Towards Autonomic Computational Science & Engineering
(Autonomic Computing: Application Perspective)

Manish Parashar
The Applied Software Systems Laboratory
ECE/CAIP, Rutgers University
http://www.caip.rutgers.edu/TASSL
Ack: NSF (CAREER, KDI, ITR, NGS), DoE (ASCI-CIT)

http://www.caip.rutgers.edu/TASSL

THE CURRENT TEAM

The AutoMate team is composed of faculty and graduate and undergraduate
students at The Applied Software Systems Laboratory, Department of Electrical and
Computer Engineering and Center of Advanced Information Processing (CAIP), Rutgers,
The State University of New Jersey. The team is organized as the Autonomic Computing
Research Group and the Autonomic Applications Research Group. This research builds
on our collaborations with application scientists, engineers and computer and
computational scientists at California Institute of Technology, University of Texas at
Austin, University of Arizona, Ohio State University, and University of Maryland.

The Current Team

+ TASSL Rutgers University + CS Collaborators

— Autonomic Computing Research ~ HPDC, University of Arizona
Group — Biomedical Informatics, The Ohio
State University

— CS, University of Maryland

» Applications Collaborators
— CSM, University of Texas at Austin

— IG, University of Texas at Austin

. L — ASCI/CACR, Caltech
— Autonomic Applications

Research Group

— CRL, Sandia National Laboratory,
Livermore

Figure 1

OVERVIEW OF THE TALK

This talk motivates and introduces autonomic computational science and
engineering, and presents the AutoMate framework for enabling autonomic applications
on Grid. It describes the AutoMate architecture and briefly presents each of its
components. These include the ACCORD autonomic component framework, the
RUDDER decentralized deductive engine, the SESAME context-sensitive dynamic
access management framework, the Pawn peer-to-peer messaging substrate, and the
SQUID decentralized discovery service. Finally, it describes two applications of
autonomic computing to science and engineering — autonomic runtime management
framework for adaptive applications (V-Grid) and autonomic interactions for oil reservoir
optimization.

Outline

flastet e taiaaty

« Autonomic computational science and engineering

* AutoMate: A framework of enabling autonomic
applications

ACCORD: Autonomic component framework

RUDDER: Decentralized deductive engine

SESAME: Context sensitive dynamics access management

Pawn: Peer-to-Peer messaging infrastructure

SQUID: Decentralized discovery service

* Application Scenarios
— V-Grid autonomic runtime for adaptive applications

* reactive/proactive partitioning, load-balancing, scheduling,
performance management

— Autonomic interactions oil reservoir optimization
¢ Conclusions and current status

—_—
u

..

Figure 2

COMPUTATION MODELING OF PHYSICAL PHENOMENA

Realistic, physically accurate simulations of complex physical phenomena that
symbiotically and opportunistically combine computations, experiments, observations,
and real-time data have the potential for providing dramatic insights into complex
systems such as interacting black holes and neutron stars, formations of galaxies,
subsurface flows in oil reservoirs and aquifers, and dynamic response of materials to
detonations. However, the phenomena being modeled by these applications are inherently
large-scale, dynamic and heterogeneous (in time, space, and state). Furthermore, the
applications are extremely large with unprecedented resource requirements, and are
composed of a large numbers of software components with very dynamic compositions
and interactions between these components.

Computational Modeling of Physical Phenomenon %
.

+ Realistic, physically accurate computational modeling

— Large computation requirements

* e.g. simulation of the core-collapse of supernovae in 3D with reasonable
resolution (500%) would require ~ 10-20 teraflops for 1.5 months (i.e. ~100
Million CPUs!) and about 200 terabytes of storage

* e.g. turbulent flow simulations using active flow control in aerospace and
biomedical engineering requires 5000x1000x500=2.5-109 points and
approximately 107 time steps, i.e. with 1GFlop processors requires a
runtime of ~7-106 CPU hours, or about one month on 10,000 CPUs! (with
perfect speedup). Also with 700B/pt the memory requirement is ~1.75TB
of run time memory and ~800TB of storage.

— Coupled, multiphase, heterogeneous, dynamic

* multi-physics, multi-model, multi-resolution,

— Complex interactions
» application — application, application — resource, application — data,
application — user, ...
— Software/systems engineering/programmability
|H':-—- » volume and complexity of code, community of developers, ...
S Sotruace — scores of models, hundreds of components, millions of lines of code, ...

