviors specified for the oper-
ations of the abstract machine.

Definition: Programming Model
A programming model is a tuple
where

is a set of entity types which may be acted
upon by the members of the set of operations
and interact, communicate, and are composed under
the model of computation ;

is a tuple where is a type, is a
name, is an interface, is a set of states , and

is a behavior model;
is a set of base types;
is a naming model which defines binding and

resolution of names, ;
is the set of operations implemented by the

entity and the set of dependencies of the en-
tity on other entities (i.e., requires dependencies).
The operations implemented by the entity define
provides dependencies which may satisfy requires
dependencies of other entities. may change at
runtime;

is a set of states where each is unique for
an entity;

is a behavior model in which properties such as
persistence, operation completion, failure modes,
etc., are specified. A behavior may be specified
for each operation implemented by the entity.

is the set of operations which are defined
upon instances of the members of separately from
the operations implemented by the entities;

2Language syntax and representation does not impact the semantics with
which we are concerned and so are not further discussed here. The languages
for most current Grid programming systems are extensions of the syntax of
existing sequential or parallel programming languages;

a model of computation consists of a composition
model, coordination model and communication
model and is a tuple
where

is a set of rules for composition of a
set of entities, into an entity, . Compo-
sition binds a requires dependence of a com-
ponent to one or more provides dependencies
of other components. Bindings can occur at
compile time, link-time or runtime. Runtime
binding (dynamic structuring) requires a dis-
covery mechanism;
is a model of coordination. A model of coor-
dination specifies allowed orderings of execu-
tion among entities;
is a model of communication. A model of
communication specifies the mechanisms
through which the interactions implementing
composition and coordination are imple-
mented, e.g., point-to-point messages, broad-
cast, shared name spaces, etc.

is the abstract machine implied by the programming
model that supports the set of entities , their be-
haviors , and the behaviors of the set of operations

.
Discussion:

• Entities are the subjects of programming. Entities are
the first-class citizens of a programming model. Exam-
ples of entity types include processes, threads, func-
tions, objects, components, and services. New entity
types can be recursively created by composition of ex-
isting entity types. In Grid programming models, an
entity is a unit not only for composition, but also for
deployment and execution.

• The set may include creation, deletion, binding
and resolution of names, binding to resources, dis-
covery, and transformations on the states and types of
instances of entities depending on the functionality of
the entities themselves.

• Operations have states (in progress, completed, failed)
and, once initiated, the states of an operation can be
detected.

• The interface of an entity may depend upon its current
state.

• The abstract machine implied by the programming
model defines the assumptions made by the program-
ming model about the capabilities and guarantees
provided by the execution environment of any applica-
tion implemented using the model.

III. FUNDAMENTALS OF DISTRIBUTED SYSTEMS

In this section we highlight fundamental issues of behavior
for distributed systems in general (and Grid systems in par-
ticular). Issues include system definition and control with
a focus on complexity and uncertainty and programming
models and frameworks for creating instances (applications)
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of distributed systems. The motivation is that Grid systems
are specific instances of distributed systems.

A. System Definition and Control

Definition: Distributed system—a distributed system is a
collection of logically or physically disjoint entities which
have established a process for making collective decisions.

Collective decisions depend on common knowledge [53]
held by the participants in the decision process at the time a
decision is made. Common knowledge may be known by the
participants prior to being a part of the distributed system or
may be acquired by a consensus process [102] during execu-
tion. However, consensus can be established with complete
certainty only in very restricted instances of distributed
systems [102] and seldom in real distributed systems. There
is, therefore, intrinsic uncertainty in the common knowledge
of most distributed systems. Uncertainty can be bounded
through use of interaction protocols which narrow the time
span of uncertainty and/or the elements of system state
which are uncertain (e.g., timed behavior assumptions [32]).

The fundamental requirements for implementing a dis-
tributed system are a capability for creation and management
of a system and a capability for control of the system through
decision processes which operate correctly in the presence of
uncertainty. The algorithms which can be used in the decision
process depend upon the properties of the computer, commu-
nication, and data resources which comprise the distributed
system, and particularly upon the assumed reliability, failure
modes, and/or timed behavior of the computer and commu-
nication resources.

The distributed systems instantiated by the Grid middle-
ware (called virtual organizations) implicitly assume failure
modes, reliability properties, performance, etc., for the re-
sources they assemble into a virtual organization. Often these
assumptions are either not explicitly stated or are those of
complete reliability. The latter case, which eliminates uncer-
tainty in common knowledge, is clearly unrealistic for real
distributed systems.

Definition: Decision Algorithms—Decisions can be ab-
stractly formulated as

If (Decision(Current State, Request))
then

State = Transition(Current State, Request);

Decision is a specification for execution of a change of
state. Decision is a function which evaluates to true if a Re-
quest for a state change is accepted. Transition is a function
which transforms the current state to a new state that may re-
sult in a change in the local states of the participants and/or
interactions with other participants. As mentioned above, the
requirement for collective decisions in the presence of un-
certainty requires decision algorithms to make assumptions
about behavior, reliability, and guarantees. A key objective
of this paper is to identify and characterize the assumptions
made by programming frameworks and infrastructures used
by Grid systems.

