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students at The Applied Software Systems Laboratory, Department of Electrical and 
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on our collaborations with application scientists, engineers and computer and 
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Austin, University of Arizona, Ohio State University, and University of Maryland. 
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OVERVIEW OF THE TALK 
 
 

This talk motivates and introduces autonomic computational science and 
engineering, and presents the AutoMate framework for enabling autonomic applications 
on Grid. It describes the AutoMate architecture and briefly presents each of its 
components. These include the ACCORD autonomic component framework, the 
RUDDER decentralized deductive engine, the SESAME context-sensitive dynamic 
access management framework, the Pawn peer-to-peer messaging substrate, and the 
SQUID decentralized discovery service. Finally, it describes two applications of 
autonomic computing to science and engineering – autonomic runtime management 
framework for adaptive applications (V-Grid) and autonomic interactions for oil reservoir 
optimization. 

 
 

Outline

• Autonomic computational science and engineering
• AutoMate: A framework of enabling autonomic 

applications
– ACCORD: Autonomic component framework
– RUDDER: Decentralized deductive engine
– SESAME: Context sensitive dynamics access management
– Pawn: Peer-to-Peer messaging infrastructure
– SQUID: Decentralized discovery service 

• Application Scenarios
– V-Grid autonomic runtime for adaptive applications

– Autonomic interactions oil reservoir optimization
• Conclusions and current status

 

• reactive/proactive partitioning, load-balancing, scheduling, 
performance management
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COMPUTATION MODELING OF PHYSICAL PHENOMENA 
 
 

Realistic, physically accurate simulations of complex physical phenomena that 
symbiotically and opportunistically combine computations, experiments, observations, 
and real-time data have the potential for providing dramatic insights into complex 
systems such as interacting black holes and neutron stars, formations of galaxies, 
subsurface flows in oil reservoirs and aquifers, and dynamic response of materials to 
detonations. However, the phenomena being modeled by these applications are inherently 
large-scale, dynamic and heterogeneous (in time, space, and state). Furthermore, the 
applications are extremely large with unprecedented resource requirements, and are 
composed of a large numbers of software components with very dynamic compositions 
and interactions between these components.  
 
 

Computational  Modeling of Physical Phenomenon

• Realistic, physically accurate computational modeling
– Large computation requirements

– Coupled, multiphase, heterogeneous, dynamic

– Complex interactions

– Software/systems engineering/programmability

– scores of models, hundreds of components, millions of lines of code, …
 

• e.g. simulation of the core-collapse of supernovae in 3D with reasonable 
resolution (5003) would require ~ 10-20 teraflops for 1.5 months (i.e. ~100 
Million CPUs!) and about 200 terabytes of storage

• e.g. turbulent flow simulations using active flow control in aerospace and 
biomedical engineering requires 5000x1000x500=2.5·109 points and
approximately 107 time steps, i.e. with 1GFlop processors requires a  
runtime of ~7·106 CPU hours, or about one month on 10,000 CPUs! (with 
perfect speedup). Also with 700B/pt the memory requirement is ~1.75TB 
of run time memory and ~800TB of storage. 

• multi-physics, multi-model, multi-resolution, ….

• application – application, application – resource, application – data, 
application – user, …

• volume and complexity of code, community of developers, …
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COMPUTATION MODELING AND THE GRID 
 
 

The emergence of computational Grids and the potential for seamless 
aggregation, integration and interactions has made it possible to conceive the realistic, 
scientific and engineering simulations of complex physical phenomena described in the 
previous slide. However, the Grid infrastructure is also heterogeneous and dynamic, 
globally aggregating large numbers of independent computing and communication 
resources, data stores and sensor networks. The combination of the two (large, complex, 
heterogeneous and dynamic applications and Grids) results in application development, 
configuration and management complexities that break current paradigms based on 
passive components and static compositions. Clearly, there is a need for a fundamental 
change in how these applications are formulated, composed and managed so that their 
heterogeneity and dynamics can match and exploit the heterogeneous and dynamic nature 
of the Grid. In fact, we have reached a level of complexity, heterogeneity, and dynamism 
for which our programming environments and infrastructure are becoming unmanageable 
brittle and insecure. This has led researchers to consider alternative programming 
paradigms and management techniques that are based on strategies used by biological 
systems to deal with complexity, heterogeneity and uncertainty. The approach is referred 
to as autonomic computing. An autonomic computing system is one that has the 
capabilities of being self-defining, self-healing, self-configuring, self-optimizing, self-
protecting, context aware, and open. 
 
 

Computational  Modeling and the Grid

• The Computational Grid
– Potential for aggregating resources 

– Potential for seamless interactions

• Developing application to utilize and exploit the Grid remains a significant 
challenge
– The problem: a level of complexity, heterogeneity, and dynamism for which our 

programming environments and infrastructure are becoming unmanageable, brittle and 
insecure

– Requires fundamental changes in how applications are formulated, composed and 
managed

– Resonance - heterogeneity and dynamics must match and exploit the heterogeneous 
and dynamic nature of the Grid

• Autonomic, adaptive, interactive simulations and the Grid offer the potential for 
such simulations 
– Autonomic: context aware, self configuring, self adapting, self optimizing, self healing,...
– Adaptive: resolution, algorithms, execution, scheduling, …
– Interactive: peer interactions between computational objects and users, data, 

resources, …  

• computational requirements

• new applications formulations

• System size, heterogeneity, dynamics, reliability, availability, usability
• Currently typically proof-of-concept demos by “hero programmers”