Figure 3

COMPUTATION MODELING AND THE GRID

The emergence of computational Grids and the potential for seamless
aggregation, integration and interactions has made it possible to conceive the realistic,
scientific and engineering simulations of complex physical phenomena described in the
previous slide. However, the Grid infrastructure is also heterogeneous and dynamic,
globally aggregating large numbers of independent computing and communication
resources, data stores and sensor networks. The combination of the two (large, complex,
heterogeneous and dynamic applications and Grids) results in application development,
configuration and management complexities that break current paradigms based on
passive components and static compositions. Clearly, there is a need for a fundamental
change in how these applications are formulated, composed and managed so that their
heterogeneity and dynamics can match and exploit the heterogeneous and dynamic nature
of the Grid. In fact, we have reached a level of complexity, heterogeneity, and dynamism
for which our programming environments and infrastructure are becoming unmanageable
brittle and insecure. This has led researchers to consider alternative programming
paradigms and management techniques that are based on strategies used by biological
systems to deal with complexity, heterogeneity and uncertainty. The approach is referred
to as autonomic computing. An autonomic computing system is one that has the
capabilities of being self-defining, self-healing, self-configuring, self-optimizing, self-
protecting, context aware, and open.

Computational Modeling and the Grid

* The Computational Grid
— Potential for aggregating resources
* computational requirements
— Potential for seamless interactions
* new applications formulations
» Developing application to utilize and exploit the Grid remains a significant
challenge
— The problem: a level of complexity, heterogeneity, and dynamism for which our
programming environments and infrastructure are becoming unmanageable, brittle and
insecure
« System size, heterogeneity, dynamics, reliability, availability, usability
« Currently typically proof-of-concept demos by “hero programmers”
— Requires fundamental changes in how applications are formulated, composed and
managed
* Breaks current paradigms based on passive components and static compositions

* autonomic components and their dynamic composition, opportunistic interactions, virtual
runtime, ...

— Resonance - heterogeneity and dynamics must match and exploit the heterogeneous
and dynamic nature of the Grid
+ Autonomic, adaptive, interactive simulations and the Grid offer the potential for
such simulations
— Autonomic: context aware, self configuring, self adapting, self optimizing, self healing,...

[E}e- - Adaptive: resolution, algorithms, execution, scheduling, ...

Al nppsiod

|' 88w — [Interactive: peer interactions between computational objects and users, data,
ii"" resources, ...

1

Figure 4

AUTOMATE

The overall objective of the AutoMate project is to investigate key technologies to
enable the development of autonomic Grid applications that are context aware and are
capable of self-configuring, self-composing, self-optimizing and self-adapting.
Specifically, it will investigate the definition of autonomic components, the development
of autonomic applications as dynamic composition of autonomic components, and the
design of key enhancements to existing Grid middleware and runtime services to support
these applications.

Definition of Autonomic Components: The definition of programming abstractions and
supporting infrastructure that will enable the definition of autonomic components. In
addition to the interfaces exported by traditional components, autonomic components
provide enhanced profiles or contracts that encapsulate their functional, operational, and
control aspects. These aspects export information and policies about their behavior,
resource requirements, performance, interactivity and adaptability to system and
application dynamics. Furthermore, they encapsulate sensors, actuators, access policies
and a policy-engine. Together, aspects, policies, and policy engine allow autonomic
components to consistently configure, manage, adapt and optimize their execution.
Dynamic Composition of Autonomic Applications: The development of mechanisms
and supporting infrastructure to enable autonomic applications to be dynamically and
opportunistically composed from autonomic components. The composition will be based
on policies and constraints that are defined, deployed and executed at run time, and will
be aware of available Grid resources (systems, services, storage, data) and components,
and their current states, requirements, and capabilities.

Autonomic Middleware Services: The design, development, and deployment of key
services on top of the Grid middleware infrastructure to support autonomic applications.
One of the key requirements for autonomic behavior and dynamic compositions is the
ability of the components, applications and resources (systems, services, storage, data) to
interact as peers. Furthermore the components should be able to sense their environment.
In this project, we extend the Grid middleware with (1) a peer-to-peer messaging
substrate, (2) context aware services, and (3) peer-to-peer deductive engines for
composition, configuration and management of autonomic applications. An active peer-
to-peer control network will combine sensors, actuators and rules to configure and tune
components and their execution environment at runtime and to satisfy requirements and
performance and quality of service constraints.

