Interpretive Performance Prediction for Parallel Application

Development
Manish Parashar Salim Hariri
Dept. of Electrical & Computer Engineering Dept. of Electrical & Computer Engineering
Rutgers, The State University of New Jersey University of Arizona
Piscataway, NJ 08854-8058 Tucson, AZ 85721-0104
parashar@caip.rutgers.edu hariri@ece.arizona.edu
Abstract

Application software development for High-Performance Parallel Computing (HPC) is a non-trivial
process; its complexity can be primarily attributed to the increased degrees of freedom that have to be
resolved and tuned in such an environment. Performance prediction tools enable a developer to evaluate
available design alternatives and can assist in HPC application software development.

In this paper we first present a novel “interpretive” approach for accurate and cost-effective perfor-
mance prediction. The approach has been used to develop an interpretive HPF /Fortran 90D application
performance prediction framework. The accuracy and usability of the performance prediction frame-
work are experimentally validated. We then outline the stages typically encountered during application
software development for HPC and highlight the significance and requirements of a performance pre-
diction tool at relevant stages. Numerical results using benchmarking kernels and application codes
are presented to demonstrate the application of the interpretive performance prediction framework at
different stages of the HPC application software development process.

Keywords: HPC application software development, Interpretive performance prediction, HPF /Fortran
90D application development.

1 Introduction

Development of efficient application software for High-Performance Parallel Computing (HPC) is a
non-trivial process and requires a thorough understanding not only of the application but also of
the target computing environment. A key factor contributing to this complexity is the increased

degrees of freedom that have to be resolved and tuned in such an environment. Typically, during
the course of parallel application software development, the developer is required to select between
available algorithms, between possible hardware configurations and amongst possible decompositions
of the problem onto the selected hardware configuration, and between different communication and
synchronization strategies. The set of reasonable alternatives that have to be evaluated is quiet large
and selecting the most appropriate one can be a formidable task.

Evaluation tools enable a developer to visualize the effects of various design alternatives. Conven-
tional evaluation techniques typically require extensive experimentation and data collection. Most exist-
ing evaluation tools post-process traces generated during an execution run. This implies instrumenting
source code, executing the application on the actual hardware to generate traces, post-processing these
traces to gain insight into the execution and overheads in the implementation, refining the implementa-
tion and then repeating the process. The process is repeated until all possibilities have been evaluated
and the most suitable options for the problem have been identified. Such a development overhead can
be tedious if not impractical.

Performance prediction tools provide a more practical and cost-effective means for evaluating avail-
able design alternatives and making design decisions. These tools, in symbiosis with other development
tools, can be effectively used to complete the feedback loop of the “develop-evaluate-tune” cycle in the
HPC application software development process.

In this paper we first present a novel interpretive approach for accurate and cost-effective perfor-
mance prediction that can be effectively used during HPC software development. The essence of the
approach is the application of interpretation techniques to performance prediction through an appro-
priate characterization of the HPC system and the application. An interpretive HPF /Fortran 90D
application performance prediction framework has been implemented using the interpretive approach
and is part of the NPAC! HPF/Fortran 90D application development environment. The accuracy and
usability of the framework are experimentally validated.

Next, we outline the stages typically encountered during HPC application software development
and highlight the significance and requirements of a performance prediction tool at relevant stages.
Numerical results obtained using application codes and benchmarking kernels are then presented to
demonstrate the application of the performance prediction framework to different stages of the appli-
cation software development process outlined.

The rest of the paper is organized as follows: Section 2 introduces the interpretive approach to
performance prediction. Section 3 then describes the HPF /Fortran 90D performance prediction frame-
work and presents numerical results to validate the accuracy and usability of the interpretive approach.
Section 4 outlines the HPC software development process and highlights the significance of performance
prediction tools. Section 5 presents experiments to illustrate the application of the framework to dif-
ferent stages of the HPC software development process. Section 6 presents some concluding remarks.

!'Northeast Parallel Architectures Center

2 Interpretive Performance Prediction

Interpretive performance prediction is an accurate and cost-effective approach for compile-time esti-
mation of application performance. The essence of the approach is the application of interpretation
techniques to performance prediction through an appropriate characterization of the HPC system and
the application. A system abstraction methodology is defined to hierarchically abstract the HPC sys-
tem into a set of well defined parameters which represent its performance. A corresponding application
abstraction methodology is defined to abstract a high-level application description into a set of well
defined parameters which represent its behavior. Performance prediction is then achieved by inter-
preting the execution costs of the abstracted application in terms of the parameters exported by the
abstracted system. The interpretive approach is illustrated in Figure 1 and is composed of the following
four modules:

1. A system abstraction module that defines a comprehensive system characterization methodology
capable of hierarchically abstracting a high performance computing system into a set of well
defined parameters which represent its performance.

2. An application abstraction module that defines a comprehensive application characterization
methodology capable of abstracting a high-level application description (source code) into a set
of well defined parameters which represent its behavior.

3. An interpretation module that interprets performance of the abstracted application in terms of
the parameters exported by the abstracted system.

4. An output module that communicates estimated performance metrics.

A key feature of this approach is that each module is independent with respect to the other mod-
ules. Further, independence between individual modules is maintained throughout the characterization
process and at every level of the resulting abstractions. As a consequence, abstraction and parameter
generation for each module, and for individual units within the characterization of the module, can be
performed separately using techniques or models best suited to that particular module or unit. This
independence not only reduces the complexity of individual characterization models allowing them to
be more accurate and tractable, but also supports reusability and easy experimentation. For example,
when characterizing a multiprocessor system, each processing node can be characterized independently.
Further, the parameters generated for the processing node can be reused in the characterization any
system that has the same type of processors. Finally, experimentation with another type of processing
node will only require the particular module to be changed. The four modules are briefly described
below. A more detailed discussion of the performance interpretation approach can be found in [1].

Figure 1: Interpretive Performance Prediction

2.1 System Abstraction Module

Abstraction of a HPC system is performed by hierarchically decomposing the system to form a rooted
tree structure called the System Abstraction Graph (SAG). Each level of the SAG is composed of a
set of System Abstraction Unit’s (SAU’s). Each SAU abstracts a part of the entire system into a set
of parameters representing its performance, and exports these parameters via a well defined interface.
The interface can be generated independent of the rest of the system using evaluation techniques best
suited to the particular unit (e.g. analytic, simulation, or specifications). The interface of an SAU
consists of 4 components: (1) Processing Component (P), (2) Memory Component (M), (3) Com-
munication/Synchronization Component (C/S), and (4) Input/Output Component (I/0). Figure 2
illustrates the system abstraction process using the iPSC/860 system. At the highest level (SAU-1),
the entire iPSC/860 system is represented as a single compound processing component. SAU-1 is then
decomposed into SAU-11, SAU-12, and SAU-13 corresponding to the i860 cube, the interconnect be-
tween the System Resource Manager (SRM) and the cube, and the SRM or host respectively. Each
SAU is composed of P, M C/S, and 1/O components, each of which can be simple, compound or void.
Compound components can be further decomposed. A component at any level is void if it is not
applicable at that level (for example, SAU-12 has void P, M, and I/O components). System charac-
terization thus proceeds recursively down the system hierarchy, generating SAU’s of finer granularity
at each level. The process terminates when the required granularity of parameterization is achieved.
This choice is usually driven by a tradeoff between accuracy and cost-effectiveness.