• Breaks current paradigms based on passive components and static compositions
• autonomic components and their dynamic composition, opportunistic interactions, virtual 

runtime, …
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AUTOMATE 
 
 
 The overall objective of the AutoMate project is to investigate key technologies to 
enable the development of autonomic Grid applications that are context aware and are 
capable of self-configuring, self-composing, self-optimizing and self-adapting. 
Specifically, it will investigate the definition of autonomic components, the development 
of autonomic applications as dynamic composition of autonomic components, and the 
design of key enhancements to existing Grid middleware and runtime services to support 
these applications.  
Definition of Autonomic Components: The definition of programming abstractions and 
supporting infrastructure that will enable the definition of autonomic components. In 
addition to the interfaces exported by traditional components, autonomic components 
provide enhanced profiles or contracts that encapsulate their functional, operational, and 
control aspects. These aspects export information and policies about their behavior, 
resource requirements, performance, interactivity and adaptability to system and 
application dynamics. Furthermore, they encapsulate sensors, actuators, access policies 
and a policy-engine. Together, aspects, policies, and policy engine allow autonomic 
components to consistently configure, manage, adapt and optimize their execution. 
Dynamic Composition of Autonomic Applications: The development of mechanisms 
and supporting infrastructure to enable autonomic applications to be dynamically and 
opportunistically composed from autonomic components.  The composition will be based 
on policies and constraints that are defined, deployed and executed at run time, and will 
be aware of available Grid resources (systems, services, storage, data) and components, 
and their current states, requirements, and capabilities. 
Autonomic Middleware Services: The design, development, and deployment of key 
services on top of the Grid middleware infrastructure to support autonomic applications. 
One of the key requirements for autonomic behavior and dynamic compositions is the 
ability of the components, applications and resources (systems, services, storage, data) to 
interact as peers. Furthermore the components should be able to sense their environment. 
In this project, we extend the Grid middleware with (1) a peer-to-peer messaging 
substrate, (2) context aware services, and (3) peer-to-peer deductive engines for 
composition, configuration and management of autonomic applications. An active peer-
to-peer control network will combine sensors, actuators and rules to configure and tune 
components and their execution environment at runtime and to satisfy requirements and 
performance and quality of service constraints.  
 
 

 



AutoMate: Enabling Autonomic Applications

• Objective:
– Investigate key technologies to enable the development of autonomic Grid applications 

that are context aware and are capable of self-configuring, self-composing, self-
optimizing and self-adapting. 

• Overview:
– Definition of Autonomic Components:

– Dynamic Composition of Autonomic Applications:

– Autonomic Middleware Services:

 

• definition of programming abstractions and supporting infrastructure that will enable the 
definition of autonomic components

• autonomic components provide enhanced profiles or contracts that encapsulate their 
functional, operational, and control aspects 

• mechanisms and supporting infrastructure to enable autonomic applications to be dynamically 
and opportunistically composed from autonomic components

• compositions will be based on policies and constraints that are defined, deployed and executed 
at run time, and will be aware of available Grid resources (systems, services, storage, data) 
and components, and their current states, requirements, and capabilities

• design, development, and deployment of key services on top of the Grid middleware 
infrastructure to support autonomic applications

• a key requirements for autonomic behavior and dynamic compositions is the ability of the 
components, applications and resources (systems, services, storage, data) to interact as peers 
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AUTOMATE ARCHITECTURE 
 
 

AutoMate builds on the emerging Grid infrastructure and extends the Open Grid 
Service Architecture (OGSA). AutoMate is composed of the following components: 
AutoMate System Layer: The AutoMate system layer builds on the Grid middleware 
and OGSA and extends core Grid services (security, information and resource 
management, data management) to support autonomic behavior. Furthermore, this layer 
provides specialized services such as peer-to-peer semantic messaging, events and 
notification. 
AutoMate Component Layer: The AutoMate component layer addresses the definition, 
execution and runtime management of autonomic components. It consists of AutoMate 
components that are capable of self configuration, adaptation and optimization, and 
supporting services such as discovery, factory, lifecycle, context, etc. (which builds on 
core OGSA services).  
AutoMate Application Layer: The AutoMate application layer builds on the component 
and system layers to support the autonomic composition and dynamic (opportunistic) 
interactions between components.  
AutoMate Engines: AutoMate engines are decentralized (peer-to-peer) networks of 
agents in the system. The context-awareness engine is composed of context agents and 
services and provides context information at different levels to trigger autonomic 
behaviors. The deductive engine is composed of rule agents which are part of the 
applications, components, services and resources, and provides the collective decision 
making capability to enable autonomic behavior. Finally, the trust and access control 
engine is composed of access control agents and provides dynamic context-aware control 
to all interactions in the system. 

In addition to these layers, AutoMate portals provide users with secure, pervasive 
(and collaborative) access to the different entities. Using these portals users can access 
resource, monitor, interact with, and steer components, compose and deploy applications, 
configure and deploy rules, etc. AutoMate leverages the experiences and technologies 
developed as part of the Discover/DIOS computational collaboratory project 
(http://www.discoverportal.org). The different components are described in the following 
sections. 
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AUTOMATE ARCHITECTURE 
 

 
Key components of AutoMate include:  

• ACCORD (Autonomic Components, Compositions and Coordination) 
component framework that enables the definition of autonomic 
components, their autonomic compositions and opportunistic interactions. 

•  RUDDER (Rule Definition Deployment and Execution Service) 
decentralized deductive engine. 

• SESAME (Scalable Environment Sensitive Access Management Engine) 
dynamic access control engine.  

• Pawn decentralized (P2P) messaging substrate. 
• SQUID flexible information discovery service. 

These components are introduced in the following slides. 
 