AutoMate: Enabling Autonomic Applications

+ Objective:

— Investigate key technologies to enable the development of autonomic Grid applications
that are context aware and are capable of self-configuring, self-composing, self-
optimizing and self-adapting.

* Overview:

— Definition of Autonomic Components:

« definition of programming abstractions and supporting infrastructure that will enable the
definition of autonomic components

« autonomic components provide enhanced profiles or contracts that encapsulate their
functional, operational, and control aspects

— Dynamic Composition of Autonomic Applications:

* mechanisms and supporting infrastructure to enable autonomic applications to be dynamically
and opportunistically composed from autonomic components

« compositions will be based on policies and constraints that are defined, deployed and executed
at run time, and will be aware of available Grid resources (systems, services, storage, data)
and components, and their current states, requirements, and capabilities

— Autonomic Middleware Services:

« design, development, and deployment of key services on top of the Grid middleware
infrastructure to support autonomic applications

* a key requirements for autonomic behavior and dynamic compositions is the ability of the
components, applications and resources (systems, services, storage, data) to interact as peers

Figure 5

AUTOMATE ARCHITECTURE

AutoMate builds on the emerging Grid infrastructure and extends the Open Grid
Service Architecture (OGSA). AutoMate is composed of the following components:
AutoMate System Layer: The AutoMate system layer builds on the Grid middleware
and OGSA and extends core Grid services (security, information and resource
management, data management) to support autonomic behavior. Furthermore, this layer
provides specialized services such as peer-to-peer semantic messaging, events and
notification.

AutoMate Component Layer: The AutoMate component layer addresses the definition,
execution and runtime management of autonomic components. It consists of AutoMate
components that are capable of self configuration, adaptation and optimization, and
supporting services such as discovery, factory, lifecycle, context, etc. (which builds on
core OGSA services).

AutoMate Application Layer: The AutoMate application layer builds on the component
and system layers to support the autonomic composition and dynamic (opportunistic)
interactions between components.

AutoMate Engines: AutoMate engines are decentralized (peer-to-peer) networks of
agents in the system. The context-awareness engine is composed of context agents and
services and provides context information at different levels to trigger autonomic
behaviors. The deductive engine is composed of rule agents which are part of the
applications, components, services and resources, and provides the collective decision
making capability to enable autonomic behavior. Finally, the trust and access control
engine is composed of access control agents and provides dynamic context-aware control
to all interactions in the system.

In addition to these layers, AutoMate portals provide users with secure, pervasive
(and collaborative) access to the different entities. Using these portals users can access
resource, monitor, interact with, and steer components, compose and deploy applications,
configure and deploy rules, etc. AutoMate leverages the experiences and technologies
developed as part of the Discover/DIOS computational collaboratory project
(http://www.discoverportal.org). The different components are described in the following
sections.

AutoMate: Architecture

S[8110{ dIRIA0INY

AutoMate Application Layer
s
’ icati m ’ icati HJ ’ icati m Autonomic Application Composition
Access Rule Agent Context Opportunistic Interactions
[Composition/Context Agents,]
Autonomic Applications|
d o —] —
.E = AutoMate Component Layer
on B0 T
= =
= g = Autonomic Component
L3 .
E E'n % Component Access Control Agent
=
E = = Component Rule/Context Agent
= . 2 . —
o Component g Component = Component 2
Tl Access. | Rule Agent. = Context 2
p=}]
8 9 < g
o = - S
S = =
< 2 @ 7 Z
< a = Discovery, Factory, Lifecycle, Metadata,
~= = s 7 /
g =) Monitoring, Interaction, Context Services
; o Component Services
] D D AutoMate System Layer
Semantic P2P Messaging, Events,
System System System Notification
Access Rule Agent Context System/Context Agents
e Grid Middleware (OGSA)
]
ware
wwenn
mory

Figure 6

AUTOMATE ARCHITECTURE

Key components of AutoMate include:

e ACCORD (Autonomic Components, Compositions and Coordination)
component framework that enables the definition of autonomic
components, their autonomic compositions and opportunistic interactions.

e RUDDER (Rule Definition Deployment and Execution Service)
decentralized deductive engine.

e SESAME (Scalable Environment Sensitive Access Management Engine)
dynamic access control engine.

e Pawn decentralized (P2P) messaging substrate.

e SQUID flexible information discovery service.

