High Performance Threaded Data Streaming for Large Scale Simulations

Viraj Bhat" 2, Scott Klaskyl, Scott Atc:hley3 , Micah Beck® , Doug McCunel, Manish Parashar?
'Plasma Physics Laboratory, Princeton University, NJ {vbhat, sklasky, dmccune}@pppl.gov
’Department of Electrical and Comp Engr, Rutgers University, NJ parashar@caip.rutgers.edu
3 Computer Science Dept, University of Tennessee, TN {atchley, mbeck}@cs.utk.edu

Abstract

We have developed a threaded parallel data streaming
approach using Logistical Networking (LN) to transfer
multi-terabyte simulation data from computers at
NERSC to our local analysis/visualization cluster, as
the simulation executes, with negligible overhead.
Data transfer experiments show that this concurrent
data transfer approach is more favorable compared
with writing to local disk and later transferring this
data to be post-processed. Our algorithms are network
aware, and can stream data at up to 97Mbs on a
100Mbs link from CA to NJ during a live simulation,
using less than 5% CPU overhead at NERSC. This
method is the first step in setting up a pipeline for
simulation workflow and data management.

1. Introduction

Large scale simulations are increasingly important
in many fields of science. The project described in this
paper grew from the requirement to deal with the
output of a major fusion plasma simulation, the
Gyrokinetic Toroidal Code (GTC) [1]. This code
examines the highly complex, non linear dynamics of
plasma turbulence using direct numerical simulations,
and currently generates about 1TB/week of simulation
results data during production use.

We have developed a system which efficiently and
automatically transfers chunks of data from the
simulation to a local analysis cluster during execution.
By overlapping the simulation with the data transfer
and with the analysis, scientists can analyze their
results as they are being produced.

The rate at which fusion scientists generate data
from their simulations today is about 1 TB/week, but
we expect this figure to increase by an order of
magnitude in the next five years. The conventional
trend has been to place the generated computational
data on the supercomputing sites and later transfer the
data manually, or, to execute remote visualization and
post-processing of the data. Both approaches encounter
difficulty, forcing scientists to concentrate on data
transfer and remote visualization issues rather than

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

dealing with the physics. Remote visualization in
particular raises issues of latency and network quality
of service. To overcome these challenges we develop a
low overhead threaded parallel buffer to transfer data
from simulations to the scientist’s local computing
cluster(s) where access to the data is most convenient
and efficient.

The driving force of the threaded buffer for data
transfer has been to provide a minimal overhead in
simulations while utilizing network resources to the
maximum. The application uses simple APIs to
activate the transfer. To make this data transfer
efficient with the added advantage of global
scheduling, optimization of data movement, storage
and computation we exploit Logistical Networking
(LN) [2] built on the Internet Backplane Protocol
(IBP). LN allows for a flexible sharing and utilization
of writable storage as a network resource, which is our
natural choice for data flow in a data “pipeline” [3]
with various depots (storage) locations containing the
data in various stages of transformation. The existence
of pervasive depots aids in the creation of a reliable
data pipelines. It allows simulations to transparently
store data to adjacent depots in case of network
failures at the receiving end or buffer overflows at the
sending end. Post-processing applications can
automatically pull/fetch this data through an alternate
path from depots adjacent to the computing sites, as
the data is transferred from the simulations. This two-
way push and pull mechanism enables us to utilize the
network bandwidth maximally and affect the
simulation’s performance minimally.

In this paper we discuss our method of real time
data streaming of the simulation data through our
threaded buffer, buffer management algorithm, and
transformations of the data. Our system creates a high
performance data pipeline [4, 5, 6] which enables a
more efficient interaction of the scientist with the data.
We discuss the various fault tolerant mechanisms used
in case of buffer overflow or network failures.

The paper is divided into 7 sections. Section 2
describes Logistical Networking (LN) and the

YF]',F.