B. Central Versus Distributed Control

Ideally the state of the system to which Decision is applied
is complete and accurate and Decision is a complete function.
This is straightforward in a single-site system where system
state can be maintained consistent in a local data structure
and Decision is applied to this data structure. Distributed
control implies that Decision is partitioned among the en-
tities composing the system and coupled by communication
protocols. Central control of a distributed system can, how-
ever, be implemented by gathering the system state at a single
site, executing Decision at this site and propagating the deci-
sion to the other sites. In fact, this is what is normally done in
most Grid systems. Execution of the Transition function is,
however, intrinsically distributed. This leads to intrinsic un-
certainty in system state (common knowledge) since, for ex-
ample, a resource can fail during the time span of making the
decision and executing the state transition, perhaps rendering
the decision invalid. Grid systems should make provision for
dealing with this uncertainty in cases where complete relia-
bility cannot reasonably be assumed.

Distributed control implies that each entity makes deci-
sions following a commonly agreed-upon process and based
upon agreed-upon common knowledge. An important aspect
of a distributed system which utilizes distributed control is
the specification of the commonly agreed-upon processes
and the common knowledge upon which distributed control
is based. These aspects should be precisely specified for Grid
systems which utilize distributed control.

A key objective of this paper is to characterize the models
for control, specifications for commonly agreed processes,
specifications and mechanisms for maintaining common
knowledge, and the conditions under which consensus can
be attained under the assumptions made by current Grid
systems concerning reliability, performance, failure modes,
etc.

C. Programming Systems for Distributed Applications

As defined in Section II, a programming system for dis-
tributed applications consists of three key components: 1) a
programming model and associated language that defines a
set of abstractions that the programmer uses to define the be-
havior of application elements and their interactions; 2) an
underlying abstract machine that defines the execution con-
text for the applications and embodies the assumptions made
by the programming model about the capabilities, behaviors
and qualities of services of the underlying environments; and
3) an infrastructure that provides the services necessary for
creating, managing, and destroying the virtual machine upon
which the abstract machine is realized and the abstractions
assumed by the programming model satisfied.

The typical tradeoff in programming systems for dis-
tributed environments lies in these assumptions made by
the programming model about common knowledge and the
behavior of the abstract machine. While stronger assump-
tions (e.g., computation or communication reliability or
fail-stop behaviors) reduce the responsibilities of application
developers and the complexity of application development,
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they also increase the complexity of the middleware which
must ensure that the assumptions are satisfied. It also makes
application more brittle, causing them to fail whenever an
assumption is not completely satisfied by the middleware.
For example, the middleware may not be able to support
reliable delivery of messages or exactly once invocation
semantics for RPCs as the scale and/or rate of change of
a system increases, causing applications built upon these
assumptions to fail. On the other hand, weakening the
assumptions made in the programming model reduces the
complexity of the middleware allowing it to be more robust.
However, it increases the requirements of the programming
model and the responsibility of the developer by exposing
complexity and uncertainty.

D. Programming Grid Applications

Grid software systems typically provide capabilities
for: 1) creating a transient “virtual organization” or vir-
tual resource configuration; 2) creating virtual machines
composed from the resource configuration of the virtual
organization; 3) creating application programs to execute
on the virtual machines; and 4) executing and managing ap-
plication execution. Therefore, most Grid software systems
implicitly or explicitly incorporate a programming model.
These programming models implicitly or explicitly assume
an underlying abstract machine with specific execution
behaviors including assumptions about reliability, failure
modes, etc. In previous efforts focusing on identifying and
understanding requirements and models for programming
Grids [83], these assumptions or their implications have
often not been explicitly studied or sometimes even explic-
itly stated. Further, proposed Grid programming systems
[67] have similarly not specified the assumptions made
with respect to the underlying abstract machine. As we
note above, understanding these assumptions is important,
since they define capabilities and limitations of Grid appli-
cations and the core requirements for the Grid middleware
infrastructure.

In the rest of this paper, we first identify the key sources of
complexity and uncertainty in Grid environments. We then
analyze existing distributed programming systems to extract,
make explicit the underlying assumptions, and investigate
their applicability and limitations as Grid programming
models.

IV. GRID COMPUTING—CHALLENGES, REQUIREMENTS

AND APPROACHES

This section begins with a catalog of the characteristics
of Grid computing systems and the challenges they present
with respect to the programming of applications. Distributed
programming models and systems that form the basis of
most existing Grid programming and application develop-
ment systems are then characterized. Current Grid research
in programming and application development systems is
then discussed in the context of the distributed programming
systems upon which they are based.

A. Characteristics of Grid Execution Environments
and Applications

The characteristics of Grid execution environments and
applications are as follows.

Heterogeneity: Grid environments aggregate large
numbers of independent and geographically distributed
computational and information resources, including super-
computers, workstation clusters, network elements, data
storages, sensors, services, and Internet networks. Similarly,
applications typically combine multiple independent and
distributed software elements such as components, services,
real-time data, experiments, and data sources.

Dynamism: The Grid computation, communication,
and information environment is continuously changing
during the lifetime of an application. This includes the
availability and state of resources, services, and data. Appli-
cations similarly have dynamic runtime behaviors in that the
organization and interactions of the components/services
can change.