These components are introduced in the following slides.

AutoMate: Components

« ACCORD: Autonomic application framework
 RUDDER: Decentralized deductive engine

« SESAME: Dynamic access control engine

+ Pawn: P2P messaging substrate

- SQUID: P2P discovery service

Figure 7

ACCORD: AUTONOMIC COMPONENTS

Autonomic components in AutoMate export information and policies about their
behavior, resource requirements, performance, interactivity, and adaptability to system
and application dynamics. In addition to the functional interfaces exported by traditional
components, AutoMate components provide semantically enhanced profiles or contracts
that encapsulate their functional, operational, and control aspects. A conceptual overview
of an AutoMate component is presented in the figure. The functional aspect specification
abstracts component functionality, such as order of interpolation (linear, quadratic, etc.).
This functional profile is then used by the compositional engine to select appropriate
components based on application requirements. The operational aspect specification
abstracts a component's operational behavior, including computational complexity,
resource requirements, and performance (scalability). This profile is then used by the
configuration and runtime engines to optimize component selection, mapping and
adaptation. Finally, the control aspect describes the adaptability of the component and
defines sensors/actuators and policies for management, interaction and control.

AutoMate components also encapsulate access policies, rules, a rule agent, and an
access agent that allow the components to consistently and securely configure, manage,
adapt and optimize their execution based on rules and access policies. The access agent is
a part of the AutoMate access control engine and the underling dynamic access control
model, and manages access to the component based on its current context and state. The
rule agent is part of RUDDER, the AutoMate deductive engine and manages local rule
definition, evaluation and execution at the component level. Rules can be dynamically
defined (and changed) in terms of the component's interfaces (based on access policies)
and system and environmental parameters. Execution of rules can change the state,
context and behavior of a component, and can generate events to trigger other rule agents.

ACCORD: Autonomic Components

ACCORD

o

Autonomic components export
information and policies about their
behavior, resource requirements,
performance, interactivity and
adaptability to system and
application dynamics

— functional aspects

» abstracts component functionality,
such as order of interpolation (linear,
quadratic, etc.)

» used by the compositional engine to
select appropriate components based
on application requirements

— operational aspects

» abstracts a component's operational
behavior, including computational
complexity, resource requirements,
and performance (scalability)

» used by the configuration and runtime
engines to optimize component
selection, mapping and adaptation

— control aspect

+ describes the adaptability of the
component and defines
sensors/actuators and policies for
management, interaction and control.

Carntnands to
other agents

KRule | Access
‘Agent

Achutors
Sensors

[) Functioral aspect

Environment Agplication CA;:;«‘D];'?:‘L 0} Opertiond aspect
contest contezt p

Control aspect
Compmnent
contezt

Component niles
and constraints

AutoMate components encapsulate
access policies, rules, a rule agent, and
an access agent

— enables components to consistently and
securely configure, manage, adapt and
optimize their execution based on rules
and access policies.

— rules/polices can be dynamically defined
(and changed) in terms of the
component's interfaces (based on
access policies) and system and
environmental parameters

— rule execution may change the state,
context and behavior of a component,
and can generate events to trigger other
rule agents

— rule agent manages rule execution and
resolves rule conflicts

Figure 8

ACCORD: AUTONOMIC COMPOSITIONS

Applications are typically composed with well defined objectives. In case of
autonomic applications, however, these objectives can dynamically change based on the
state of the application and/or the system. As a result, we need to dynamically select
components and compose them at runtime based on current objectives. Together, the
profiles, policies, and rules allow autonomous components to consistently and securely
manage and optimize their executions. Furthermore, they enable applications to be
dynamically composed, configured and adapted. Dynamic application work-flows can be
defined to select the most appropriate components based on user/application constraints
(highest-performance, lowest cost, reservation, execution time upper bound, best
accuracy), on the current applications requirements, to dynamically configure the
component's algorithms and behavior based on available resources or system and/or
applications state, and to adapt this behavior if necessary.