COMPUTER
SOCIETY

highlights of using LN in our data transfer mechanism.
Section 3 discusses scientific workflow and data
pipelines for scientific simulations. Section 4 discusses
the threaded buffering scheme; Section 5 elaborates on
the working of the threaded buffer with LN and
discusses the fault tolerance mechanism in case of
buffer overflows and network failures. Section 6 is on
results and performance of our buffering scheme.
Section 7 discusses future work and conclusions.

2. Logistical Networking

Logistical Networking (LN) [2] refers to the
global scheduling and optimization of data movement,
storage, and computation based on a model that takes
into account all of the network’s physical resources.
Unlike traditional networking, which does not
explicitly model storage or computational resources in
the network, LN offers a general way of using
computing resources to create a common distributed
storage infrastructure that can share out storage and
computation the way the current network shares out
bandwidth. The middleware components that enable
logistical networking are arranged in the “network
storage stack,” [2] analogous to the IP stack, using a
bottom-up and layered design approach that provides
maximum scalability. Components of the network
storage stack are described below bottom up:

IBP — Internet Backplane Protocol: IBP is the
foundation of the network storage stack and provides a
highly scalable, low-level mechanism for managing
network storage resources, through shared use of
lightweight, time-limited allocations on storage
“depots.”

exNode — External Node: Similar to the concept of
an inode in UNIX file systems, this is a generalized
data structure which holds the metadata necessary to
manage distributed content stored on IBP depots and
allow file-like structuring of stored data.

L-Bone — Logistical Backbone: Directory and
resource discovery service cataloguing registered IBP
storage depots world-wide.

LoRS - Logistical Runtime System: The LoRS
software suite integrates the underlying capabilities of
IBP, the exNode, and the L-Bone into a streamlined
tool for storing, accessing, and managing data.

2a. Logistical Networking (LN) salient features
for Data Transfer

Data Replication for Fault Tolerance: The main
reason for using the LN is the ability to stream buffers
of data (not necessarily entire files) to multiple storage
locations simultaneously for fault-tolerance. The

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

ubiquity of IBP storage means that it is easy to stream
data to a number of alternate depots close to the sender
and create replicas close to remote receivers. Storing
replicas in multiple locations provides fault tolerance
in case of network or machine failures. Fault-tolerance
through replication is internal to the exNode. The
LoRS handles retrieving from multiple replicas
automatically [7].

IBP: Byte Array Abstraction: We chose IBP as
the main transfer mechanism instead of a rigid transfer
protocols, because IBP is a more abstract service that
is interoperable with a variety of storage resources
(disk, ram, etc.). IBP manages blocks of stored data as
byte arrays, with details of the storage (fixed block
size, differing failure modes, local addressing
schemes) masked at the local level. The use of IP
networking to access IBP storage resources creates a
globally accessible network of storage depots.

2b. Selection of LN Technology

Logistical Networking offers advantages not
available elsewhere. Since Grid Protocols [8] do not
support replication internally, we would have to use a
higher level service such as the Replica Location
Service (RLS) to track where copies of the complete
files reside [9]. When retrieving the data, we would
then have to determine which replica to download. If,
on the other hand, we used raw sockets and wanted to
implement replication for fault-tolerance, we would
have to write our own servers to hold the data, write
the transfer management code to use them, and design
some method for tracking the replicas and
reassembling the pieces—effectively recreating the LN
software and infrastructure.

3. Data Workflow and pipeline of data
simulations

The need for computer aided tools increases with
size and complexity of the simulation generating the
data. Without automation, Scientists spend a large
portion of their time managing the workflow and data
flow. Such management includes organizing and
sharing raw and derived data between collaborators,
transforming data formats, etc.

In this section we would like to illustrate a general
data flow pattern of our GTC simulation which runs in
parallel on a supercomputer at NERSC, and how this
data undergoes continuous transformation until it
reaches the desktops of scientists collaborating with
PPPL in analyzing the simulation data. We consider

YF]',F.