Uncertainty: Uncertainty in Grid environment is
caused by multiple factors, including: 1) dynamism, which
introduces unpredictable and changing behaviors that can
only be detected and resolved at runtime; 2) failures, which
have an increasing probability of occurrence and frequencies
as system/application scales increase; and 3) incomplete
knowledge of global system state, which is intrinsic to large
decentralized and asynchronous distributed environments.

Security: A key attribute of Grids is flexible and se-
cure hardware/software resource sharing across organization
boundaries, which makes security (authentication, authoriza-
tion, and access control) and trust critical challenges in these
environments.

B. Requirements for Grid Programming Systems

These characteristics impose requirements on the pro-
gramming systems for Grid applications. Grid programming
systems must be able to specify applications which can de-
tect and dynamically respond during execution to changes in
both, the execution environment and application states. This
requirement suggests that: 1) Grid applications should be
composed from discrete, self-managing components which
incorporate separate specifications for all of functional, non-
functional, and interaction–coordination behaviors; 2) the
specifications of computational (functional) behaviors,
interaction and coordination behaviors and nonfunctional
behaviors (e.g., performance, fault detection and recovery,
etc.) should be separated so that their combinations are
composable; and 3) the interface definitions of these com-
ponents should be separated from their implementations to
enable heterogeneous components to interact and to enable
dynamic selection of components.

Given these features of a programming system, a Grid ap-
plication requiring a given set of computational behaviors
may be integrated with different interaction and coordination
models or languages (and vice versa) and different specifica-
tions for nonfunctional behaviors such as fault recovery and
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QoS to address the dynamism and heterogeneity of the ap-
plication and the underlying environments.

In the rest of this section, we study these programming
models and frameworks on which current Grid programming
systems are built. The goal of this study is not to be critical of
these systems by to analyze their underlying assumptions and
to understand their capabilities and limitations in addressing
the issues outlined above.

C. Distributed Programming Models/Systems

Dominant programming models and frameworks for
distributed systems can be broadly classified as: 1) models
based on the addition of communication/interaction models
and mechanism to sequential programming models (e.g.,
Message Passing Interface (MPI)/Parallel Virtual Machine
(PVM), RPC, Linda); 2) distributed object models [e.g.,
Commom Object Request Broker Architecture (CORBA)];
3) component models [e.g., JavaBean, CORBA Component
Model (CCM), Common Component Architecture (CCA)];
and 4) service models (e.g., Web Service, WRF).3 One differ-
ence between component-based models and service-based
models is that traditionally a component is defined in the
context of an application and only has meaning during the
lifetime of the application, while a service exists across
applications. In this section we study these programming
models and frameworks. The goal of this study is to ana-
lyze their underlying assumptions and to understand their
capabilities and limitations in addressing the issues outlined
above.

1) Communication Models and Frameworks: The com-
munication models/frameworks supplement existing sequen-
tial programming models to enable the interactions between
distributed entities. These include message passing models,
RPC models, and shared-space models.

Message Passing Models: Message passing models
provide messaging abstractions that enable entities defined
by sequential programming models to communicate. For
example systems such as MPI [7], [95] and PVM [46]
provide message passing operators to sequential languages
such as Fortran and C. These models primarily address
distribution. They provide support for creating, operating
on, and destroying virtual machines. The abstract machine
model for these assumes stable common knowledge about
participants, their identifiers, and their behaviors. It also
assumes that this knowledge is always maintained in spite
of any change in the system. Further, the abstract machine
assumes the virtual machine to be reliable or at least support
reliable communications.

MPI, the dominant message passing system focuses on
performance, and does not support heterogeneity, dynamism
or uncertainty. Further, it assumes that all interacting pro-
cesses are trusted and does not address security. MPICH-G2
[59], a Grid-enabled implementation of the MPI, hides the
heterogeneity using services provided by Globus toolkits.
MPI-2 [51] does support dynamic creation of new pro-
cesses and runtime modification of the processor set. The

3See [20] and [64] for similar classifications.

Harness/PVM [46], [80] effort also addresses heterogeneity
and process dynamism in addition to distribution. Har-
ness/PVM also provides a fault-tolerant extension to MPI
(FT-MPI [37]) that can tolerate process failures. Other
similar fault-tolerant extensions include MPI/FT [22] and
MPICH-V2 [28]. These systems can tolerate process failures
but assume fail-stop behavior and an abstract machine with
reliable communication.

RPC: RPC [27] mechanisms also support process in-
teractions in a distributed environment by extending the no-
tion of a conventional procedure call to operate across the
network. In addition to distribution, RPC implementations
also address heterogeneity by using neutral interface descrip-
tion languages. However, RPC assumes that common knowl-
edge about the name/identifier, address, and the existence of
the end-points, and the syntax and semantics of the interface
are known a priori (compile-time). Further, it assumes re-
liable message delivery and provides mechanisms for man-
aging failures at the application level. The RPC model does
not address dynamism or security.

Shared-Space Model: The shared-space model sup-
ports interaction/coordination by exchanging data using a
shared storage space. The shared-data space implements
common knowledge which can be shared by all of the
entities in an application. Various implementations have
different properties. The shared space may be persistent,
associatively addressable, transactionally secure, and ca-
pable of exchanging executable content. The shared-space
interaction/coordination model was initially proposed in
the form of the Linda tuple-space [29], [47] and was more
recently adapted by Jini [105] as its JavaSpace [42] service.
The traditional tuple-space model has been recently ex-
tended to incorporate reactive behaviors by systems such as
TuCSoN [86], [90]. A key feature of the shared-space model
is that it decouples the interacting entities in space, time
and synchronization. As a result, the shared-space model
naturally addresses distribution and dynamic structuring
among entities and can manage heterogeneity as long as the
syntax, semantics, and representation of the shared data is
neutrally defined. Further, this model can also address failure
of the interacting entities. However, scalable, consistent, and
robust distributed implementations of shared spaces remain
a challenge. Current implementations of the model do not
address security.