2.2 Application Abstraction Module

Machine independent application abstraction is performed by recursively characterizing the application
description into Application Abstraction Units (AAU’s). Each AAU represents a standard programming
construct and parameterizes its behavior. An AAU can be either Compound or Simple depending on
whether it can or cannot be further decomposed.

Various classes of simple and compound AAU’s are listed in Table 1. AAU’s are combined to ab-
stract the control structure of the application forming an Application Abstraction Graph (AAG). The
communication/synchronization structure of the application is superimposed onto the AAG by aug-
menting the graph with a set of edges corresponding to the communications or synchronization between
AAU’s. The structure generated after augmentation is called a Synchronized Application Abstraction
Graph (SAAG). The machine specific filter then incorporates machine specific information (such as in-
troduced compiler transformations/optimizations which are specific to the particular machine) into the
SAAG based on the mapping that is being evaluated. Figure 3 illustrates the application abstraction
process using a sample application description.

P <> Processing

SAU-1 s compaund <|>® @ @ Ve tonay

C/S-e» Comm/Sync

S R
C"{;iu n O P SAU-1 1/0 <+ Input/Output

SRM-Cube Link :
(SAU-12) i

g @@@ | ® %\S@l i§§> EO®R

SRM (SAU-13) |

-

ipscgs0 0 | /) e

Figure 2: System Abstraction Process

Host Program
N=2
DOI1=0,N-1

Spawn Node |
ENDDO
Recv RESULTS
END

Node Program
ME = MYNODE()

SyncSend (ME+1) MOD 2
SyncRecv (ME-1+2) MOD 2
IFMEEQO
Send RESULTS
ENDIF
END

Application Description Application Abstraction Graph (AAG) Synchronized AAG (SAAG)

Figure 3: Application Abstraction Process

2.3 Interpretation Engine

The interpretation engine (or interpretation module) estimates performance by interpreting the ab-
stracted application in terms of the performance parameters obtained via system abstraction. The
interpretation module consists of two components: an interpretation function that interprets the perfor-
mance of an individual AAU, and an interpretation algorithm that recursively applies the interpretation
function to a SAAG to predict the performance of the corresponding application. The interpretation
function defined for each AAU class abstract its performance in terms of parameters exported by the
SAU to which it is mapped. Functional interpretation techniques are used to resolve the values of
variables that determine the flow of the application such as conditions and loop indices. Models and
heuristics used to interpret communications/synchronizations, iterative and conditional flow control
structures, accesses to the memory hierarchy, and user experimentation are briefly described below. A
more detailed discussion of these models and the complete set of interpretation functions can be found
in [1].

Modeling Communication/Synchronization: Communication or synchronization operations in
the application are decomposed during interpretation into three components (as shown in Figure 4):

e Call Overhead: This represents fixed overheads associated with the operation.

e Transmission Time: This is the time required to actually transmit the message from source to
destination.

e Waiting Time: Waiting time models overheads due to synchronizations, unavailable communi-
cations links, or unavailable communication buffers.

The contribution of each of the above components depends on the type of communication /synchronization
and may differ for the sender and receiver. For example, in case of an asynchronous communication
the waiting time and transmission time components do not contribute to the execution time at the
sender.

The waiting time component is determined using a global communication structure which main-
tains specifications and status of each communication/synchronization, and a global clock which is
maintained by the interpretation algorithm. The global clock is used to timestamp each communica-
tion/synchronization call and message transmission, while the global communication structure stores
information such as the time at which a particular message left the sender, or the current count at a
synchronization barrier.

Modeling of Iterative Flow-Control Structures: The interpretation of an iterative flow control
structure depends on its type. Typically, its execution time comprises three components: (1) loop
setup overhead, (2) per iteration overhead, and (3) execution cost of the loop body.

AAU Class

AAU Type | Description

Start AAU (Start) Simple marks the beginning of the application

End AAU (END) Simple represents the termination of an independent flow of control

Sequential AAU (Seq) Simple abstracts a set of contiguous statements containing only
library functions, system routines, assignments and/or
arithmetic/logical operations

Spawn AAU (Spawn) Compound | abstracts a “fork” type statement generating independent flows
of control

Tterative-Deterministic AAU (IterD) Compound | abstracts an iterative flow control structure with deterministic
execution characteristics and no comm/sync in its body

Iterative-Synchronized AAU (IterSync) Compound | abstracts an iterative flow control structure with deterministic
execution characteristics and at least one comm/sync in its body

Iterative-NonDeterministic (IterND) Compound | abstracts a non-deterministic iterative flow control structure
e.g. number of iterations depends on loop execution

Conditional-Deterministic (CondtD) Compound | abstracts a conditional flow control structure with deterministic
execution characteristics and no comm/sync in any of its bodies

Conditional-Synchronized (CondtSync) Compound | abstracts a conditional flow control structure which contains a
communication /synchronization in at least one of its bodies

Communication AAU (Comm) Simple abstracts statements involving explicit communication

Synchronization AAU (Sync) Simple abstracts statements involving explicit synchronization

Synchronized Sequential AAU (SyncSeq) | Simple abstracts any Seq AAU which requires synchronization or communication
e.g. a global reduction operation

Call AAU (Call) Compound | abstracts invocations of user-defined functions or subroutines

Table 1: Application Characterization

Proc 1 Calls Send

Proc 2 Calls Recv

Proc 1 Returns

Proc 2 Returns

Global Time

Proc 1 Proc 2

Call Ovhd

Wait Time

XMission Time XMission Time

Call ?vhd

Figure 4: Interpretation Model for Communication/Synchronization AAU’s

In case of deterministic loops (IterD AAU) where the number of iterations is known and there are
no communications or synchronizations in the loop body, the execution time is defined as

TEzecrierp = TOVMgetyp + Numlters X [TOvhdperrier + T Execpody)

where T'Fzec and TOvhd are estimated execution time and overhead time respectively.

In the case of the IterSync AAU, although the number of iterations are known, the loop body
contains one or more communication or synchronization calls. This AAU cannot be interpreted as
described above as it is necessary to identify the calling time of each instance of the communica-
tion/synchronization calls. In this case, the loop body is partitioned into blocks without communi-
cation /synchronization and the communication/synchronization calls themselves. The interpretation
function for the entire AAU is then defined recursively such that the execution time of the current iter-
ation is a function of the execution time of the previous iteration. Similarly, the calling and execution
times of the communication/synchronization calls are also defined recursively. For example, consider
a loop body that contains two communication calls calls (Comm; & Commsy). Let Blky represent the
block before Comm; and Blks represent the block between Comm; and Comms. If the loop starts
execution at time T, the calling times (T'C'all) for the first iteration are:

TcalllterSync(l) = T
Tca”Comml (1) = TcalllterSync(l) + TOUhdIterSync + TE.Z‘eCBlkl
Tcallcomm2 (1) = Tca”]tersync(l) =+ TOvhduersym =+ TEl‘ecBlkl =+ TEl‘eCcomml (1) =+ TE:EecBlk2

And for the i*" iteration

TCallitersync(i) = TCalliiersync(t — 1) + TOvAhd iersyne + TExecpin, + TExeccomm, (1 — 1) + TExecpix,
+TExeccomm, (i — 1)
TCallcomm, (i) = TCallreersyne(i) + TO0hd rorsyne + TEzecs,
TCallcomm, (1) = TCallriersync(t) + TOvhdrtersyne + TExecpir, + TExeccomm, (1) + T Execpix,

The final case is a non-deterministic iterative structure (IterND) where the number of iterations or
the execution of the loop body are not known. For example the number of iterations may depend on
the execution of the loop body as in the while loop, or the execution of the loop body varies from
iteration to iteration. In this case performance is predicted by unrolling the iterations using functional
interpretation and interpreting the performance of each iteration sequentially.