COMPUTER
SOCIETY

PPPL as one transformation point as it flows along to
other collaborators.

Simulation N Depots
Analysis Visualization
@ clusters
14
NERSC
Collab.
% Clusters

Scientist 2=1(Y)

Desktop

AN
Collab.
Desktop

Figure 1: Data pipeline of the GTC simulation

Figure 1 illustrates the end to end data pipeline used

by the GTC simulation running at NERSC. The
simulated data is transferred concurrently as the
simulation is taking place through our buffering
mechanism. The raw data (X) streams over to a data
analysis center and it is converted into appropriate
formats (e.g. HDF5 or NetCDF) as required by the
scientists (scientists can specify the format in which
they want to transform the data using simple APIs in
their codes). The analysis clusters start converting the
raw simulation data to an appropriate format for
visualization as soon as the first time-step arrives. The
converted data (Y) is written to disk and fed into
visualization routines. This data flow scheme is
particularly well suited for the analysis of fusion codes
as this makes efficient use of dedicated computing
resources at the scientists’ local resources and
additionally provides the scientists with real-time
visualization capability for their simulations. Finally at
the end of this data flow, the data reaches the desktops
of the collaborators working on the fusion codes who
may then further transform the data (Z).

4. Threaded Buffer Data Streaming

The goal of the buffering scheme is to transfer
data from a live simulation running in batch on a
remote supercomputer over a Wide Area Network
(WAN) to our local analysis/visualization cluster as
efficiently as possible and provide minimal overhead
on the simulation [10,11,12]. It should also have
replication abilities so that the processed data can be
duplicated to collaborators’ clusters as and when
needed. To avoid loss of raw data either due to buffer
overflows (when the generated data does not fit into

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

the buffer) or network failures, the data should be
transferred fault tolerantly.

To achieve this data transfer we use a buffering
algorithm that uses a circular queue and a threaded
queue manager (one for each node of the super-
computer) so that it performs wide-area data transfer
with minimal memory overhead on our simulations.
This buffering mechanism copies the simulation data
to a small memory buffer which is allocated by the
user in his/her simulation. The buffer can be thought of
as a queue of data blocks expecting to be transferred.
This queue is circular, thus it wraps around after it
reaches the end. Each data block generated by the user
can have varying sizes but the queue manager chops
the data into a uniform block size, which is
configurable by the wuser. The queue manager
maintains two pointers within the buffer. The first is
the write position, which is the position where the data
is being copied into the buffer (i.e. where the
simulation writes data into the buffer). The second is
the send position to indicate the current position in the
buffer where the transfer mechanism is operating
(position of last successful transfer). The send position
changes in multiples of blocksizes. The user can
append small pieces of information to the data that
contains information for the post-processing routine to
operate on data (i.e. metadata). In practice the metadata
added to the data never exceeds a small number of
bytes and forms a tiny fraction of the actual data to be
transferred. The queue manager adds metadata to the
data before placing the data on the buffer. The queue
manager then updates the values of the send position
and write position whenever data is transferred out of
or added to the buffer. After the data is transferred and
the send position is moved, the application can write
into that space. In the next section, we describe the
simple buffer management scheme which adapts to the
network conditions.

4a. Adaptive Buffer Data Management

We use a simple algorithm to manage the buffer
that adapts to both the computation’s output rate and
network conditions. First, we recognize that the
simulation is based on a series of time-steps. The data
generation rate is the amount of data generated per
step, divided by the time to perform the step. For the
GTC code, this can vary from 1 to 90 Mbps,
depending on simulation and analysis options.

We also recognize that the network connectivity
between the supercomputer and the analysis cluster
places an upper limit on the transfer throughput. The

YF]',F.