 

AutoMate: Components

• ACCORD: Autonomic application framework
• RUDDER: Decentralized deductive engine
• SESAME: Dynamic access control engine
• Pawn: P2P messaging substrate
• SQUID: P2P discovery service
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ACCORD: AUTONOMIC COMPONENTS 
 
 

Autonomic components in AutoMate export information and policies about their 
behavior, resource requirements, performance, interactivity, and adaptability to system 
and application dynamics. In addition to the functional interfaces exported by traditional 
components, AutoMate components provide semantically enhanced profiles or contracts 
that encapsulate their functional, operational, and control aspects. A conceptual overview 
of an AutoMate component is presented in the figure. The functional aspect specification 
abstracts component functionality, such as order of interpolation (linear, quadratic, etc.).  
This functional profile is then used by the compositional engine to select appropriate 
components based on application requirements. The operational aspect specification 
abstracts a component's operational behavior, including computational complexity, 
resource requirements, and performance (scalability). This profile is then used by the 
configuration and runtime engines to optimize component selection, mapping and 
adaptation.  Finally, the control aspect describes the adaptability of the component and 
defines sensors/actuators and policies for management, interaction and control. 

AutoMate components also encapsulate access policies, rules, a rule agent, and an 
access agent that allow the components to consistently and securely configure, manage, 
adapt and optimize their execution based on rules and access policies. The access agent is 
a part of the AutoMate access control engine and the underling dynamic access control 
model, and manages access to the component based on its current context and state. The 
rule agent is part of RUDDER, the AutoMate deductive engine and manages local rule 
definition, evaluation and execution at the component level. Rules can be dynamically 
defined (and changed) in terms of the component's interfaces (based on access policies) 
and system and environmental parameters. Execution of rules can change the state, 
context and behavior of a component, and can generate events to trigger other rule agents.  

 
 

 



ACCORD: Autonomic Components

• Autonomic components export 
information and policies about their 
behavior, resource requirements, 
performance, interactivity and 
adaptability to system and 
application dynamics
– functional aspects

– operational aspects

– control aspect 

• AutoMate components encapsulate 
access policies, rules, a rule agent, and 
an access agent
– enables components to consistently and 

securely configure, manage, adapt and 
optimize their execution based on rules 
and access policies. 

– rules/polices can be dynamically defined 
(and changed) in terms of the 
component's interfaces (based on 
access policies) and system and 
environmental parameters

– rule execution may change the state, 
context and behavior of a component, 
and can generate events to trigger other 
rule agents

– rule agent manages rule execution and 
resolves rule conflicts

 

• abstracts component functionality, 
such as order of interpolation (linear, 
quadratic, etc.)

• used by the compositional engine to 
select appropriate components based 
on application requirements

• abstracts a component's operational 
behavior, including computational 
complexity, resource requirements, 
and performance (scalability)

• used by the configuration and runtime 
engines to optimize component 
selection, mapping and adaptation

• describes the adaptability of the 
component and defines 
sensors/actuators and policies for 
management, interaction and control.
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ACCORD: AUTONOMIC COMPOSITIONS 
 
 

 Applications are typically composed with well defined objectives. In case of 
autonomic applications, however, these objectives can dynamically change based on the 
state of the application and/or the system. As a result, we need to dynamically select 
components and compose them at runtime based on current objectives. Together, the 
profiles, policies, and rules allow autonomous components to consistently and securely 
manage and optimize their executions. Furthermore, they enable applications to be 
dynamically composed, configured and adapted. Dynamic application work-flows  can be 
defined to select the most appropriate components based on user/application constraints 
(highest-performance, lowest cost, reservation, execution time upper bound, best 
accuracy), on the current applications requirements, to dynamically configure the 
component's algorithms and behavior based on available resources or system and/or 
applications state, and to adapt this behavior if necessary. 

The AutoMate dynamic composition model may be viewed as transforming a 
given composition or workflow into a new one by adding or modifying interactions and 
participating entities. Its primary goal is to enable dynamic (and opportunistic) 
choreography and interactions of components and services to react to the heterogeneity 
and dynamics of the application and underlying execution environment to produce the 
desired user objectives. 
 
 

ACCORD: Autonomic Compositions
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ACCORD: OPPORTUNISTIC INTERACTIONS  
 
 

 Opportunistic interactions are decentralized and based on the satisfaction of 
locally defined goals and constraints. These interactions are inherently dynamic and ad-
hoc and use semantic publisher/subscriber messaging based on proximity, privileges, 
capabilities, context, interests, and offerings.  The goals/constraints are typically long-
term and may or may not be satisfied. The interactions do not involve explicit 
synchronization – the semantics are achieved through feedback and consensus building 
mechanisms.  
 
 

ACCORD: Opportunistic Interactions

• Interactions based on local goals and objectives
– local goals and objectives are defined as constraints that to be satisfied
– constraints can updated and new constraints can defined at any time

• Dynamic and ad-hoc
– interactions  use “semantic messaging” based on proximity, privileges, 

capabilities, context, interests, offerings, etc.
• Opportunistic

– constraints are long-term and satisfied opportunistically (may not be satisfied)
• Probabilistic guarantees and soft state

– no explicit synchronization 
– interaction semantics are achieved using feedback and consensus building
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RUDDER: DEDUCTIVE ENGINE 
 
 

 RUDDER provides the core capabilities for supporting autonomic compositions, 
adaptations, and optimizations. It is a decentralized deductive engine composed of 
distributed specialized agents (component rule agents, composition agents, context agents 
and system agents) that exist at different levels of the system, and represents their 
collective behavior. It provides mechanisms for dynamically defining, configuring, 
modifying and deleting rules. Furthermore it defines an XML schema for composing 
rules and provides mechanisms for deploying and routing rules, decomposing and 
distributing them to relevant agents, and for coordinating the execution of rules. It also 
manages conflict resolutions within a single entity and across entities.  

The figure presents a schematic overview of RUDDER. It builds on AutoMate 
and Grid services and the underlying semantic messaging infrastructure. Rules can be 
dynamically injected into the system and are routed by the messaging substrate to the 
appropriate agents. Furthermore, the agents may hierarchically decompose a rule and 
distribute it to peer agents. For example, an application level rule may be decomposed 
into sub-rules that are assigned to its components. The components rules may be further 
decomposed into rules for the underlying systems entities. 
 