2) Distributed Object Models: Unlike the systems de-
scribed above that essentially address only communication
aspects, the distributed object models provide more com-
plete support for parallel/distributed applications, including
life-cycle management, location and discovery, interac-
tion and synchronization, security, failure, and reliability
[21]. CORBA [1], [23], one of the dominant distributed
object models, enables the secure interactions (based on
RPCs, method invocations, and event notification) between
distributed and heterogeneous objects using interfaces de-
scribed by a language-neutral interface definition language
and through a middleware consisting of object resource bro-
kers and interoperability protocols [e.g., General Inter-ORB
Protocol (GIOP), Internet Inter-ORB Protocol (IIOP)].
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CORBA primarily addresses distribution and heterogeneity.
CORBA also provides limited support for dynamism via
dynamic invocation [Dynamic Skeleton Interface (DSI)/Dy-
namic Invocation Interface (DII)] and late binding, which
enables customization at deployment time. However, the in-
teracting objects and interaction are tightly coupled. Further,
the model assumes a priori (compile-time) knowledge of the
syntax and semantics of interfaces as well as the interactions
required by the applications. The Java distributed object
model [38] is very similar to CORBA, but supports Java
objects.

3) Component Models: Component models address
increasing software complexity and changing requirements
by enabling the construction of systems as assemblies of
reusable components. Components are reusable units of
composition, deployment, and execution and life-cycle
management [96]. Components are completely specified by
their interfaces. Current component models include CCM,
JavaBeans, and CCA.

CCM [106] extends the CORBA distributed object model
and similarly supports distribution, heterogeneity, and secu-
rity. It also supports dynamic instantiation and runtime cus-
tomization of components. However, CCM inherits some of
the limitations of CORBA including the requirement for a
prior knowledge about interfaces and interactions. JavaBeans
[35] is a Java-only component model which addresses similar
issues. JavaBeans also support runtime bean customization.

CCA [15] defines a component model especially for
scientific applications. The model primarily addresses the
heterogeneity and the separation of interface and implemen-
tation. CCA targets high-performance parallel applications
and uses functional calls for intercomponent interactions.
While it does not support runtime customization of compo-
nents, it does allow components to be replaced. It does not
address failure or security and assumes all components are
trusted.

4) Service Models: Service-based models such as Web
Services [12], [30] and Open Grid Services Architecture
(OGSA)/Web Service Resource Framework (WSRF) [33],
[34] target loosely coupled and highly dynamic systems and
support “just-in-time” integration of applications without
requirements for a priori knowledge of services or in-
terfaces. The Web service model supports heterogeneity
through XML-described (e.g., WSDL) interfaces. It ad-
dresses dynamism by enabling service customization based
on application requirements and the execution environment.
The Web service model, however, assumes that services
are stateless and that the execution environment remains
relatively static during service execution.

The WSRF [34] builds on Web Services and experiences
from the OGSA [40] is concerned primarily with the cre-
ation, addressing, inspection, and lifetime management of
stateful resources. WSRF supports transient services and ad-
dresses dynamism by supporting customization during ser-
vice instantiation. It also addresses security by building on
Grid protocols and mechanisms. However, WSRF assumes
that the execution environment remains static during service
execution. Further, it makes strong assumptions about the

reliability of the underling mechanism for remote service
invocation.

An important aspect related to component- and ser-
vice-based models is composition. Composition has been
addressed by systems such as Symphony [73], METEOR
[81], COSMOS [49], Aurora [76], SWORD [89], and
DySCo [88]. Symphony is a Java-based static composition
framework based on JavaBeans. METEOR addresses run-
time adaptability and management of a composed workflow.
COSMOS and Aurora are similar systems focused on ser-
vices in electronic commerce applications. SWORD uses
a rule-based expert system to find composition plans for
informational services. DySCo enables dynamic service
composition for stateless services and is based on the idea
of functional incompleteness and multiparty orchestration.

Composition and flow specification languages for Web
and Grid services include BPEL [18], Grid Services Flow
Language (GSFL) [104], Web Services Flow Language
(WSFL) [68], XLANG [100], ebXML [2], and Web Service
Choreography Interface (WSCI) [19].