COMPUTER
SOCIETY

smallest pipe between the supercomputer and the
analysis cluster will determine the theoretical
maximum throughput for the transfer. Since the
transfer routines use TCP for reliable data transfers, we
understand that we will get even less than the
theoretical throughput [13]. The algorithm tries to
dynamically adjust to the data generation rate and the
available network rate. It does this by sending all the
data that has accumulated since the start of the last data
transfer. If the data generation rate exceeds the transfer
rate, more data will be in the buffer. In this case, the
queue manager will increase the amount of multi-
threading in the transfer routines to improve
throughput. If the transfer rate exceeds the data
generation rate, then less data will appear in the buffer
for the next transfer. The queue manager will then
reduce consumption of unnecessary network resources.
The initial transfer begins after the first time-step is
output. All subsequent transfers start as soon as the
prior transfer ends.

After some number of time-steps, if the network is
stable and the data generation rate is less than the
network transfer capacity, then the queue manager
tends to reach equilibrium and match the transfer rate
to the data generation rate.

Several buffer management states occur, depending on
the relationship between data generation and data
transfer rates, as is described here:

A) Data generation rate exceeds transfer rate

In this state, we maximize the network throughput
and move as much of the data to the analysis cluster as
possible. In the adaptive buffer transfer mechanism we
use the input from the previous step (state) while
sending data in the next step and form a loose feedback
mechanism. We send the excess data that cannot be
transferred to nearby disk and signal the receiving
process of this data to start re-fetching this data using
any remaining bandwidth, or after completion of the
simulation. The queue manager detects this if the
simulation needs to write data to the buffer, but the
write position is too close to the send position which
indicates that there is not enough space in the buffer
for the new output.

This makes our scheme “network aware” as our
transfers are dependent on the network on which we
are operating and the blocks sent out during each
transfer depend of the previous transfer.

B) Data generation and transfer rates are similar

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

In this situation, significant new data accumulates
in the buffer during each transfer. The size of the first
transfer is one block. Subsequent transfers usually
involve a larger number of blocks. These multi-block
transfers use multiple IBP threads and can consume
available network capacity.

C) Data generation rate is small compared to
transfer rate.

If data is generated at a rate in which after every
transfer the scheme finds the buffer empty it waits and
does nothing till more data is generated in the buffer.
In this state the buffering scheme would send out block
by block, using minimal network resources.

Figure 2 shows the adaptive buffer management
scheme that we use in this paper. This “latency aware”
transfer mechanism is particularly useful in cases
where blocks are generated quickly around 65-75Mbps
as compared to the simple buffer scheme which sends
each individual piece in the buffer. It is powerful in
cases where data is generated slowly (i.e. less than
1Mbps), in this case if the block size is set to IMB we
send just a single block of data continuously. We
believe that this feedback-based buffer management
scheme improves the transfer mechanism by sending
as much data as the network can handle and caching
the rest to disk until the end of the simulation run. It
takes decisions based on the previous transfer when
deciding which blocks to transfer and which blocks to
write locally. Scheme in Figure 2 works well for
transfer rate from the simulations at NERSC to PPPL
and easily saturates the link as will be shown in the
results section.

/

oMok

Data Block

5577
7

Metadata

Data input Data transfer
simulations

Figure 2 Adaptive buffer management scheme

G

1 Data block

4c.Usage of Buffering Scheme

To take advantage of our transfer mechanism, the
application first makes calls to t open (), which
initializes a finite buffer and the queue manager. The

TEEE .2

COMPUTER
SOCIETY

queue manager will then wait for any data generated
by the simulation. The user then inserts t write ()
statements at appropriate places in his code where data
is generated. The t write() statements copy the
generated data to the buffer initialized by the user. To
close and flush the buffer at the end of the simulation,
the application uses t close (). The application can
also specify certain information about the data which
will be wuseful for post-processing, by using a
write metadata() statement in conjunction with
the t write () statements. This statement is useful for
starting post-processing at the raw data receiving end.
Metadata for the data transfer include global and local
dimensions for the global array which will be required
for “HDF5” or “NETCDF” or “ASCII” file creation,
name of the variables transferred in the data block,
name of the final generated file. Metadata size is
typically in the order of few hundred bytes.