Modeling of Conditional Flow-Control Structures: The execution time for a conditional flow
control structure is broken down into three components: (1) the overhead associated with each condition
tested (i.e. every “if”, “elseif”, etc.), (2) an additional overhead for the branch associated with a true
condition, and (3) the time required to execute the body associated with the true condition. The

interpretation function for the conditional AAU is a weighted sum of the interpreted performances of
each of its branches; the weights evaluate to 1 or 0 during interpretation depending on whether the
branch is taken or not. Functional interpretation is used to resolve the execution flow. Modeling of
CondtD and CondtSync AAU’s is similar to the corresponding iterative AAU’s described above.

Modeling Access to the Memory Hierarchy: Access to the memory hierarchy of a computing
element is modeled using heuristics based on the access patterns in the application description and
the physical structure of the hierarchy. In the current implementation, application access patterns
are approximated during interpretation by maintaining an access count and a detected miss count
at the program level and by associating with each program variable, a local access count, the last
access offset (in case of arrays), and values of both program level counters at the last access. A simple
heuristic model uses these counts and the size of the cache block, its associativity and the replacement
algorithm, to estimate cache misses for each AAU. This model is computationally efficient and provides
the required accuracy as can be seen from the results that presented in Section 3.5.

Modeling Communication-Computation Overlaps: Overlap between communication and com-
putation is accounted for during interpretation, as a fraction of the communication cost; i.e. if a
communication takes time ¢y, and foperiap is the fraction of this time overlapped with computation,
then the execution time of the Comm AAU is weighted by the factor (1 — foperiap); i-e.

tAAUcomm — (1 - foverlap) X Leomm

The foveriap factor could be a typical (or explicitly defined) value defined for the system. Alternately
the user can define this factor for the particular application or experiment with different values.

Supporting User Experimentation: The interpretation engine provides support for two types of
user experimentation:

e Experimentation with run-time situations, e.g. computation and communications loads.

e Experimentation with system parameters, e.g. processing capability, memory size, communica-
tion channel bandwidth.

The effects of each experiment on application performance is modeled by abstracting its effect on
the parameters exported by the system and application modules and setting their values accordingly.
Heuristics are used to perform this abstraction. For example, the effect of increased network load on a
particular communication channel is modeled by decreasing the effective available bandwidth on that
channel. An appropriate scaling factor is then defined which is used to scale the parameters exported
by the C/S component associated with the communication channel. Similarly, doubling the bandwidth
effectively decreases the transmission time over the channel; while increasing the cache size will reflect
on the miss rate.

10

2.4 Output Module

The output module provides an interactive interface through which the user can access estimated
performance statistics. The user has the option of selecting the type of information and the level at
which the information is to be displayed. Available information includes cumulative execution times, the
communication time/computation time breakup, existing overheads and wait times. This information
can be obtained for an individual AAU, cumulatively for a branch of the AAG (i.e. sub-AAG), or for
the entire AAG.

2.5 Related Research in Performance Prediction

Existing approaches and models for performance prediction on multicomputer systems can be broadly
classified as analytic, simulation, monitoring or hybrid (which make use of a combination of the above
techniques along with possible heuristics and approximations).

A general approach for analytic performance prediction for shared memory systems has been pro-
posed by Siewiorek et al. in [2] while probabilistic models for parallel programs based on queueing
theory have been presented in [3]. An analytic performance prediction technique based on the approx-
imation of parallel flow graphs by sequential flow graphs has been proposed by Qin et al. in [4]. The
above approaches require users to explicitly model the application along with the entire system. A
source based analytic performance prediction model for Dataparallel C has been developed by Clement
et al. [5]. The approach uses a set of assumptions and specific characteristics of the language to develop
a speedup equation for applications in terms of system costs.

A simulation based approach is used in the SiGLe system (Simulator at Global Level) [6] which
provides special description languages to describe the architecture, application and the mapping of the
application onto the architecture.

An evaluation approach based on instrumentation, data collection and post-processing has been
proposed by Darema et al. [7]. Balasundaram et al. [8] use “training routines” to benchmark the
performance of the architecture and then use this information to evaluate different data decompositions.

The PPPT system [9] uses monitoring techniques to profile the execution of the application program
on a single processor, and to derive sequential program parameters such as conditional branch proba-
bilities, loop iteration counts, and frequency counts for each statement type. The user is required to
provide a characteristic set of input data for this profiling run. Obtained information is then used by
the static parameter based performance prediction tool to estimate performance information for the
parallelized (SPMD) application program on a distributed memory system.

A hybrid approach is presented in [10] where the runtime of each node of a stochastic graph repre-
senting the application is modeled as a random variable. The distributions of these random variables
are then obtained using hardware monitoring.

The layered approach presented in [11] uses a methodology based on application and system charac-
terization. The developer is required to characterize the application as an execution graph and define

11

its resource requirements in this system.

3 A HPF/Fortran 90D Performance Prediction Framework

3.1 An Overview of HPF/Fortran 90D

High Performance Fortran (HPF) [12] is based on the research language Fortran 90D developed jointly
by Syracuse University and Rice University and has the overriding goal to produce a dialect of Fortran
that can be used on a variety of parallel machines, providing portable, high-level expression to data
parallel algorithms. The idea behind HPF (and Fortran 90D) is to develop a minimal set of extensions
to Fortran 90 to support the data parallel programming model. The incorporated extensions provide
a means for explicit expression of parallelism and data mapping. These extensions include compiler
directives which are used to advise the compiler on how data objects should be assigned to processor
memorties, and new language features like the forall statement and construct.

HPF /Fortran 90D adopts a two level mapping using the PROCESSORS, ALIGN, DISTRIBUTE,
and TEMPLATE directives to map data objects to abstract processors. The data objects (typically
array elements) are first aligned with an abstract index space called a template. The template is then
distributed onto a rectilinear arrangement of abstract processors. The mapping of abstract proces-
sors to physical processors is implementation dependent. Data objects not explicitly distributed are
mapped according to an implementation dependent default distribution (e.g. replication). Supported
distributions types include BLOCK and CYCLIC. Use of the directives is shown in Figure 5.

Our current implementation of the HPF /Fortran 90D compiler and performance prediction frame-
work supports a formally defined subset of HPF. The term HPF/Fortran 90D in the rest of this
document refers to this subset.

3.2 ESP: The HPF /Fortran 90D Performance Prediction Framework

ESP (see Figure 6) is an interpretive framework for HPF /Fortran 90D application performance pre-
diction. It uses the interpretive approach outlined above to provide accurate and cost-effective perfor-
mance prediction of HPF /Fortran 90D. ESP has been implemented as a part of the HPF /Fortran 90D
application development environment [13] developed at the NPAC, Syracuse University.