 

RUDDER: The AutoMate Deductive Engine

• RUDDER is a decentralized deductive engine composed of distributed 
specialized agents (component rule agents, composition agents, context 
agents and system agents) that exist at different levels of the system, and 
represents their collective behavior.
– provides mechanisms for dynamically defining, configuring, modifying and deleting 

rules/polices/constraints
– defines an XML schema for composing rules and provides mechanisms for 

deploying and routing rules, decomposing and distributing them to relevant agents, 
and for coordinating the execution of rules

– manages conflict resolution within a single entity and across entities
– provides the core capabilities for supporting autonomic compositions, adaptations, 

and optimizations

 
 

Figure 11 

 



SESAME: CONTEXT SENSITIVE ACCESS MANAGEMENT 
 
 

 A key requirement of autonomic applications is the support for dynamic, seamless 
and secure interactions between the participating entities, i.e. components, services, 
application, data, instruments, resources and users. Ensuring interaction security requires 
a fine grained access control mechanism. Furthermore, in the highly dynamic and 
heterogeneous Grid environment, the access rights of an entity depend on the entity's 
privileges, capabilities, context and state. For example, the ability of a user to access a 
resource or steer a component depends on users' privileges (e.g. owner), current 
capabilities (e.g. resources available), current context (e.g. secure connection) and the 
state of the resource or component. The AutoMate Access Control Engine addresses 
these issues and provides dynamic access control to users, applications, services, 
components and resources. The engine is composed of access control agents associated 
with various entities in the system. The underlying dynamic role based access control 
mechanism extends the RBAC (Role Based Access Control) model to make access 
control decision based on dynamic context information. The access control engine 
dynamically adjusts Role Assignments and Permission Assignments. 
 
 

SESAME: Context Sensitive Access Management

• Objective:
– support dynamic, seamless and secure interactions between the 

participating entities (i.e. components, services, application, data, 
instruments, resources and users)

• Issues:
– access rights in highly dynamic and heterogeneous Grid environments 

depends on the entity's privileges, capabilities, context and state

• Approach
– extend Role Based Access Control (RBAS) to 

make access control decision based on 
dynamic context information

– dynamically adjust Role Assignments and 
Permission Assignments based on context

 

• e.g. the ability of a user to access a resource or steer a component depends on 
users' privileges (e.g. owner), current capabilities (e.g. resources available), 
current context (e.g. secure connection) and the state of the resource or 
component
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PAWN: P2P MESSAGING 
 

 
Pawn is a peer-to-peer messaging substrate that builds on project JXTA to support 

peer-to-peer interactions on the Grid. Pawn provides a stateful and guaranteed messaging 
to enable key application-level interactions such as synchronous/asynchronous 
communication, dynamic data injection, and remote procedure calls. It exports these 
interaction modalities through services at every step of the scientific investigation 
process, from application deployment, to interactive monitoring and steering, and group 
collaboration.  

A conceptual overview of the Pawn P2P substrate is presented in the figure. Pawn 
is composed of peers (computing, storage, or user peers), network and interaction 
services, and mechanisms. These components are layered to represent the requirements 
stack enabling interactions in a Grid environment. The figure can be read from bottom to 
top as: “Peers compose messages handled by services through specific interaction 
modalities”. 

 
 

Pawn: A P2P Messaging Substrate

• Objective
– Engineer a peer-to-peer messaging 

substrate that extends existing solutions to 
enable high-level interactions for scientific 
applications.

• Architecture
– Peers, Messages, Services, Interactions

• Key Features
– Stateful messages
– Guaranteed messaging semantics
– Publish/subscribe mechanisms across 

peer-to-peer domains
– High-level messaging semantics

• Built on Project JXTA
– Pipes 
– Resolver

 

• Sync/Async Messaging
• PUSH (dynamic injection)
• PawnRPC
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SQUID: DECENTRALIZED Discover 
 
 

 A fundamental problem in large, decentralized, distributed resource sharing 
environments such as the Grid is the efficient discovery of information, in the absence of 
global knowledge of naming conventions. For example a document is better described by 
keywords than by its filename, a computer by a set of attributes such as CPU type, 
memory, operating system type than by its host name, and a component by its aspects 
than by its instance name. The heterogeneous nature and large volume of data and 
resources, their dynamism (e.g. CPU load) and the dynamism of the Grid make the 
information discovery a challenging problem. An ideal information discovery system has 
to be efficient, fault-tolerant, self-organizing, has to offer guarantees and support flexible 
searches (using keywords, wildcards, range queries). Decentralized peer-to-peer (P2P) 
systems, by their inherent properties (self-organization, fault-tolerance, scalability), 
provide an attractive solution. 

SQUID supports decentralized information discovery in AutoMate. It is a P2P 
system that supports complex queries containing partial keywords, wildcards, and range 
queries, and guarantees that all existing data elements that match a query will be found 
with bounded costs in terms of number of messages and number of nodes involved. The 
key innovation is a dimension reducing indexing scheme that effectively maps the 
multidimensional information space to physical peers.  
 
 

SQUID: A Decentralized Discovery Service

• Overview/Motivation:
– Efficient information discovery in the absence of global knowledge of naming 

conventions is a fundamental problem in large, decentralized, distributed 
resource sharing environments such as the Grid

– Heterogeneous nature and large volume of data and resources, their 
dynamism (e.g. CPU load) and the dynamism of the Grid make the 
information discovery a challenging problem. 

• Key features
– P2P system that supports complex queries containing partial keywords, 

wildcards, and range queries
– Guarantees that all existing data elements that match a query will be found 

with bounded costs in terms of number of messages and number of nodes 
involved. 