D. Grid Computing Research

Grid computing research efforts over the last decade can
be broadly divided into efforts addressing the realization of
virtual organizations and those addressing the development
of Grid applications. The former set of efforts have focused
on the definition and implementation of the core services
that enable the specification, construction, operation, and
management of virtual organizations and instantiation of
virtual machines that are the execution environments of
Grid applications. Services include: 1) security services
to enable the establishment of secure relationships be-
tween a large number of dynamically created subjects and
across a range of administrative domains, each with its
own local security policy; 2) resource discovery services
to enable discovery of hardware, software and informa-
tion resources across the Grid; 3) resource management
services to provide uniform and scalable mechanisms for
naming and locating remote resources, support the initial
registration/discovery and ongoing monitoring of resources,
and incorporate these resources into applications; 4) job
management services to enable the creation, scheduling,
deletion, suspension, resumption, and synchronization of
jobs; and 5) data management services to enable accessing,
managing, and transferring of data, and providing support
for replica management and data filtering. Efforts in this
class include Globus [4], Unicore [11], Condor [99] and
Legion [50]. Other efforts in this class include the devel-
opment of common application programming interfaces
(APIs), toolkits, and portals that provide high-level uniform
and pervasive access to these services. These efforts include
the Grid Application Toolkit (GAT) [16], Distributed Virtual
Computer (DVC) [97], and the Commodity Grid Kits (CoG
Kits) [65]. These systems often incorporate programming
models or capabilities for utilizing programs written in
some distributed programming model. For example, Legion
implements an object-oriented programming model, while
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Globus provides a capability for executing programs uti-
lizing message passing.

The second class of research efforts, which is also the
focus of this paper, deals with the formulation, programming,
and management of Grid applications. These efforts build
on the Grid implementation services and focus on program-
ming models, languages, tools and frameworks, and appli-
cation runtime environments. Research efforts in this class
include GrADS [24], GridRPC [94], GridMPI [56], Harness
[80], Satin/IBIS [84], [85], XCAT [48], [63], Alua [103],
G2 [60], J-Grid [77], Triana [98], and the Imperial College
E-Science Networked Infrastructure (ICENI) [43]. Very brief
sketches of the programming models underlying these sys-
tems are presented below. ICENI is covered in more detail in
the next section.

These systems have essentially built on, combined, and
extended existing models for parallel and distributed com-
puting. For example, GridRPC extends the traditional RPC
model to address system dynamism. It builds on Grid system
services to combines resource discovery, authentication/au-
thorization, resource allocation, and task scheduling to re-
mote invocations. Similarly, Harness and GridMPI build on
the message passing parallel computing model. Satin sup-
ports divide-and-conquer parallelism on top of the IBIS com-
munication system. GrADS builds on the object model and
uses reconfigurable object and performance contracts to ad-
dress Grid dynamics. XCAT and Alua extend the compo-
nent-based model. G2, J-Grid, Triana, and ICENI build on
various service-based models. G2 builds on .Net [8], J-Grid
builds on Jini [6], and current implementations of Tirana and
ICENI build on JXTA [10]. While this is natural, it also im-
plies that these systems implicitly inherit the assumptions
and abstractions that underlie the programming models of
the systems upon which they are based and, thus, in turn in-
herit their assumptions, capabilities and limitations.

V. SELF-MANAGING APPLICATIONS ON THE GRID

As outlined in the earlier sections of this paper, the
inherent scale, complexity, heterogeneity, and dynamism
of emerging Grid environments result in application pro-
gramming and runtime management complexities that break
current paradigms. This is primarily because the abstract
machine underlying these models makes strong assumptions
about common knowledge, static behaviors and system
guarantees that cannot be realized by Grid virtual machines.
Addressing these challenges requires redefining the pro-
gramming framework to address the separations outlined in
Section IV. Specifically, it requires: 1) static (defined at the
time of instantiation) application requirements and system
and application behaviors to be relaxed; 2) the behaviors
of elements and applications to be sensitive to the dynamic
state of the system and the changing requirements of the
application and be able to adapt to these changes at runtime;
3) required common knowledge be expressed semantically
(ontology and taxonomy) rather than in terms of names, ad-
dresses and identifiers; and 4) the core enabling middleware
services (e.g., discovery, messaging) be driven by such a

semantic knowledge. In this section we describe two recent
Grid programming systems that attempt to address these
challenges by enabling self-managing Grid applications.

A. ICENI

ICENI [43]–[45], [54], [79] meets many of the require-
ments given in Section IV-B for Grid programming systems.
Applications are composed from components which are
semiautonomous, specifications for functional and nonfunc-
tional behaviors4 are separated, and interface definitions are
separated from implementations. Capabilities for instanti-
ating virtual machines and for optimization of performance
are provided.

1) ICENI Architecture: ICENI is a package of middle-
ware built on top of middleware systems for creating virtual
organizations. The ICENI middleware layer enables creation
of applications and management and optimization of the
execution of these applications on computational Grids
realized within virtual organizations or “computational
communities.” Fig. 2, taken from [5], is a schematic of the
architecture of ICENI. ICENI was originally implemented
upon the virtual organization capability or private domain
capability implemented using JINI [6]. It has subsequently
been implemented with JXTA [10] providing the virtual
organization capability and also with an implementation of
OGSI [101] providing the virtual organization capability.

2) Programming System: The elements of the ICENI
programming system are summarized in the subsections
below following the definition of a programming system
given in Section II. The programming system consists of
a definitional system for components in which each of the
computational behaviors, the interface and the “meaning or
semantics” of a component are separately described (see
Fig. 3). Capabilities for application instantiation, manage-
ment, and optimization through performance models are
also provided. We have tried, where explicit specification of
an element of the definitions in Section II was not available,
to infer the specification. The specifications given herein
were extracted from papers found on the ICENI Web site,
and in particular [43]–[45], [54], and [79].