The design of ESP is is based on the HPF source-to-source compiler technology [14] which translates
HPF into loosely synchronous, SPMD (single program, multiple data) Fortran 77 + Message-Passing
codes. It uses this technology in conjunction with the performance interpretation model to provide per-
formance estimates for HPF /Fortran 90D applications on a distributed memory MIMD multicomputer.
HPF /Fortran 90D performance prediction is performed in two phases: Phase 1 uses HPF compilation
technology to produce a SPMD program structure consisting of Fortran 77 plus calls to run-time rou-
tines. Phase 2 then uses the interpretation approach to abstract and interpret the performance of the
application. These two phases are described below:

12

N I

A 1A TMPL!

REAL, ARRAY (5/4) :: A B

REAL, ARRAY (5,6) :: B 5l A S

CHPF$ PROCESSORS PROC(4) al o [
CHPF$ TEMPLATE TMPL(8,8) s | o

CHPF$ DISTRIBUTE TMPL(*,BLOCK) L —t e

CHPF$ ALIGN A(1,J) WITH TMPL(1,J) 6. o | B
CHPF$ ALIGN B(1,J) WITH TMPL(1+3,3+2) 20 I

s |

I< ProC1 == PROC2=}< PROC3 =< PROC4 =]

Figure 5: HPF /Fortran 90D Directives

FROOEAM MALIR
paramstsr [pointe=333

integer 1lpointsl, 4. idx

raal partlalinci{peinced

real mlicexizs, integral, =, b
raal Mipolnte] . f{poincs)

raal ripsinte]

[BLOCK) FROCESSORS Fid]
TEMFLATE tampd 32 b
1] Wi bempd i DISTRIOUTE Lamp | DLOCK)
s I] vt 1) ALIGN 10L) with tempii)
fiy with emp(i) ALTGH ®(L) with vampii)
ALTAGN £ii) with tempiill
ALIGH partiabtineid) wich caspdlj|

a = 0.0
b= 1.0

=mll Ebart_timary]

intsgral = 0.0

Figure 6: The HPF /Fortran 90D Application Development Environment

13

3.3 Phase 1 - Compilation

The compilation phase uses the same front-end as the HPF /Fortran 90D compiler. Given a syntactically
correct HPF /Fortran 90D program, phase 1 parses the program to generate a parse tree and transforms
array assignment and where statements to equivalent forall statements. Compiler directives are used
to partition the data and computation among the processors and parallel constructs in the program
are converted into loops or nested loops. Required communication are identified and appropriate
communication calls are inserted. The output of this phase is a loosely synchronous SPMD program
structure consisting of alternating phases of local computation and global communication.

3.4 Phase 2 - Interpretation

Phase 2 is implemented as a sequence of parses: (1) The abstraction parse generates the application
abstraction graph (AAG) and synchronized application abstraction graph (SAAG); (2) The interpre-
tation parse performs the actual interpretation using the interpretation algorithm; and (3) The output
parse generates required performance metrics.

Abstraction Parse: The abstraction parse intercepts the SPMD program structure produced in
phase 1 and abstracts its execution and communication structures to generate the corresponding AAG
and SAAG (as defined in Section 2). A communication table (global communication structure) is
generated to store the specifications and status of each communication/synchronization.

The compiler symbol table is extended in this parse by tagging all variables that are critical (a
critical variable being defined as a variable whose value effects the flow of execution, e.g. a loop limit).
Critical variables are then resolved using functional interpretation by tracing their definition paths. If
this is not possible, or if they are external inputs, the user is prompted for their values. If a critical
variable is defined within an iterative structure, the user has the option of either explicitly defining the
value of that variable or instructing the system to unroll the loop so as to compute its value. Access
information required to model accesses to the memory hierarchy is abstracted from the input program
structure in this parse and stored in the extended symbol table.

The final task of the abstraction parse is the clustering of consecutive Seq AAU’s into a single AAU.
The granularity of clustering can be specified by the user; the tradeoff here being estimation time versus
estimation accuracy. At the finest level, each Seq AAU abstracts a single statement of the application
description.

Interpretation Parse: The interpretation parse performs the actual performance interpretation
using the interpretation model described above. For each AAU in the SAAG, the corresponding
interpretation function is used to generate performance metrics associated with it. Metrics maintained
at each AAU are its computation, communication and overheads times, and the value of the global
clock. In addition, metrics specific to each AAU type (e.g. wait and transmission times for a Comm

14

AAU) are also maintained. Cumulative metrics are maintained for the entire SAAG, and for each
compound AAU. The interpretation parse has provisions to take into consideration a set of system
compiler optimizations (for the generated Fortran 77 + Message Passing code) such as loop re-ordering
and inline expansion. These can be turned on or off by the user.

Output Parse The final parse communicates estimated performance metrics to the user. The output
interface provides three types of outputs. The first is a generic performance profile of the entire ap-
plication broken up into its communication, computation and overhead components. Similar measures
for each individual AAU and for sub-graphs of the AAG are also available. The second form of output
allows the user to query the system for the metrics associated with a particular line (or a set of lines)
of the application description. Finally, the system can generate an interpretation trace which can be
used as input to a performance visualization package such as ParaGraph 2. The user can then use the
capabilities provided by the package to analyze the performance of the application.

3.5 Experimental Evaluation of ESP

The experimental evaluation presented in section has the following objectives:

1. To validate the accuracy of the performance prediction framework for applications executing on a
high performance computing system. The goal is to show that the predicted metrics are accurate
enough to provide realistic information about application performance and can be used as a basis
for design tuning.

2. To demonstrate the usability (ease of use) of the performance interpretation framework and its
cost-effectiveness.

The high performance computing system used for the validation is an iPSC/860 hypercube connected
to a 80386 based host processor. The particular configuration of the iPSC/860 consists of 8 i860 nodes.
Each node has a 4 KByte instruction cache, 8 KByte data cache and 8 MBytes of main memory. The
node operates at a clock speed of 40 MHz and has a theoretical peak performance of 80 MFlop/s for
single precision and 40 MFlop/s for double precision. The validation application set was selected from
the NPAC HPF /Fortran 90D Benchmark Suite [15]. The suite consists of a set of benchmarking kernels
and “real-life” applications and is designed to evaluate the efficiency of the HPF /Fortran 90D compiler
and specifically, automatic partitioning schemes. The selected application set includes kernels from
standard benchmark sets like the Livermore Fortran Kernels and the Purdue Benchmark Set, as well
as real computational problems. The applications are listed in Table 2.