– The system can be used as a complement for current resource discovery 
mechanisms in Computational Grids (to enhance them with range queries)

 

• a document is better described by keywords than by its filename, a computer by a 
set of attributes such as CPU type, memory, operating system type than by its host 
name, and a component by its aspects than by its instance name. 
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SQUID OPERATION 
 
 

The overall architecture of SQUID is a distributed hash table (DHT), similar to 
typical data lookup systems. The key difference is in the way we map data elements to 
the index space. In existing systems, this is done using consistent hashing to uniformly 
map data element identifiers to indices. As a result, data elements are randomly 
distributed across peers without any notion of locality. Our approach attempts to preserve 
locality while mapping the data elements to the index space. In our system, all data 
elements are described using a sequence of keywords (common words in the case of P2P 
storage systems, or values of globally defined attributes - such as memory and CPU 
frequency - for resource discovery in computational grids). These keywords form a 
multidimensional keyword space where the keywords are the coordinates and the data 
elements are points in the space. Two data elements are “local” if their keywords are 
lexicographically close or they have common keywords. Thus, we map documents that 
are local in this multi-dimensional index space to indices that are local in the 1-
dimensional index space, which are then mapped to the same node or to nodes that are 
close together in the overlay network. This mapping is derived from a locality-preserving 
mapping called Space Filling Curves (SFC).  

In the current implementation, we use the Hilbert SFC for the mapping, and 
Chord for the overlay network topology. The overall operation of SQUID is presented in 
the figure. (a) shows a 2-dimensional keyword space. The data element “Document” is 
described by keywords “Computer” and “Network”. (b) shows the mapping of the 2-
dimensional space to a curve. The query (011, *) defines clusters on the curve 
(segments). (c) shows the recursive refinement of query (011, *) viewed as a tree. Each 
node is a cluster, and the bold characters are the cluster's prefixes. (d) illustrates the query 
resolution process by embedding the leftmost tree path (solid arrows) and the rightmost 
path (dashed arrows) onto the overlay network topology. 

 



SQUID: Operation
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V-GRID AUTONOMIC APPLICATION MANAGEMENT 
 
 

Truly realistic scientific and engineering simulations require enormous amounts 
of resources that can surpass even the aggregated capacity of the Grid. The V-Grid 
(virtual Grid) infrastructure is an application of autonomic computing to science and 
engineering that is based on the concept of virtualizing grid resources and application 
execution (analogous to virtual memory). The V-Grid autonomic runtime management 
framework allows the implementation of a simulation to be driven by the requirements of 
the science being modeled rather than the size and configuration of the machine that it 
will be run on. 

The autonomic behavior in the V-Grid has three primary aspects: (1) V-Grid 
Monitoring, (2) V-Grid Deduction, and (3) V-Grid Execution. 

The V-Grid monitoring engine is a decentralized entity composed of context 
agents that provides application and system context awareness. Application monitoring 
uses sensors exported by the autonomic components and services and provides 
information about the current state, dynamics and requirements of components and the 
application. System/resource monitoring builds on context information provided by 
OGSA and existing Grid middleware (e.g. NWS, Globus, Autopilot) and extends their 
capabilities to support dynamic monitoring requirements and information aggregation. 

The V-Grid deduction engine uses application/components specifications, context 
and predicted behavior to deduce objective functions and execution and management 
strategies. This includes identifying and characterizing natural regions, defining Virtual 
Computational Units or VCUs that reflect the current state of the application, mapping 
them onto Virtual Resource Units or VRUs based on their specifications, and outlining 
scheduling policies and constraints. This mapping of VCUs onto VRUs exploits the 
spatial, temporal and functional heterogeneity of the application to reduce couplings and 
maximize performance. 

The V-Grid execution engine implements polices and strategies defined by the 
deduction engine using OGSA and autonomic Grid services. The main activities of this 
engine are (1) dynamic reservation and allocation of VRUs, (2) adaptive mapping and 
scheduling of VCUs to VRUs, and VRUs to physical resources, and (3) autonomic 
management, control and adaptation of application execution. 
 

 



V-Grid: Autonomic Application Management
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ADAPTIVE MESH REFINEMENT 
 
 

Dynamically adaptive mesh refinement (AMR) methods for the numerical 
solution to partial differential equations (PDEs) employ locally optimal approximations, 
and can yield highly advantageous ratios for cost/accuracy when compared to methods 
based upon static uniform approximations. These techniques seek to improve the 
accuracy of the solution by dynamically refining the computational grid in regions with 
large local solution error. 

Structured AMR (SAMR) techniques start with a coarse base grid with minimum 
acceptable resolution that covers the entire computational domain. As the solution 
progresses, regions in the domain with large solution error, requiring additional 
resolution, are identified and refined. Refinement proceeds recursively so that the refined 
regions requiring higher resolution are similarly tagged and even finer grids are overlaid 
on these regions. The resulting grid structure is a dynamic adaptive grid hierarchy (such 
as the SAMR formulation by Berger and Oliger, shown in the figure). 

Methods based on SAMR can lead to computationally efficient implementations 
as they require uniform operations on regular arrays and exhibit structured 
communication patterns. Distributed implementations of these methods, however, lead to 
interesting challenges in dynamic resource allocation, data-distribution, load-balancing, 
and runtime management. 
 

Adaptive Mesh Refinement

•Start with a base coarse grid with 
minimum acceptable resolution

• Tag regions in the domain requiring 
additional resolution and overlay finer 
grids on the tagged regions of the 
coarse grid

• Proceed recursively so that regions 
on the finer grid requiring more 
resolution are similarly tagged and 
even finer grids are overlaid on these 
regions

• Resulting grid structure is a dynamic 
adaptive grid hierarchy

Adaptive Mesh-Refinement
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STRUCTURE ADAPTIVE MESH REFINEMENT APPLICATIONS 
 
 

Structured adaptive mesh refinement (SAMR) methods are being effectively used 
for adaptive PDE solutions in many domains, including computational fluid dynamics, 
numerical relativity, astrophysics, and subsurface modeling and oil reservoir simulation. 