Programming Model: Entities: The entities of the pro-
gramming model are components. Each component has a
meaning and may have several behaviors each of which may
have several implementations. The meaning of a component
includes its types, its semantic constraints, and its function-
ality. A component may implement many different behaviors
in terms of its interaction with other components. Finally,
each behavior may have many implementations which may
have different performance properties. These specifications
are bound to input and output ports which constitute the in-
terface of the component.

Operations: Operations on components include registra-
tion, discovery, and instantiation. A component is registered
through a script called the Software Resource Factor Script

4The definition of “behavior” used in the ICENI system is different from
the definition of “behavior” used in the definitions of programming systems
in Section II of this paper. ICENI behaviors specify what we call interac-
tion/coordination models.
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Fig. 2. Architecture of ICENI.

Fig. 3. Component definition and structure.

which generates the data to be stored in an instance of a
JINI lookup service. Lookup or discovery is implemented
through either the JINI (JXTA or Globus) discovery services
depending on the implementation. Instantiation is done
through the Jini factory service using Java proxy objects.

Behavior: Performance properties are based on resource
specifications which are incorporated into components. No
explicit fault behavior model is specified.

Model of Computation: The model of computation which
is inferred from the implicit definition of component com-
position is as follows. Composition Rules: An application
is a composition of components. Allowable compositions
of components are defined by the type specifications for
input/output ports and dependency relations specified in the
behavior specification. Communication Model: Communi-
cation is unidirectional point-to-point defined by bindings
of output ports of one component to input ports of another
component. The assumed semantics of communication
appear to be reliable, ordered, once and only once delivery.
Coordination Model: The coordination model allows both
asynchronous parallel and serial executions of components.

Language: ICENI language facilities are three XML-
languages. A component is defined by three programs. The

meaning of a component is described in the Component
Description Language. Behaviors are described using the
Behavioral Definition Language, and the implementation
definition uses the Interface Definition Language. These are
XML documents from which skeletons for the components
are compiled as Java objects.

Context Object: A helper class for the middleware, which
provides certain component specific support within the
middleware.

Advice: The context object implements this Java interface.
This is called “advice,” as it should be used by the developer
to see what methods the context object offers that can be
used within their code. Typically these are methods that allow
control to leave the component and other methods by which
the component can interact with the middleware.

Interface: The developer’s implementation must im-
plement this interface. The middleware will, at times, call
methods given in this interface, so they must be supported.

Implementation: This extends the GridComponent class
which is a part of the ICENI system library—it must pos-
sess the methods given in the interface above, and also ini-
tialize() and execute() methods. Initialize() passes a context
object into the code, which may then be used by the devel-
oper. Execute() will be called after initialize(), and acts as the
“main” for each component.

A component is completed by adding an implementation
in Java or C/C++ to the implementation skeleton for the com-
ponent. GUI support for preparing these programs and meta-
data is provided.

An application is generated by composing components
through a simple GUI which enables the establishment of
connections between instances of components.

Abstract Machine: We were not able to find an explicit
specification of the semantics of the abstract machine
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Fig. 4. A schematic overview of AutoMate.

assumed for the execution of ICENI programs. Implemen-
tations in Java and Jini result in an implied definition of
abstract machine semantics. Jini communicates using Java
RMI, which assumes reliable (once-and-only-once seman-
tics) communication and execution. Therefore, this is the
default assumption for abstract machine behavior. A Jini im-
plementation could use Jini leasing specifications as a basis
for implementation of fault detection and access control.

3) Optimization and Adaptation: ICENI provides an op-
timization service [45] for the execution of computations on
computational Grids. Each component can have associated
with it a performance model which can be executed by exe-
cuting the application with each component represented by
its performance model. This can then be used to determine
an optimal implementation within a given resource configu-
ration, virtual organization, or “computational community.”

The capabilities for semantically based adaptation for
ICENI are described in [55] and [79]. The semantic specifi-
cations are based on OWL [9], use rule based matching, and
are implemented though Jini.

4) Analysis: The ICENI system meets many of the cri-
teria for a complete programming system for Grid appli-
cations. The most significant capability ICENI does not
address is that of dealing with uncertainty, i.e., faults and
monitoring for faults in the environment or failures in ap-
plication components.

In principle, the ability to deal with faults could be real-
ized in the Behavior Description Language and presumably
administered through an additional management component
in the ICENI runtime.

B. Project AutoMate: Enabling Self-Managing Grid
Applications

Project AutoMate [13], [87] investigates solutions that
are based on the strategies used by biological systems to
deal with similar challenges of complexity, dynamism,
heterogeneity, and uncertainty. This approach, referred to as
autonomic computing [61], aims at realizing systems and
applications that are capable of managing (i.e., configuring,
adapting, optimizing, protecting, healing) themselves. The

overall goal of Project AutoMate is to investigate conceptual
models and implementation architectures that can enable the
development and execution of such self-managing Grid ap-
plications. Specifically, it investigates programming models,
frameworks, and middleware services that support the defi-
nition of autonomic elements, the development of autonomic
applications as the dynamic and opportunistic composition
of these autonomic elements, and the policy, content, and
context driven definition, execution, and management of
these applications.