2Developed at Oak Ridge National Laboratory, http://www.ornl.gov

15

Name Description
Livermore Fortran Kernels (LFK)
LFK 1 Hydro Fragment
LFK 2 ICCG Excerpt (Incomplete Cholesky; Conj. Grad.)
LFK 3 Inner Product
LFK 9 Integrate Predictors
LFK 14 | 1-D PIC (Particle In Cell)
LFK 22 | Planckian Distribution
Purdue Benchmarking Set (PBS)
PBS 1 Trapezoidal rule estimate of an integral of f(x)
n m
PBS 2 Compute e* = Z H (1 + 7_“_5)":?_0.001)
zn=1]W?l
PBS 3 Compute S = Z @iy
i=1g=1
n
PBS 4 Compute R = Z ml_,
=1
PI Approximation of 7 by calculating the area
under the curve using the n-point quadrature rule
N-Body | Newtonian gravitational n-body simulation
Finance | Parallel stock option pricing model
Laplace | Laplace solver based on Jacobi iterations

Table 2: Validation Application Set

Name Problem Sizes System Size | Min Abs Error | Max Abs Error
(data elements) (# procs) (%) (%)
LFK 1 128 - 4096 1-8 1.3% 10.2%
LFK 2 128 - 4096 1-8 2.5% 18.6%
LFK 3 128 - 4096 1-8 0.7% 7.2%
LFK 9 128 - 4096 1-8 0.3% 13.7%
LFK 14 128 - 4096 1-8 0.3% 13.8%
LFK 22 128 - 4096 1-8 1.4% 3.9%
PBS 1 128 - 4096 1-8 0.05% 7.9%
PBS 2 256 - 65536 1-8 0.6% 6.7%
PBS 3 256 - 65536 1-8 0.8% 9.5%
PBS 4 128 - 4096 1-8 0.2% 3.9%
PI 128 - 4096 1-8 0.00% 5.9%
N-Body 16 - 4096 1-8 0.09% 5.9%
Financial 32-512 1-8 1.1% 4.6%
Laplace (Blk-Blk) 16 - 256 1-8 0.2% 4.4%
Laplace (Blk-X) 16 - 256 1-8 0.6% 4.9%
Laplace (X-Blk) 16 - 256 1-8 0.1% 2.8%

Table 3: Accuracy of the Performance Prediction Framework

16

3.5.1 Validating Accuracy of the Framework

Accuracy of the interpretive performance prediction framework is validated by comparing estimated
execution times with actual measured times. For each application, the experiment consisted of varying
the problem size and number of processing elements used. Measured timings represent an average
taken over multiple runs. The results obtained are summarized in Table 3. Error values listed are
percentages of the measured time and represent maximum/minimum absolute errors over all problem
sizes and system sizes. For example, the N-Body computation was performed for 16 to 4094 bodies on
1, 2, 4, and 8 nodes of the iPSC/860. The minimum absolute error between estimated and measured
times was 0.09% of the measured time while the maximum absolute error was 5.9%.

The obtained results show that in the worst case, the interpreted performance is within 20% of
the measured value, the best case error being less than 0.001% The larger errors are produced by
the benchmark kernels which have been specifically coded to task the compiler. The objectives of
the predicted metrics is to serve either as the first-cut performance estimate of an application or as a
relative performance measure to be used as a basis for design tuning. In either case, the interpreted
performance is accurate enough to provide the required information.

3.5.2 Validating Usability of the Interpretive Framework

The interpreted performance estimates for the experiments described above were obtained using the
interpretive framework running on a Sparcstation 1+. The framework provides a friendly menu-driven,
graphical user interface to work with and requires no special hardware other than a conventional desk-
top workstation. Application characterization is performed automatically (unlike most approaches)
while system abstraction is performed off-line and only once. Application parameters and directives
were varied from within the interface itself. Typical experimentation on the iPSC/860 (to obtained
measured execution times) consisted of editing code, compiling and linking using a cross compiler (com-
piling on the front end is not allowed to reduce its load), transferring the executable to the iPSC/860
front end, loading it onto the i860 node and then finally running it. The process had to be repeated for
each instance of each experiment. Relative experimentation times for different implementation of the
Laplace Solver application (for different problem decompositions) using measurements and the perfor-
mance interpreter are shown in Figure 7. Experimentation using the interpretive approach required
approximately 10 minutes for each of the three implementations. Experimentation using measurements
however, took a minimum 27 minutes (for the (BLOCK,*) decomposition) and required almost 1 hour
for the (*,BLOCK) case. Clearly, the measurements approach can be very tedious and time consuming,
specially when a large number of options have to be evaluated. Further, the iPSC/860, being an ex-
pensive resource, is shared by various development groups in the organization. Consequently, its usage
can be restrictive and the required configuration may not be immediately available. The comparison
above validates the convenience and cost-effectiveness of the framework for experimentation during
application development.

17

4 The HPC Application Software Development Process

In this section we outline the HPC application software development process as a set of stages (see
Figure 8) typically encountered by an application developer. The input to development process is the
application specification generated either from the problem statement itself (if it is a new problem) or
from existing code (when porting of dusty decks). The final output is a running application. Feedback
loops are present at some stages for step-wise refinement and tuning. The stages are briefly listed
below. A detailed description of each stage as well as the nature and requirements of support tools
that can assist the developer can be found in [16].

4.1 Inputs

The input to the software development process is the application specification in the form of a functional
flow description of the application and its requirements. The application specification corresponds to
the “user requirement document” in a traditional life-cycle models. Supporting tools at this stage
include expert system based tools and intelligent editors, both equipped with a knowledge base to
assist in analyzing the application. In Figure 8 these tools are included in the “Application Specification
Filter” module.

4.2 Application Analysis Stage

The function of the application analysis stage is to thoroughly analyze the input application specifica-
tion with the objective of achieving the most efficient implementation. The output of this stage is a
detailed process flow graph (the “Parallelization Specification”) where the nodes of the graph represent
functional modules and the edges represent interdependencies. The key functions performed by this
include: (1) functional module creation, i.e. identification of functions that can be executed in parallel;
(2) functional module classification, i.e. identification of standard functions; and (3) module synchro-
nization, i.e. analysis of mutual interdependencies. This stage corresponds to the “design phase” in
standard software life-cycle models and its output corresponds to the “design document”.

4.3 Application Development Stage

The application development stage receives a process flow graph as input and generates an implemen-
tation which can then be compiled and executed. The key functions performed by this stage include:
(1) algorithm development, i.e. assist the developer in identifying functional components in the input
flow graph and selecting appropriate algorithmic implementations; (2) system level mapping, i.e. help
the developer in selecting the appropriate HPC system and system configuration for the application;
(3) machine level mapping, i.e. help the developer appropriately mapping functional component(s)
onto processor(s) in the selected HPC configuration; and (4) implementation & coding, i.e. handle

18

code generation and code filling of selected templates so as to produce a parallel program which can
then be compiled and executed on the target system.

A key component of this stage is the design evaluator that assists the developer in evaluating different
options available and identifying the option that provides the best performance. The design evaluator
estimates the performance of the current design on the target system and provides insight into com-
putation and communication costs, existing idle times and overheads. The estimated performance can
then be used to identify regions where further refinement or tuning is required. The key features of
the design evaluator are: (1) the ability to provide evaluations with desired accuracy, with minimum
resource requirements and within a reasonable amount of time; (2) the ability to automate the evalu-
ation process; and (3) the ability to perform the evaluation without having to run the application on
the target system(s).

4.4 Compile-Time & Run-Time Stage

The compile-time/run-time stage handles the task of executing the parallelized application generated by
the development stage to produce the required output. The compile-time portion of this stage consists
of optimizing compilers and tools for resource allocation and initial scheduling. The responsibility of
the run-time portion include handling dynamic scheduling, dynamic load balancing, migrations, and
irregular communications.

4.5 Evaluation Stage

In the evaluation stage, the developer retrospectively evaluates the design choices made during the de-
velopment stage and looks for ways to improve the design. This stage performs a thorough evaluation
of the execution of the entire application, detailing communication and computation times, communi-
cation and synchronization overheads and existing idle times. That is, it uses application performance
debugging to identify regions in the implementation where performance improvement is possible. The
evaluation methodology enables the developer to investigate the effect of various run-time parameters
like system load and network contention on performance, as well as the scalability of the application
with machine and problem size. The key feature of this stage is the ability to perform evaluation with
the desired accuracy and granularity, while maintaining tractability and non-intrusiveness.