The top-left application belongs to the Zeus kernel coupled with GrACE (SAMR 
infrastructure) and Cactus (problem solving environment) packages, and shows a 3-D 
blast wave in the presence of a uniform magnetic field with 3 levels of refinement. Zeus-
MP solves the equations of ideal (non-resistive), non-relativistic, hydrodynamics and 
magnetohydrodynamics, including externally applied gravitational fields and self-gravity. 

The top-right figure is taken from the IPARS oil reservoir simulator and shows 
the multi-block grid structure and oil concentration contours. The MACE (Multi-block 
Adaptive Computational Engine) infrastructure support multi-block grids where multiple 
distributed and adaptive grid blocks with heterogeneous discretization are coupled 
together with lower dimensional mortar grids. 

The CCA (Common Component Architecture) and GrACE application at bottom-
left investigates the direct numerical simulation of flames with detailed chemistry solving 
the Navier-Stokes and species evolution equations without approximations. The figure 
shows this simulation for a mixture of H2 and Air in stoichiometric proportions, with 3 
hot spots at 1000K causing H2-Air mixture to ignite and create many different radicals. 
The scientific problems being studied are the flame stabilization mechanisms of unsteady 
laminar and turbulent flames, with emphasis on the flame structure at the flame base. 

The bottom-right application simulates the dynamic response of materials, with 
the goal to develop a Virtual shock physics Test Facility (VTF) for a wide range of 
compressive, tensional, and shear loadings, including those produced by detonation of 
energetic materials.  GrACE is the computational engine underlying the VTF. The figure 
shows the compressible turbulence simulation solving the Richtmyer-Meshkov instability 
in 3D (RM3D) using adaptive refinements. The Richtmyer-Meshkov instability is a 
fingering instability that occurs at a material interface accelerated by a shock wave.  

 



A Selection of SAMR Application Enabled

Multi-block grid structure and oil concentrations contours 
(IPARS, M. Peszynska, UT Austin)

Blast wave in the presence of a uniform 
magnetic field) – 3 levels of refinement. (Zeus + 

GrACE + Cactus, P. Li,  NCSA, UCSD)

Mixture of H2 and Air in stoichiometric
proportions with a non-uniform temperature field
(GrACE + CCA, Jaideep Ray, SNL, Livermore)

Richtmyer-Meshkov - detonation in a deforming 
tube - 3 levels.  Z=0 plane visualized  on the right 

(VTF + GrACE, R. Samtaney, CIT)
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ARMADA: AUTONOMIC RUNTIME MANAGEMENT OF DYNAMIC 
APPLICATIONS 

 
 

ARMaDA is a framework for the autonomic run-time management and 
optimization for dynamic SAMR applications. Autonomic behavior is achieved by 
adapting SAMR application execution to optimize partitioning, load-balancing, and 
scheduling. Adaptation parameters include the partitioning scheme based on current 
runtime state (GrACE, Vampire, etc.), granularity/patch size affecting load balance and 
overhead, dynamic allocation of processors (from beginning or “on-demand”). Other 
optimizations include hierarchical decomposition using dynamic processor groups, 
communication optimization, latency tolerance, multithreading, etc. 

Autonomic application management involves system-sensitive and application-
sensitive adaptation. System-sensitive application management uses current and predicted 
system state characterization to make application adaptation decisions. For example, the 
information about the current load and available memory may determine the granularity 
of the mapping of the application components to the processing nodes, while the 
availability and “health” of the computing elements on the grid may determine the nature 
(refined grid size, aspect ratios, etc.) of refinements to be allowed. 

Application sensitive adaptations use the current state of the application to drive 
the run-time adaptations. The abstraction and characterization of the application state is 
used to drive the resource allocations, partitioning and mapping of application 
components onto the grid, selection of partitioning and load-balancing algorithms and 
their configurations, communication mechanisms, etc. 
 
 

ARMaDA: Autonomic Run-time Management and 
Optimization for Dynamic (SAMR) Applications

• Partitioning, load-balancing and scheduling of SAMR 
applications.
– Partitioning Scheme

– G-MISP+SP, pBD-ISP, SFC  (Vampire, GrACE, Zoltan, ParMetis, …)

– Granularity

– Number of processors/Load per processor

– 1000+ processor from the beginning or “on-demand”

– Hierarchical decomposition using dynamics processor groups
– Communication optimizations/latency tolerance/multithreading
– Availability, capabilities, and state of system resources

 

• “Best” partitioning based on application/system configuration and current 
application/system state

• patch size, AMR efficiency, comm./comp. ratio, overhead, node-
performance, load-balance, …

• Dynamic allocations/configuration/management

• SNMP, NWS
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ARMADA: AUTONOMIC RUNTIME MANAGEMENT 
 
 

Starting in the upper-left of the figure, the SAMR application is monitored by the 
V-Grid Monitoring Engine to enable the V-Grid Planning and Analysis Engines to 
identify natural regions and characterize application state. Simultaneously, the V-Grid 
Monitoring Engine also monitors and characterizes the system. The synthesized system 
capability combines monitored information with history and predictive models. Both of 
these characterizations flow into the V-Grid Analysis and Execution Engines. The V-Grid 
Analysis Engine deduces objective functions, strategies, and normalized work and 
resource metrics, using policies and constraints to navigate the decision space. The V-
Grid Execution engine uses this information to autonomically partition or repartition the 
application into VCUs that are mapped and scheduled onto VRUs. Global-Grid 
Scheduling (GGS) is first used across VRUs and then Local-Grid Scheduling (LGS) 
within a VRU.  The V-Grid Execution Engine then allocates and configures Grid 
resources and schedules execution of VRUs. This execution is, in turn, is monitored by 
the monitoring engine. This flow of events occurs within a distributed framework. 

A dynamic topology of V-Grid framework agents will locally monitor the 
application and resources.  Changes in the local natural regions will be monitored along 
with changes in the local resource performance.  The V-Grid Analysis Engine may be 
able to make many local decisions, but may also be able to make improved decisions by 
“comparing notes” with neighboring framework agents.  The autonomic partitioning and 
scheduling may move work among agents or may acquire new resources and add new 
agents to the framework. 