A schematic overview of AutoMate is presented in
Fig. 4. AutoMate builds on JXTA [36] and uses OGSI Grid
middleware [101] services to define and manage virtual
organizations. Components of AutoMate include the Accord
[70], [72] programming system, the Rudder [69] decen-
tralized coordination framework and agent-based deductive
engine, and the Meteor [57], [58] content-based middleware
providing support for content-based routing, discovery,
and associative messaging. Project AutoMate additionally
includes the Sesame [109] context-based access control
infrastructure, the DAIS [107], [108] cooperative-protection
services, and the Discover collaboratory [26], [74], [75],
[82] services for collaborative monitoring, interaction, and
control. The Accord programming system is described
below.

Accord: A Programming System for Autonomic Grid
Applications: The Accord programming system [70]–[72]
addresses Grid programming challenges by extending
existing programming systems to enable autonomic Grid
applications. Accord realizes three fundamental separations:
1) a separation of computations from coordination and
interactions; 2) a separation of nonfunctional aspects (e.g.,
resource requirements, performance) from functional behav-
iors; and 3) a separation of policy and mechanism—policies
in the form of rules are used to orchestrate a repertoire
of mechanisms to achieve context-aware adaptive runtime
computational behaviors and coordination and interaction
relationships based on functional, performance, and QoS
requirements. Using the definitions in Section II, the com-
ponents of Accord are described below.

PARASHAR AND BROWNE: CONCEPTUAL AND IMPLEMENTATION MODELS FOR THE GRID 663



Fig. 5. An autonomic element in Accord.

Accord Programming Model: Accord extends existing
distributed programming models, i.e., object, component
and service-based models, to support autonomic self-man-
agement capabilities. Specifically it extends the entities and
composition rules defined by the underlying programming
model to enable computational and composition/interaction
behaviors to be defined at runtime using high-level rules.
The resulting autonomic elements and their autonomic com-
position are described below. Note that other aspects of the
programming model, i.e., operations, model of computation,
and rules for composition, are inherited and maintained by
Accord.

Autonomic Elements: An autonomic element extends pro-
gramming elements (i.e., objects, components, services) to
define a self-contained modular software unit with specified
interfaces and explicit context dependencies. Additionally,
an autonomic element encapsulates rules, constraints, and
mechanisms for self-management and can dynamically in-
teract with other elements and the system. An autonomic el-
ement is illustrated in Fig. 5 and is defined by three ports.

1) The functional port defines a set of functional be-
haviors provided and used by the element ,
where is the set of inputs and is the set of outputs
of the element, and defines a valid input–output set.

2) The control port is the set of tuples ,
where is a set of sensors and actuators exported by
the element, and is the constraint set that controls
access to the sensors/actuators. Sensors are interfaces
that provide information about the element while
actuators are interfaces for modifying the state of
the element. Constraints are based on state, context
and/or high-level access policies.

3) The operational port defines the interfaces to for-
mulate, dynamically inject, and manage rules that are
used to manage the runtime behavior of the elements
and the interactions between elements, between ele-
ments and their environments, and the coordination
within an application.

The control and operational ports (specified in XML)
enhance element interfaces to export information about
their behaviors and adaptability to system and application
dynamics. Each autonomic element also embeds an element
manager that is delegated to manage its execution. The
element manager monitors the state of the element and its
context and controls the execution of rules. Note that ele-
ment managers may cooperate with other element managers
to fulfill application objectives.

Rules in Accord: Rules incorporate high-level guidance
and practical human knowledge in the form of if–then

expressions, i.e., IF condition THEN actions, similar to pro-
duction rule, case-based reasoning, and expert systems.
Condition is a logical combination of element (and envi-
ronment) sensors, function interfaces, and events. Actions
consist of a sequence of invocations of element and/or
system sensors/actuators and other interfaces. A rule fires
when its condition expression evaluates to be true and causes
the corresponding actions to be executed. A priority-based
mechanism is used to resolve conflicts [71]. Two classes
of rules are defined: 1) behavioral rules that control the
runtime functional behaviors of an autonomic element (e.g.,
the dynamic selection of algorithms, data representation,
input/output format used by the element) and 2) interac-
tion rules that control the interactions between elements,
between elements and their environment, and the coordina-
tion within an autonomic application (e.g., communication
mechanism, composition and coordination of the elements).
Note that behaviors and interactions expressed by these rules
are defined by the model of computation and the rules for
composition of the underlying programming model.

Behavioral rules are executed by a rule agent embedded
within a single element without affecting other elements. In-
teraction rules define interactions among elements. For each
interaction pattern, a set of interaction rules are defined and
dynamically injected into the interacting elements. The co-
ordinated execution of these rules results in the desired inter-
action and coordination behaviors between the elements.

Autonomic Composition in Accord: Dynamic composition
enables relationships between elements to be established and
modified at runtime. Operationally, dynamic composition
consists of a composition plan or workflow generation and
execution. Plans may be created at runtime, possibly based
on dynamically defined objectives, policies and applications,
and system context and content. Plan execution involves
discovering elements, configuring them, and defining in-
teraction relationships and mechanisms. This may result in
elements being added, replaced, or removed or the interac-
tion relationships between elements being changed.