5. Design and Implementation of the
Buffering Scheme using LoRS

The design of the streaming mechanism using our
circular buffer and queue manager consists of a buffer
for each processor on the simulation/computing end
which generates data. The threaded write library on the
sending end calls the LoRS library which ultimately
transfers data using the IBP library to an IBP depot on
the receiving end. After the simulation data and its
metadata have been transferred, the LoRS library
constructs an exNode which it returns to the queue
manager. The queue manager then sends the exNode to
a waiting process, exnodercv, in the analysis cluster at
PPPL via a socket. Although this is an additional step
for every transfer, the impact is minimal and provides
some benefits. First, each exNode does not exceed 10-
20KB in size. Second, the exNodes (represented as
XML) are transferred separately to a program on the
receiving end and hence do not interfere with the main
data transfer or the computation. Third, since the
exNodes are represented as in an XML format they
allow for platform interchangeability.

The simulations normally run in batch. The
receiving part on the PPPL end consists of the
exnodercv daemon listening for exNodes on a well
known port. This program keeps track of the data
transferred during the simulation and appropriately
calls the post-processing routines for visualization/data
transformation specified by the user. We have
presently incorporated the HDF5 and ASCII routines
which generate appropriate files for visualization/post-
processing the simulation data. Since the post-
processing routines at PPPL read the transferred data

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

from the depots using the exNodes sent to the
exnodercv daemon, this does not interfere with the
running simulation at NERSC. Simultaneously, the
post-processing routines can invoke the LoRS
augmentation API which replicates the post-processed
files and publishes the exNode on a well known public
web server for later access by collaborators.

5a) Failsafe mechanisms

The overall goals of our data transfer mechanism
was to provide a low overhead of transfer and fault
tolerance. Failures are common in the scenario of the
threaded buffer transfer mechanism. The primary
causes of failure include:

1) Buffer overflow at the sending end. This
happens when the data generation rate at the
simulation side far exceeds the capacity the network
can sustain. This is typically the case when the data
generation rate of the program exceeds the maximum
network throughput, where the communication time far
exceeds the computation time. Presently we are writing
the data resulting from buffer overflows which cannot
be transferred to our local depots in the form of binary
files on NERSC General Parallel File System (GPFS).
After the files have been successfully written, a status
signal for the failed transfer is sent to the exnodercv
daemon. The status signal contains the transfer rate,
size of failed transfer, and the location of the file to
fetch. The daemon program then interprets the status
of the failed transfers, like file size and the transfer rate
to try to concurrently get the data from GPFS using
GridFTP. We would like to be consistent with the
transfer mechanism by using LoRS for fetching the
failed transfer data written to a local depot (instead of a
file written to the GPFS) on the supercomputer, but
presently due to security restrictions we are not able to
set up a local storage depot on the supercomputer on
NERSC.

2) Network connection to our local depot is
temporarily severed. The LoRS transfer mechanism
might be unable to upload data to our local depots due
to depot or host failures, lack of storage space, network
congestion, etc. To address these issues we upload
simulation data to the nearest available depots either
on the supercomputer where the simulation is running
or on depots located at San Diego Supercomputing
Center. We then transfer/write a status/exNode
generated for these types of upload to our exnodercv
daemon/alternate depots. Since exNodes act as inodes
for a network file and contain all replica information
(locally and remotely stored), there is no need to
separately fetch this data using any special transfer
mechanism. The data is fetched from the depots only

YF]',F.

COMPUTER
SOCIETY

during post-processing of the data either during an
HDF5, NetCDF or ASCII file creation routines.