4.6 Maintenance/Evolution Stage

In addition to the above described stages encountered during the development and execution of HPC
applications, there is an additional stage in the life-cycle of this software which involves its maintenance
and evolution. The functions of this stage include monitoring the operation of the software and ensuring
that it continues to meet its specifications with changes in system configuration.

19

5 Application of the Interpretive Framework to HPC Software De-
velopment

The interpretive performance prediction framework can be effectively used at different stages of the
software development process outlined in Section 4. In this section we present experiments performed
using the current implementation of the ESP HPF /Fortran 90D performance prediction framework to
illustrate its application to HPC software development.

5.1 Application Development Stage

The Design Evaluator module of the Application Development Stage is responsible for evaluating
the different implementation and mapping alternatives available to the other modules of this stage.
To illustrate the application of the interpretive framework to this stage, we demonstrate how the
framework can be used to select an appropriate problem decomposition and mappings for a given
system configuration. This is achieved by comparing the performance of the Laplace solver application
for 3 different distributions (HPF DISTRIBUTE directive) of the template, namely (BLOCK,BLOCK),
(BLOCK,X) and (X,BLOCK), and corresponding alignments (HPF ALIGN directive) of the data
elements to the template. These three distributions (on 4 processors) are shown in Figure 9 and the
corresponding HPF /Fortran 90D descriptions are listed in Table 4.

Figures 10-13 compare the performance of each of the three cases for different system sizes using
both, measured times and estimated times. These graphs can be used to select the best directives for
a particular problem size and system configuration. For the Laplace solver, the (Block,X) distribution
is the appropriate choice. Further, since the maximum absolute error between the estimated and
measured times is less than 1%, the directive selection can be accurately made using the interpretive
framework.

The key requirement of the design evaluator module is that it provides the ability to obtain evalua-
tions with the desired accuracy, with minimum resource requirements and within a reasonable amount
of time; the ability to automate the evaluation process; and the ability to perform the evaluation within
an integrated workstation environment without running the application on the target computers. In
the above experiment, performance interpretation was source driven and can be automated into an
intelligent capable of selecting appropriate decompositions and mappings. Further, as demonstrated in
Section 3.5.2, performance interpretation is performed on a workstations and requires a fraction of the
experimentation time. The interpretive framework thus can be effectively used to provide the function-
ality of the Design Evaluator Module in the Design Evaluation stage of the HPC software development
process.

20

60

Laplace Solver

40 [

20

Experimentation Time (min)

[interpreter
[ipscrseo

(BIk,BIK)

(BIk,*)
Implementation

*.BIk)

Figure 7: Experimentation Time - Laplace Solver

(BLOCK BLOCK)

(BLOCK X)

(X,BLOCK) I

PROCESSORS PRC(2,2)

TEMPLATE TEMP(N,N)
DISTRIBUTE TEMP(BLOCK,BLOCK)
ALIGN A(i,j) with TEMP(i,j)

ALIGN B(ij) with TEMP(i,j)

ALIGN C(ij) with TEMP(i,j)

ALIGN D(i,j) with TEMP(i,j)

PROCESSORS PRC(4)
TEMPLATE TEMP(N)
DISTRIBUTE TEMP(BLOCK)
ALIGN A(i,*) with TEMP (i)

ALIGN B(i,*) with TEMP (i)
ALIGN C(i,*) with TEMP (i)
ALIGN D(i,*) with TEMP(i)

PROCESSORS PRC(4)
TEMPLATE TEMP(N)
DISTRIBUTE TEMP(BLOCK)
ALIGN A(*,j) with TEMP(j)

ALIGN B(*j) with TEMP(j)
ALIGN C(*j) with TEMPj)
ALIGN D(*,j) with TEMP(j)

Table 4: Possible Distributions for the Laplace Solver Application

21

Application Specification Application Specification
Filter Filter

<_,>—“’ Application Specification ‘

Application Analysis Stage

C>—“+ Parallelization Specification ‘

New Application

Algorithm Development Module [= System Level Mapping Mudul%

Implementation/Coding Module Machine Level Mapping Module|

Design Evaluator
Module

Application Development Stage

S

Parallelized Structure

I

Compile-Time/Run-Time Stage

I

Evaluation Specification ‘

-

Evaluation Stage

Evaluation Recommendation ‘

i

Maintenance/Evolution Stage

]

Figure 8: The HPC Software Development Process

22

P1
P1 P3
P2
P3
P2 P4
P4
(Block,Block) (Block,*)

P1|pP2 |P3|P4

(*,Block)

Figure 9: Laplace Solver - Data Distributions

Laplace Solver

0.4

A—a Estimated (Blk,BIk) - 1x1 Proc Grid
A -— 4 Measured (BIk,BIk) - 1x1 Proc Grid
=—a Estimated (Blk,*) - 1 Proc
= - —a Measured (BIk,*) - 1 Proc
e —e Estimated (*,BIk) - 1 Proc
0.3 - | e -— @ Measured (*,BIK) - 1 Proc 7

Execution Time (sec)

0.0

[} 64 128 192 256
Problem Size

Figure 10: Laplace Solver (1 Proc) - Estimated/Measured Times

23

Laplace Solver

0.4 T T T

A——a Estimated (BIk,BIk) - 1x2 Proc Grid
4 -—4 Measured (Blk,BIk) - 1x2 Proc Grid
== Estimated (Blk,*) - 2 Procs
= - — =& Measured (BIk,*) - 2 Procs
®—e Estimated (*,BIk) - 2 Procs
0.3 - | e -— @ Measured (*,BIK) - 2 Procs 7

Execution Time (sec)
o
N

0.0 .

[} 64 128 192 256
Problem Size

Figure 11: Laplace Solver (2 Procs) - Estimated/Measured Times

Laplace Solver

0.4

A—a Estimated (BIk,BIk) - 2x2 Proc Grid
A -— 4 Measured (BIk,BIk) - 2x2 Proc Grid
=——a Estimated (BIk,*) - 4 Procs
= - — =& Measured (BIk,*) - 4 Procs
e —e Estimated (*,BIk) - 4 Procs
0.3 - | e -— @ Measured (*,BIK) - 4 Procs 7

0.2 - 4

Execution Time (sec)

0.0 L L L
[o] 64 128 192 256

Problem Size

Figure 12: Laplace Solver (4 Procs) - Estimated/Measured Times

24

5.2 Evaluation Stage

The Evaluation stage of the HPC software development process is responsible for performing a thorough
evaluation of the implementation with two key objectives:

o Identify regions of the implementation where performance improvement is possible by perfor-
mance debugging the implementation and analyzing the contribution of different parts of the
application description and view their computation time/communication time breakup.

o Investigate the scalability of the application with machine and problem size as well as the effect
of system and run-time parameters on its performance. This enables the developer to test the
robustness of the design and to modify it to account for different run-time scenarios.

The key requirement of this stage is the ability to perform the above evaluations with the desired
accuracy and granularity, while maintaining tractability, non-intrusiveness, and cost-effectiveness. The
use of the interpretive framework to the Evaluation stage of the HPC software development process is
illustrated by the following experiments:

1. Application performance debugging.
2. Evaluation of application scalability.

3. Experimentation with system and run-time parameters.

5.2.1 Application Performance Debugging

The metrics generated by the interpretive framework can be used to analyze the performance contribu-
tion of different parts of the application description and to view their computation time/communication
time breakup. This is illustrated below using two applications.