In Accord, composition plans may be generated using
the Accord Composition Engine (ACE) [14] or using other
approaches (e.g., [89]), and are expressed in XML. Element
discovery uses the Meteor content-based middleware and
specifically the Squid discovery service [92], [93]. Plan
execution is achieved by a peer-to-peer control network
of element managers and agents within Rudder [69]. A
composition relationship between two elements is defined
by the control structure (e.g., loop, branch) and/or the com-
munication mechanism (e.g., RPC, shared space) used. A
composition agent translates this into a suite of interaction
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Fig. 6. Autonomic application execution.

rules, which are then injected into corresponding element
managers, as illustrated in Fig. 6. Element managers execute
the rules to establish control and communication relation-
ships among these elements in a decentralized manner. Rules
can be similarly used to add or delete elements. Note that
the interaction rules must be based on the core primitives
provided by the system. Accord defines a library of rule
sets for common control and communications relationships
between elements.

Accord Programming Language: As mentioned above,
Accord extends existing programming systems and, thus,
uses the language(s) defined by the system it extends. It
does, however, define an XML-based language for speci-
fying control and operational ports. These definitions are
translated into the interface specification language used by
the native system. It also defines an XML-based language
for specifying rules.

The initial prototype of Accord extended an object-ori-
ented framework based on C++ and MPI. The current im-
plementation extends the Department of Energy (DOE) CCA
[15], and we are exploring the extension of the XCAT [63]
programming system.

Accord Implementation Issues: Accord decouples in-
teraction and coordination from computation and enables
both these behaviors to be managed at runtime using rules.
This enables autonomic elements to change their behaviors
and to dynamically establish/terminate/change interaction
relationships with other elements. Deploying and executing
rules does impact performance; however, it increases the
robustness of the applications and their ability to manage
dynamism. Further, our observations indicate that the run-
time changes to interaction relationships are infrequent and
their overheads are relatively small. As a result, the time
spent to establish and modify interaction relationships is
small as compared to typical computation times. A prototype
implementation and evaluation of its performance overheads
is presented in [71].

Accord Abstract Machine: The Accord abstract machine
assumes the existence of common knowledge in the form
of an ontology and taxonomy that defines the semantics
for specifying and describing application namespaces, and
element interfaces, sensors and actuators, and system/ap-
plication context and content. This common semantics is
used for formulating rules for autonomic management of

elements and dynamic composition and interactions be-
tween the elements. Further, the abstract machine assumes
time-asynchronous system behavior with fail-stop failure
modes as described in [32]. Finally, Accord assumes the
existence of an execution environment that provides: 1) an
agent-based control network; 2) support for associative
coordination; 3) service for content-based discovery and
messaging; 4) support of context-based access control; and
5) services for constructing and managing virtual machines
for a given virtual organization. These requirements are
addressed respectively by Rudder, Meteor, Sesame/DAIS,
and the underlying Grid middleware on which it builds.

Accord Application Infrastructure: As mentioned above,
AutoMate provides infrastructure and services for supporting
autonomic behaviors and the Accord programming system.5

Key components of AutoMate include the following.

• Rudder Decentralized Coordination Framework:
Rudder [69] is an agent-based decentralized coordina-
tion framework for enabling autonomic Grid applica-
tions. It provides the core capabilities for supporting
autonomic compositions, adaptations, optimizations,
and fault tolerance. Specifically, Rudder employs
context-aware software agents and a decentralized
tuple space coordination model to enable context and
self-awareness, application monitoring and analysis,
and rule definition and its distributed execution.

• Meteor Content-Based Middleware: Meteor [57], [58]
is a scalable content-based middleware infrastructure
that provides services for content routing, content
discovery, and associative interactions. The Meteor
stack includes: 1) a self-organizing content overlay;
2) the Squid [91] content-based routing engine and de-
centralized information discovery service supporting
flexible routing and querying with guarantees and
bounded costs; and 3) the Associative Rendezvous
Messaging Substrate (ARMS) [57] supporting con-
tent-based decoupled interactions with programmable
reactive behaviors.

Current Status: The core components of AutoMate
have been prototyped and are being currently used to enable
self-managing applications in science and engineering (e.g.,
autonomic oil reservoir optimizations [25], [78], autonomic
runtime management of adaptive simulations [31], [62],
etc.), and sensor-based pervasive applications [57].6

VI. CONCLUSION

The definitions of Grids and Grid programming systems
reported in this paper derive from the established domain of
distributed systems and are based on explicitly stated axioms
and assumptions. These definitions establish a basis for char-
acterizing and classifying Grid research, and enable the Grid
community to utilize the knowledge base from distributed
systems to establish requirements for and evaluate the state

5Note that Accord relies on the frameworks that it extends to provide ser-
vices not addressed by AutoMate, such as life-cycle management, etc.

6Further information about AutoMate and its components can be obtained
from http://automate.rutgers.edu/
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of the art in Grid infrastructures, middleware and program-
ming models, and systems. Evaluation of current Grid pro-
gramming models and systems using this definition structure
show that these efforts are understandably in an early state of
development, and that applications based on these systems
are likely to be fragile, since the programming systems are
largely based on assumptions which are unlikely to be uni-
versally realized in Grid environments. Nonetheless, there
are systems that address a substantial number of the issues
identified as important in this paper. ICENI and AutoMate
are two examples of such systems, which we have evaluated
in detail. We believe that a sound basis for future develop-
ment of Grid programming models and systems is emerging.
However, we also believe that a focus on formalizing and
modeling Grids and Grid programming models and systems
is essential to this effort.
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