Figure 3 illustrates the failsafe mechanism in case
of buffer overflows at the simulating end if the data
transfer rate can’t keep up with the data generation
rate. In this case, we write the data to GPFS. We then
transfer the status/exNodes which explicitly have an
error code for buffer overflow. The exnodercv process
uses GridFTP to fetch data from GPFS at the
simulation end. It is possible that the some nodes in the
simulation undergo a network failure/timeout. In case
of a network failure or timeout of any depots at PPPL,
the data is uploaded to the nearest depot using the L-
Bone. In our case the nearest reliable depot to the
simulation end are the depots at SDSC. We then send
the exNodes/status over to our exnodercv process. The
analysis processes read these exNodes as usual, but the
read performance is less than if the data where written
directly to the PPPL IBP depots.

exnodercv

Write to GPFS
@Or Simulation
Depot

[| Supercomputer node \Network Failure

carby depots

->
@D Buffer Overflow +Data Flow
Figure 3: The Failsafe Mechanisms

6. Results

The adaptive buffer management code, which we
have developed, is easy to use and has simple APIs
which the user can efficiently combine in his
simulation to yield a high throughput data transfer. The
objective of this work is that the threaded streaming
should not slow down the simulation on the
supercomputer (i.e. the streaming should add very little
to the computation/CPU time).

To evaluate how the data transferred using this
buffer and queue manager, we use a sample program
that models the GTC simulation which generates

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

simulation data at every time step. This simulation runs
on the supercomputer nodes at NERSC and the data
generated is transferred to our local clusters at PPPL.
We have employed buffer management with 80 MB
buffers per computational node, using 1MB data block
sizes. We have used a time-step as the primary
reference on the X-axis (each run has 300 time-steps).
The Data Generation Rates (Mbps) for each of these
experiments is measured by the amount of data
generated by the simulation and the time taken to
generate them with no I/O involved. Data Transfer
Rates is computed by the amount of MB transferred
successfully divided by the time taken by the Buffering
mechanism to transfer the generated data. We then
study the data transfer rate (in Mbps) for various data
generation rates which leads to varying data transfer
sizes. Buffer overflow corresponds to data written to
the local GPFS on the simulation end and must be
retrieved by PPPL using the strategies described
above. The block size for the transfer is 1MB.
Metadata is also transferred along with the data which
will be required for post-processing the simulation
data. Figure 4a plots the blocks transferred during each
timestep and the Mbps corresponding to the blocks
transferred. The data generation rate for this
experiment is about 320Mbps. Our buffering scheme
cannot keep up with this rate, and data is written to
local disk in cases where buffer is full (80OMB). The
buffering scheme initially transfers the first block of
data and later sends whatever is remaining in the
buffer after transferring the first block. The values at
data points correspond to buffer overflows since the
maximum data the buffer can hold is 80MB, so when
the 49 MB is being transferred data fills the buffer and
(63 MB is generated out of which) 32 MB is written to
disk. This process repeats itself until the simulation
stops generating data. Thus the data transfer rate is
around 43 Mbps. The more data that is in the buffer,
the higher the chance for buffer overflow. Figure 4b
depicts and interesting case where data is generated at
a rate of 21.3Mbps (300MB in 121 sec), all the data
generated is transferred without any data written to
disk or left un-transferred at the end of the simulation.
The buffering scheme starts out with 1 block and then
later sends out 6 data blocks but in certain cases where
the rate for 6 blocks drop below 20Mbps we transfer
around 8 blocks; this leads to oscillations of the data
transfer block counts until around 120 timesteps when
it reaches an equilibrium of 6 1MB blocks per transfer.

Figure 5 demonstrates the network adaptability of
the buffering scheme for a simulation run on two
processors. Initially, the data generation rates
(20Mbs/Processor) exceed the transfer rates. For each
successive transfer, more data is available in the buffer

YF]',F.

COMPUTER
SOCIETY

so the queue manager sends more data and increases
the level of IBP threading in the LoRS calls. The
buffering scheme stabilizes itself and achieves an
overall data transfer rate of approximately 20Mbps.