 
 

ARMaDA: Autonomic Runtime Management
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ARMADA: APPLICATION-SENSITIVE ADAPTATIONS 
 
 

The ARMaDA framework performs adaptive application-sensitive partitioning 
based on the input parameters and the application’s current runtime state. Partitioning 
behavior is characterized based on the {Partitioner, Application, Computer System} 
(PAC) tuple. Each PAC tuple is evaluated using a 5-component metric that includes load 
imbalance, communication requirement, amount of data migration, partitioning induced 
overhead, and the partitioning time. The PAC relationship is dynamic and the partitioner 
P is a function of the state of the application A and the computer system C at that time. 
The octant approach is used to classify application runtime state with respect to the 
adaptation pattern, computations/communications, and activity dynamics.  

The ARMaDA framework has three components: application state monitoring and 
characterization, partitioner repository and policy engine, and an adaptation component. 
The state characterization component implements mechanisms that abstract the current 
application state in terms of the computation/communication requirements, application 
dynamics, and the nature of the adaptation. The policy engine provides an association for 
mapping octants to partitioners and the partitioning repository includes a selection from 
popular software tools such as GrACE (ISP) and Vampire (pBD-ISP, GMISP+SP). 
Subsequently, the meta-partitioner or adaptation component dynamically selects the 
appropriate partitioner at runtime and configures it with associated parameters such as 
granularity. As shown in the slide, experimental results demonstrate the improvement in 
SAMR application execution using application-sensitive partitioning – 26.19% for 
VectorWave-2D application on 32 processors on Linux Beowulf cluster “Frea” and 
38.28% for RM3D application on 64 processors on IBM SP2 “Blue Horizon”. 

 
 

ARMaDA: Application-sensitive Adaptations

• PAC tuple, 5-component metric
• Octant approach: app. runtime state
• GrACE (ISP), Vampire (pBD-ISP, 

GMISP+SP) partitioners
• ARMaDA framework

– Computation/communication
– Application dynamics
– Nature of adaptation

• RM3D, 64 procs on “Blue Horizon”
– 100 steps, base grid 128*32*32
– 3 levels, RF = 2, regrid 4 steps
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ARMADA: SYSTEM-SENSITIVE ADAPTATIONS 
 
 

The ARMaDA framework reacts to system capabilities and current system state to 
select and tune distribution parameters by dynamically partitioning and load balancing 
the SAMR application grid hierarchy. Current system state is obtained at runtime using 
the Network Weather Service (NWS) resource monitoring tool. NWS measurements 
include CPU availability, end-to-end network bandwidth, free memory, and the amount 
of space unused on a disk. System state information along with system capabilities are 
then used to compute the relative capacity of each computational node as a weighted sum 
of the normalized system metric. The weights are application dependent and reflect its 
computational, memory, and communication requirements. These relative capacities are 
used by the “system-sensitive” partitioner for dynamic distribution and load-balancing. 

The system-sensitive partitioner is evaluated using the RM3D CFD kernel on a 
32-node Linux-based workstation cluster. The kernel used 3 levels of factor 2 space-time 
refinements on a base mesh of size 128*32*32. System-sensitive partitioning reduced 
execution time by about 18% in the case of 32 nodes. The table in the slide illustrates the 
effect of sensing frequency on overall application performance. Dynamic runtime sensing 
improves application performance by as much as 45% compared to sensing only once at 
the beginning of the simulation. In this experimental setup, the best application 
performance was achieved for a sensing frequency of 20 iterations. 
 
 

ARMaDA: System-sensitive Adaptations

• System characteristics using NWS
• RM3D compressible turbulence 

application
– 128x64x64 base (coarse) grid
– 3 levels, factor 2 refinement

• System/Environment
– University of Texas at Austin (32 

nodes), Rutgers (16 nodes)
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ARMADA: PROACTIVE MANAGEMENT 
 
 

The ARMaDA framework uses performance prediction functions to estimate 
execution time and application performance. Performance Functions (PF) describe the 
behavior of a system component, subsystem or compound system in terms of changes in 
one or more of its attributes. The PFs of each resource used by an application can be 
composed to generate an overall end-to-end PF that quantifies application performance. 

Performance functions model the application execution time for SAMR-based 
RM3D and describe overall behavior with respect to the computational load metric on the 
machine of choice (such as IBM SP “Seaborg” and Linux Beowulf “Discover”). The 
evaluation on IBM SP yields 2 PFs for small loads (≤30,000 work units) and large loads 
(>30,000 units) respectively, whereas the Linux Beowulf produces a single PF. The error 
in modeling the execution time is low – 0-8% for IBM SP and 0-6% for Linux Beowulf. 

The PF modeling approach is used by the ARMaDA framework to determine 
when the benefits of dynamic load redistribution exceed the costs of repartitioning and 
data movement (if workload imbalance exceeds a certain threshold). A threshold of 0 
indicates regular periodic load redistribution while a high threshold represents the ability 
of the application hierarchy to tolerate workload imbalance. The RM3D evaluation on 8 
processors on Linux Beowulf cluster analyzes the effect of dynamic load redistribution 
on application recompose time for redistribution thresholds of 0 and 1. The application 
uses 3 refinement levels on a base mesh of size 64*16*16 with regriding every 4 steps. 
Threshold of 1 considers the costs of redistributing load and results in recompose time 
being reduced by half (improvement of almost 100%) as compared to a threshold of 0. 
 