N-Body Computations: Figure 15 shows the performance profile for two phases of the n-body
application. Phase 1 (see Figure 14) represents the forward movement of data around the virtual
processor ring while Phase 2 represents accumulation of force data at the original processors. For
n processors, each phase requires n/2 circular shifts of the data; consequently their communication
profiles are similar. However, Phase 1 performs more computation as it computes the forces interac-
tions. Overhead time represents parallelization overheads. Similar profiles can be obtained at smaller
granularities (upto a single line of code).

25

Laplace Solver

0.4

A—a Estimated (BIk,BIk) - 2x4 Proc Grid
4 -— 4 Measured (Blk,BIk) - 2x4 Proc Grid
=——a Estimated (Blk,*) - 8 Procs
= - — & Measured (BIk,*) - 8 Procs
e—e Estimated (*,BIk) - 8 Procs
0.3 - | e -— @ Measured (*,BIK) - 8 Procs 7

0.2 - 4

Execution Time (sec)

0.1

0.0

[} 64 128 192 256
Problem Size

Figure 13: Laplace Solver (8 Procs) - Estimated/Measured Times

Phase 1

REPEAT I=1:N/2
CSHIFT 1
COMPUTE

END

Phase 2
REPEAT I=1:N/2
CSHIFT 1

END
ACCUMULATE

Figure 14: N-Body - Application Phases

26

N-Body Computation
Procs = 4; Size = 1024

20000

— [__]| Comp Time
[] comm Time

I ovhd Time

10000 -

Time (usec)

] -
Phase 2

[}
Phase 1
Application Phases

Figure 15: NBody Computation - Interpreted Performance Profile

Phase 1

Create Stock
Price Lattice

(shift)

Phase 2

Compute Call

Price

Figure 16: Financial Model - Application Phases

27

Parallel Stock Option Pricing: A performance profile for the parallel stock option pricing appli-
cation is shown in Figure 17. This application has two phases as shown in Figures 16. Phase 1 creates
the (distributed) option price lattice while Phase 2, which requires no communication, computes the
call prices of stock options.

Application performance debugging using conventional means involves instrumentation, execution
and data collection, and post-processing this data. Further, this process requires a running application
and has to be repeated to evaluate each design modification. Using the interpretive framework, this
information is available, at all levels required, during application development.

5.2.2 Application Scalability Evaluation

Figures 18, 19, & 20 plot the scalability of three applications (PI, NBody and Financial) with problem
and well as system sizes. Both, measured and estimated times are plotted to show that estimated times
provide sufficiently accurate scalability information.

5.2.3 Experimentation with System/Run-Time Parameters

The results presented in this section demonstrate the use of the interpretive framework for evaluating
the effects of different system and run-time parameters on the application performance. The following
experiments were conducted:

Effect of Varying Processor Speed: In this experiment we evaluate the effect of increasing/decreasing
the speed of the each processor in the iPSC/860 system on application performance. The results are
shown in Figure 21. Such an evaluation enables the developer to visualize how the application will
perform on a faster (prospective) machine or alternately if it has be run on a slower processor. It can
also be used to evaluate the benefits of upgrading to a faster processor system.

Effect of Varying Network Load: Figure 22 shows the interpreted effects of network load on
application performance. It can be seen that the performance deteriorates rapidly as the network gets
saturated. Further, the effect of network load is more pronounced for larger system configurations as
illustrated in Figure 23.

Effect of Varying Interconnection Bandwidth: The effect of varying the interconnect bandwidth
on the application performance is shown in Figure 24. The increase/decrease in application execution
times is greater for larger processor configurations as illustrated in Figure 25.

28

Stock Option Pricing
Procs = 4; Size = 256

:] Comp Time
15000 F I:l Comm Time 4
[] ovhd Time
‘S 10000 - b
5}
w
=
[}
E
=
5000 - b
(o]
Phase 1 Phase 2

Application Phases

Figure 17: Financial Model - Interpreted Performance Profile

Approximation of PI

0.05 T T T

e——e Estimated Time - 1 Proc
=——= Estimated Time - 2 Procs
+—— Estimated Time - 4 Procs
+—— Estimated Time - 8 Procs
-—+ Measured Time - 1 Proc

-—-4 Measured Time - 2 Procs o
-— =< Measured Time - 4 Procs 0

-—~¥ Measured Time - 8 Procs /

Ay
N\

0.025 -

Execution Time (sec)

o 1024 2048 3072 4096
Problem Size

Figure 18: PI - Scalability with Problem/System Size

29

N-Body Computation

e——= Estimated Time - 1 Proc
0.25 H =——= Estimated Time - 2 Procs b
+— Estimated Time - 4 Procs
+——= Estimated Time - 8 Procs
»-—- Measured Time - 1 Proc

< -— < Measured Time - 2 Procs
¥--—~v Measured Time - 4 Procs
»— —— Measured Time - 8 Procs

Execution Time (sec)

o 512 1024 1536 2048 2560 3072 3584 4096
Problem Size

Figure 19: N-Body - Scalability with Problem /System Size

Parallel Stock Option Pricing

e——= Estimated Time - 1 Proc
0.25 H =——= Estimated Time - 2 Procs b
+—— Estimated Time - 4 Procs
+——= Estimated Time - 8 Procs
»-—-4 Measured Time - 1 Proc

< -— < Measured Time - 2 Procs
¥--—v Measured Time - 4 Procs
> —— Measured Time - 8 Procs

Execution Time (sec)

0.05 -

o
o 64 128 192 256 320 384 448 512
Problem Size

Figure 20: Financial Model - Scalability with Problem /System Size

30

LFK 9 - Integrate Predictors
Size: 8192

0.14 H == Estimated Time - 1 Proc 4
== Estimated Time - 2 Procs
+———+ Estimated Time - 4 Procs
+—— Estimated Time - 8 Procs
+—— Estimated Time - 16 Procs

Execution Time (sec)

[} 100 200 300
Processor Speed (% Increase)

Figure 21: Effect of Increasing Processor Speed on Performance

N-Body Computation

Size: 4096
0.8 T T T T T T T T

== Estimated Time - 2 Procs
+———+ Estimated Time - 4 Procs
+——— Estimated Time - 8 Procs
+—— Estimated Time - 16 Procs

Execution Time (sec)
o
N

[} 10 20 30 40 50 60 70 80
Network Load (%0)

Figure 22: Effect of Increasing Network Load on Performance

31

N-Body Computation

Size: 4096
300

T T T T
= Estimated Time - 2 Procs
+—— Estimated Time - 16 Procs

N

13

S
T

]

o

S
T

Execution Time (% Increase)
= N
5 &
8 3
T T

0 10 20 30 40 50 60 70
Network Load (%)

Figure 23: Effect of Varying Network Load on Performance (% Change in Execution time)

N-Body Computation

Size: 4096
Estimated Time - 2 Procs
Estimated Time - 4 Procs
Estimated Time - 8 Procs
0.2 Estimated Time - 16 Procs
o
D
K2R
3]
E
=
=
i=]
3
Qo1 g
>
i \4
[}

[} 20 40 60 80 100 120 140
Network Bandwidth (% Increase)

Figure 24: Effect of Increasing Network Bandwidth on Performance

32

Experimentation with Larger System Configurations: In this experiment we experiment with
larger system configurations that physically available (i.e. 16 & 32 processors). The results are shown
in Figures 26 & 27. It can be seen that the first application (Approximation of 1I) scales well with
increased number of processors; while in the second application (Parallel Stock Option Pricing), larger
configurations are beneficial only for larger problem sizes.