60 60
50] f\D/E\ /:lOMB 50
)
E /.\ {h}; /
[~ |
240 N 40
g £
;130* 32 MB 34 MB 30 =
2
9
2 20 4 20
)
10 1 —@&— Transfer Size 10
—&— Transfer Rate
0 | | | —‘ Avg T‘ransfer‘ Rate 0
0 50 100 150 200 250 300 350
Timestep
40 40
35 1 i —o— Transfer size L 35
—=&— Transfer rate
= 30 r 30
<9
2
g 25 r2s5
8 2
5 20 20 2
% 15 4 L 15
9
=]
= 10 4 r 10
5 49 A rs
0 0

0 50 100 150 200 250 300 350
Timestep
Figures 4a, 4b: Data streaming with 320Mbps
and 21.3 Mbps (single processor). Data points
at observed data transfer times.

50 50
—eo— Transfer Size

40 —a— Transfer Rate t 40
=
2
g 30 - r30
= £
< 20 20 =
=
5
£ 10 r 10

=}
<

0 50 100 150 200 250 300 350
Timestep
Figure 5: Network aware self-adjusting buffer

Figure 6 shows the high performance buffering scheme
which can keep up with rate of generation as high as
85Mbps on 32 processors. All the data generated
during this period in the simulation at NERSC is
transferred to our local cluster at PPPL. Figure 7
shows significant oscillation due to the higher number

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

of data generator nodes involved. The best throughput
that we can hope to achieve is the minimum of the data
generation rate and the theoretical network throughput
adjusted for TCP. The data rate is the traffic minus the
headers. The maximum traffic from NERSC to PPPL
is 100 Mbps, of which we hit 97 Mbps. Thus, this flow
used 97% of the link (and all other users got the
remaining 3%). The 100 Mbps rate assumes no one
else is using the WAN connection so we can expect
some value less than 100 Mbps. We can see from
Figure 7 how the network can be easily saturated using
our buffering scheme. Figure 7 depict the statistics
when the simulation in Figure 6 is operational. It
presents an enlarged image of the router statistics. The
data rates show that we can achieve a maximum
transfer rate of 97 Mbps as shown by a blue spike.

140

—eo— Transfer Size
120 -

100 -

".. i

0 50 100 150 200 250 300
Timestep

Figure 6: Data Generation Rate of 85 Mbps on

32 nodes (block counts summed over 32

nodes).

=]
=]
L

(=)
=

Blocks (1 MB/Block)

4
"Il" : || "l iy =|" ‘ ‘"l!. ' l||"‘n"| ; lli i

-
=

o3
=]

>

p B T

TS0

Ll B

Z0 .0

Bits per Second

= A= RES = S

.

Z0

== 0

Figure 7: ESNET router, statistics peak
transfer rates of 97Mbs/100Mbs at around
22:00. Each data point is a 5 minute average.

Figure 8 shows the overhead of using the
buffering scheme with varying Mbps rates and
compares this with writing the files to GPFS on the
supercomputer nodes. We observe that in cases which
are typical for present GTC codes writing data to the
GPFS (2Mbps or less per node), overhead is less than
for our buffering scheme 5%. In future when the GTC

TEEE .2

COMPUTER
SOCIETY

data generation rates are around 8Mbps, the overhead
of using buffering scheme is still small. The present
overhead without our buffering scheme (writing to the
GPFS at NERSC [1]) is around 20 % when generating
hdf5 files.

Overhead of the Buffering Scheme compared to GPFS

25 : —O— Buffering scheme
| —&— 2 MB block writes
20 1 v : per timestep to GPFS
: —— 10 MB block writes
| per timestep to GPFS
E 15 | ¥ Overhead HDFS + GPFS
= : ———- Predicted data generation
@ | rate of GTCin 5 Yrs
<) |
10 - !
S |
|
5 4 |
|
H)—O—O/O/?/_O/O
0© ; . — : :

1 3 5 7 9 11 13 15
Data Generation Rates - Mbps/Node

Figure: 8. Overhead with Buffering Scheme
compared to GPFS (I/0O).