 

ARMaDA: Proactive Management

• Performance Function (PF) – behavior in terms of attribute changes

• “Computational load” metric to model RM3D execution time

• IBM SP “Seaborg” (NERSC)
– PFs – small loads (≤ 30000 units), PFh – large loads (> 30000)
– Error in modeling execution time is low (0 – 8%)

• Linux Beowulf “Discover” (Rutgers)
– Single PF
– Error in modeling execution time is low (0 – 6%)

• Dynamic load redistribution for RM3D & effect on “recompose” time
– 8 processors, base mesh 64*16*16, 3 levels of factor 2 refinements
– Redistribution thresholds of 0 and 1
– Thresh=1 improves recompose time by 100% compared to thresh=0
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AUTONOMIC OIL WELL PLACEMENT 
 
 

The goal of this application is to dynamically optimize the placement and 
configuration of oil wells to maximize revenue. The peer components involved include:  
1. Integrated Parallel Accurate Reservoir Simulator (IPARS) providing sophisticated 

simulation components that encapsulate complex mathematical models of the 
physical interaction in the subsurface, and execute on distributed computing systems 
on the Grid.  

2. IPARS Factory responsible for configuring IPARS simulations, executing them on 
resources on the Grid and managing their execution. 

3. Very Fast Simulated Annealing (VFSA) optimization service based on statistical 
physics and the analogy between the model parameters of an optimization problem 
and particles in an idealized physical system.  

4. Economic Modeling Service that uses IPARS simulation outputs and current market 
parameters (oil prices, costs, etc.) to compute estimated revenues for a particular 
reservoir configuration.   

5. Discover Middleware that integrates Globus  Grid services (GSI, MDS, GRAM, and 
GASS), via the CORBACog, and Discover remote monitoring, interactive steering, 
and collaboration services, and enables resource discovery, resource allocation, job 
scheduling, job interaction and user collaboration on the Grid.  

6. Discover Collaborative Portals providing experts (scientists, engineers) with 
collaborative access to other peer components. Using these portals, experts can 
discover and allocate resources, configure and launch peers, and monitor, interact 
with, and steer peer execution. The portals provide a shared workspace and 
encapsulate collaboration tools such as Chat and Whiteboard. 

(This slide is courtesy M. Peszynska) 
 
 

 



AutonomicAutonomic OilOil Well Placement

• Optimization algorithm: use VFSA (Very Fast Simulated 
Annealing) 
– requires function evaluation only, no gradients

• IPARS delivers 
– fast-forward model (guess->objective function value) 
– post-processing 

• Formulate a parameter space 
– well position and pressure (y,z,P)

• Formulate an objective function: 
– maximize economic value Eval(y,z,P)(T)

• Normalize the objective function NEval(y,z,P) so that:

( ) ( )min max Neval y,z,P Eval y,z,P⇔  
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AUTONOMIC OPTIMIZATION OF OIL RESERVOIR 
 
 

These peer entities involved in the optimization process need to dynamically 
discover and interact with one another as peers to achieve the overall application 
objectives. The experts use the portals to interact with the Discover middleware and the 
Globus Grid services to discover and allocate appropriate resource, and to deploy the 
IPARS Factory, VFSA and Economic model peers ((1)). The IPARS Factory discovers 
and interacts with the VFSA service peer to configure and initialize it ((2)). The expert 
interacts with the IPARS Factory and VFSA to define application configuration 
parameters ((3)). The IPARS Factory then interacts with the Discover middleware to 
discover and allocate resources and to configure and execute IPARS simulations ((4)).  

The IPARS simulation now interacts with the Economic model to determine 
current revenues, and discovers and interacts with the VFSA service when it needs 
optimization ((5)). VFSA provides IPARS Factory with optimized well information ((6)), 
which then launches new IPARS simulations ((7)). Experts at anytime can discover and 
collaboratively monitor and interactively steer IPARS simulations, configure the other 
services and drive the scientific discovery process ((8)). Once the optimal well 
parameters are determined, the IPARS Factory configures and deploys a production 
IPARS run. 
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AUTONOMIC OIL WELL PLACEMENT 
 
 

 The figure below show results from the autonomic oil well placement 
applications. It shows that the process converges to the optimal placement in 20 
iterations.   
(This slide is courtesy M. Peszynska) 
 
 

AutonomicAutonomic OilOil Well Placement

permeability Pressure contours
3 wells, 2D profile

Contours of NEval(y,z,500)(10)

Requires NYxNZ (450)
evaluations. Minimum
appears here.

VFSA solution: “walk”: 
found after 20 (81) evaluations
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CONCLUSION 
 
 

 The computational solutions addressed by the AutoMate project are based on 
fundamental innovations in the development, optimization and deployment of 
component-based Grid applications, thereby allowing the heterogeneity and dynamics of 
the applications to match that of the Grid and fully exploit its potential. These 
innovations will enable scientists to choreograph high performance, integrated end-to-end 
simulations that were never possible or attempted before. The key IT contributions are 
the methodology and associated technologies that enable the development of applications 
that can manage and exploit the dynamism and heterogeneity of the Grid, and that 
address the extremely serious problem of software complexity that is threatening both 
academia and industry. 

We currently have working prototypes of each of the components presented in 
this paper, and are in the process of integrating them to support autonomic structured 
adaptive mesh refinement applications (SAMR) in science and engineering. Further 
information about AutoMate and its components can be obtained from 
http://automate.rutgers.edu. 
 
 

Conclusion

• Autonomic (adaptive, interactive) applications can enable accurate 
solutions of physically realistic models of complex phenomenon. 
– their implementation and management in Grid environments is a 

significant challenge
• AutoMate provides key technologies to enable the development of 

autonomic Grid applications 
– ACCORD: Autonomic application framework
– RUDDER: Decentralized deductive engine 
– SESAME: Dynamic access control engine
– Pawn: P2P messaging substrate
– SQUID: P2P discovery service

• Application scenarios
– V-Grid autonomic runtime management of SAMR applications
– Autonomic optimization of oil reservoirs

• More Information, publications, software
– www.caip.rutgers.edu/TASSL/Projects/AutoMate/
– automate@caip.rutgers.edu / parashar@caip.rutgers.edu
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