The ability to experiment with different system parameters not only allows the user to evaluate the
application during the Evaluation stage, but can also be used during the Maintenance/Evolution stage
to check whether the application meets its specification with changes in the system configuration.

6 Conclusions

Software development in any high-performance parallel computing environment is non-trivial and the
development of efficient application software capable of exploiting available computing potentials de-
pends to a large extent on the availability of suitable tools and application development environments.
Evaluation tools enable a developer to visualize the effects of the various design alternatives and make
appropriate design decisions, and thus form a critical component of such a development environment.

In this paper we first presented a novel interpretive approach for accurate and cost-effective per-
formance prediction that can be effectively used during HPC application software development. A
source-driven HPF /Fortran 90D performance prediction framework based on the interpretive approach
has been implemented as part of the NPAC HPF /Fortran 90D integrated application development
environment. The accuracy and usability of the interpretive performance prediction framework were
experimentally validated.

We then outlined the stages typically encountered during application software development in a HPC
environment and highlighted the significance and requirements of a performance prediction tool at the
relevant stages. Numerical results using benchmarking kernels and application codes were presented
to demonstrate the application of the performance prediction framework to different stages of the
application software development process.

We are currently working on developing an intelligent HPF /Fortran 90D compiler based on the source
based interpretation model. This tool will enable the compiler to automatically evaluate directives and
transformation choices and optimize the application at compile time. We are also working on expanding
to the HPF /Fortran 90D application development environment to incorporate a wider set of tools so
as to span the stages of the HPC application software development process.

References

[1] Manish Parashar, Interpretive Performance Prediction for High Performance Parallel Computing,
PhD thesis, Syracuse University, 121 Link Hall, Syracuse, NY 13244-1240, July 1994, Available

33

N-Body Computation

Size: 4096
140 T T T T T
= Estimated Time - 2 Procs
120 + +—— Estimated Time - 16 Procs

Execution Time (% Increase)

60 I I I I I I I I H
60 -40 -20 0 20 40 60 80 100 120 140

Network Bandwidth (% Increase)

Figure 25: Effect of Varying Network Bandwidth on Performance (% Change in Execution time)

Parallel Stock Option Pricing

0.03
Estimated Time - 16 Proc
Estimated Time - 32 Procs
__ 002 | g
©
[
KR
[
£
=
=
1=
=
(=3
Q
a
0.01 - 4
o
[} 64 128 192 256 320 384 448 512

Problem Size

Figure 26: Experimentation with Larger System Configurations Financial Model

34

[2]

[3]

[4]

[10]

[11]

[12]

via WWW at http://www.ticam.utexas.edu/ parashar/public html/ESP/.

Dalibor F. Vrsalovic, Daniel P. Siewiorek, Zary Z. Segall, and Edward F. Gehringer, “Performance
Prediction and Calibration for a Class of Multiprocessors”, IFEFE Transactions on Computers,
37(11):1353-1365, Nov. 1988.

Philip Heildelberger and Kishore S. Trivedi, “Analytic Queueing Models for Programs with Inter-
nal Concurrency”, IEEE Transactions on Computers, C-32(1):73-82, Jan. 1983.

Reda A. Ammar and Bin Qin, “A Technique to Derive the Detailed Time Costs of Parallel
Computations”, Proceedings of the 12" Annual International Computer Software and Application
Conference, pp. 113-119, 1988.

Mark J. Clement and Micheal J. Quinn, “Analytic Performance Prediction on Multicomputers”,
Technical report, Department of Computer Science, Oregon State University, Mar. 1993.

F. Andre and A. Joubert, “SiGLe: An Evaluation Tool for Distributed Systems”, Proceedings of
the International Conference on Distributed Computing Systems, pp. 466-472, 1987.

Frederica Darema, “Parallel Applications Performance Methodology”, in Margaret Simmons,
Rebecca Koskela, and Ingrid Bucher, editors, Instrumentation for Future Parallel Computing Sys-
tems, chapter 3, pp. 49-57. Addison-Wesley Publishing Company, 1988.

Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer, “A Static Performance
Estimator in the Fortran D Programming System”, in Joel Saltz and Piyush Mehrotra, editors,
Languages, Compilers and Run-Time Fnvironments for Distributed Memory Machines, pp. 119—
138. Elsevier Science Publishers B.V., 1992.

Thomas Fahringer and Hans P. Zima, “A Static Parameter based Performance Prediction Tool
for Parallel Programs”, Proceedings of the T ACM International Conference on Supercomputing,
Japan, July 1993.

Franz Sétz, “A Method for Performance Prediction of Parallel Programs”, in H. Burkhart,
editor, Joint International Conference on Vector and Parallel Processing, Proceedings, Zurich,
Switzerland, pp. 98-107. Springer, Berlin, LNCS 457, Sep. 1990.

E. Papaefstathiou, D. J. Kerbyson, and G. R. Nudd, “A Layered Approach to Parallel Soft-
ware Performance Prediction: A Case Study”, Massively Parallel Processing Applications and
Development, Delft, 1994.

High Performance Fortran Forum, High Performance Fortran Language Specifications, Version
1.0, Jan. 1993, Also available as Technical Report CRPC-TR92225 from Center for Research on
Parallel Computing, Rice University, Houston, TX 77251-1892.

35

[13]

[14]

[16]

Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox, “Design of an Applica-
tion Development Toolkit for HPF /Fortran 90D, Proceedings of the International Workshop on
Parallel Processing, Dec. 1994.

Zeki Bozkus, Alok Choudhary, Geoffrey Fox, Tomasz Haupt, and Sanjay Ranka, “Compiling HPF
for Distributed Memory MIMD Computers”, in David Lilja and Peter Bird, editors, Impact of
Compilation Technology on Computer Architecture. Kluwer Academic Publishers, 1993.

A. Gaber Mohamed, Geoffrey C. Fox, Gregor von Laszewski, Manish Parashar, Tomasz Haupt,
Kim Mills, Ying-Hua Lu, Neng-Tan Lin, and Nang Kang Yeh, “Application Benchmark Set
for Fortran-D and High Performance Fortran”, Technical Report SCCS-327, Northeast Parallel
Architectures Center, Syracuse University, Syracuse, NY 13244-4100., June 1992, Available via
WWW at http://www.npac.syr.edu.

Manish Parashar, Salim Hariri, Tomasz Haupt, and Geoffrey C. Fox, “A Study of Software
Development for High Performance Computing”, in Karsten M. Decker and Rene M. Rehmann,
editors, Programming Environments for Massively Parallel Distributed Systems. Birkhauser Verlag,
Basel, Switzerland, Aug. 1994.

36

Approximation of PI

0.005
+—— Estimated Time - 16 Procs
Estimated Time - 32 Procs
0.004 | E
=)
<53
@ 0.003 - b
(<)
E
=
=
2
3
g 0.002 - 3
><
]
0.001 | E

1) L
[o] 1024 2048

Problem Size

Figure 27: Experimentation with Larger System Configurations - Approximation of PI

37