7. Conclusions

In this paper we describe development of a
threaded mechanism to transfer data with a simple
adaptive buffer management scheme for overlapping
computation and communication. The buffering
scheme had little impact on the simulation with a
projected 2% overhead for codes such as GTC running
on 1024 processors.

Our scheme adapts dynamically to data generation
rates and network throughput, and appropriately
adjusts the amount of data transferred and the level of
multi-threading to achieve good transfer rates. Our
buffering scheme using logistical networking allows
for high-performance remote transfer of data with
minimal overhead on the computation system. If the
data generation rate exceeds the available network
resources, we have a failsafe mechanism that uses the
available bandwidth to send the bulk of the data while
writing the excess data locally and retrieving it later
from the remote site.

In the future we will make our fault tolerance
mechanism more efficient and take advantage of IBP
depots within NERSC. We will work on incorporating
our routines into production runs of the GTC code. We
have begun working on more optimal MxN [14]
mappings for future parallel post-processing modules
in our data workflow pipeline. Finally, we will
incorporate priority-based transfers for optimized
monitoring of selected simulation data output.

8. Acknowledgements

This work was supported by USDOE Contract no.
DE-AC020-76-CH03073. This research used resources
of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE-ACO03-76SF00098. We thank Tech-X Corporation
for support in this project.

9. References

[1] S. Klasky et al., “Grid -Based Parallel Data Streaming
implemented for the Gyrokinetic Toroidal Code”,
ACM/IEEE SC2003 Conference, Phoenix, Arizona, USA,
November 15 - 21, 2003.

[2] T. Moore et al., “An End-to-End Approach to Globally
Scalable Network Storage”, ACM SIGCOMM 2002, Micah
Beck, Pittsburgh, PA, USA, August, 2002.

[3] T. Kosar et al., “Building Data pipelines for High
Performance Bulk Data Transfers in a Heterogeneous Grid
Environment”, Technical Report CS-TR-2003-1487,
Computer Sciences Department, University of Wisconsin-
Madison, August 2003.

[4] A. Sim et al., “DataMover: Robust Terabyte-Scale Multi-
file Replication over Wide-Area Networks”, Proceedings of
the 16th International Conference on Scientific and
Statistical Database Management (SSDBM 2004), Santorini
Island, Greece, 21-23 June 2004

[S] “Tools for Creating and Executing Scientific
Workflows”, http://seek.ecoinformatics.org

[6] 1. Altintas et al, “A Modeling and Execution
Environment for Distributed Scientific Workflows”, 15th
Intl. Conference on Scientific and Statistical Database
Management (SSDBM), Boston, Massachusetts, USA, 2003.
[7] 1.S. Plank et al., “Algorithms for High Performance,
Wide-area Distributed File Downloads”, Parallel Processing
Letters, (13)2, pp.207-224, June, 2003.

[8] B. Allcock et al., “Data Management and Transfer in
High Performance Computational Grid Environments”,
Parallel Computing Journal, Vol. 28 (5), pp. 749-771,May
2002,

[9] A.L. Chervenak et al., “Performance and Scalability of a
Replica Location Service”, International IEEE Symposium
on High Performance Distributed Computing, June 2004.

[10] X. Ma et al. “Improving MPI-IO Output Performance
with Active Buffering Plus Threads”, 2003 International
Parallel and Distributed Processing Symposium (IPDPS
2003), Nice France, April 22-26

[11] P.R. Woodward et al. “Distributed Computing in the
SHMOD Framework on the NSF TeraGrid”, University of
Minnesota Computer Science Department: Feb 2004.

[12] J. Ding et al, “Remote Visualization by Browsing Image
Based Databases with Logistical Networking ”, SC2003,
Phoenix, AZ, USA, November, 2003

[13] “ESnet Performance
https://performance.es.net/resources.html
[14] “MxN Parallel Data Redistribution @ ORNL”,
http://www.csm.ornl.gov/cca/mxn/

Center”,

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04)
1550-5510/04 $ 20.00 IEEE