The AutoMate dynamic composition model may be viewed as transforming a
given composition or workflow into a new one by adding or modifying interactions and
participating entities. Its primary goal is to enable dynamic (and opportunistic)
choreography and interactions of components and services to react to the heterogeneity
and dynamics of the application and underlying execution environment to produce the
desired user objectives.

ACCORD: Autonomic Compositions 0. %

Figure 9

ACCORD: OPPORTUNISTIC INTERACTIONS

Opportunistic interactions are decentralized and based on the satisfaction of
locally defined goals and constraints. These interactions are inherently dynamic and ad-
hoc and use semantic publisher/subscriber messaging based on proximity, privileges,
capabilities, context, interests, and offerings. The goals/constraints are typically long-
term and may or may not be satisfied. The interactions do not involve explicit
synchronization — the semantics are achieved through feedback and consensus building

mechanisms.

(ACCORD

ACCORD: Opportunistic Interactions

Interactions based on local goals and objectives
— local goals and objectives are defined as constraints that to be satisfied
— constraints can updated and new constraints can defined at any time
* Dynamic and ad-hoc
— Interactions use “semantic messaging” based on proximity, privileges,
capabilities, context, interests, offerings, etc.
* Opportunistic
— constraints are long-term and satisfied opportunistically (may not be satisfied)
» Probabilistic guarantees and soft state
— no explicit synchronization
— Interaction semantics are achieved using feedback and consensus building

Figure 10

RUDDER: DEDUCTIVE ENGINE

RUDDER provides the core capabilities for supporting autonomic compositions,
adaptations, and optimizations. It is a decentralized deductive engine composed of
distributed specialized agents (component rule agents, composition agents, context agents
and system agents) that exist at different levels of the system, and represents their
collective behavior. It provides mechanisms for dynamically defining, configuring,
modifying and deleting rules. Furthermore it defines an XML schema for composing
rules and provides mechanisms for deploying and routing rules, decomposing and
distributing them to relevant agents, and for coordinating the execution of rules. It also
manages conflict resolutions within a single entity and across entities.

The figure presents a schematic overview of RUDDER. It builds on AutoMate
and Grid services and the underlying semantic messaging infrastructure. Rules can be
dynamically injected into the system and are routed by the messaging substrate to the
appropriate agents. Furthermore, the agents may hierarchically decompose a rule and
distribute it to peer agents. For example, an application level rule may be decomposed
into sub-rules that are assigned to its components. The components rules may be further
decomposed into rules for the underlying systems entities.

RUDDER: The AutoMate Deductive Engine

Riged L Rage | RULE GrACE_Switch, Partitioner
t b | ppliction | ON EVENT (Request_Switch_Partitioner)
P TN em ey L USE Context_Service — Define_System_State
e S I | ﬁ Component_Aspects —Define_Application State
RAgeni > Leaning, i ratio > THEN
| compona 5 Réged | | Comeooet % | mmmmmrw;ﬁ
T B | compom B 7 - ELSE
TN Coep. Iper Role Exeosion Favironment ACTION (PostEvent “PartitionerType=G-MISP+5P™)
i e
[| e

- RUDDER is a decentralized deductive engine composed of distributed
specialized agents (component rule agents, composition agents, context
agents and system agents) that exist at different levels of the system, and
represents their collective behavior.

— provides mechanisms for dynamically defining, configuring, modifying and deleting
rules/polices/constraints

— defines an XML schema for composing rules and provides mechanisms for
deploying and routing rules, decomposing and distributing them to relevant agents,
and for coordinating the execution of rules

— manages conflict resolution within a single entity and across entities

— provides the core capabilities for supporting autonomic compositions, adaptations,

iw and optimizations
|

Figure 11

SESAME: CONTEXT SENSITIVE ACCESS MANAGEMENT

A key requirement of autonomic applications is the support for dynamic, seamless
and secure interactions between the participating entities, i.e. components, services,
application, data, instruments, resources and users. Ensuring interaction security requires
a fine grained access control mechanism. Furthermore, in the highly dynamic and
heterogeneous Grid environment, the access rights of an entity depend on the entity's
privileges, capabilities, context and state. For example, the ability of a user to access a
resource or steer a component depends on users' privileges (e.g. owner), current
capabilities (e.g. resources available), current context (e.g. secure connection) and the
state of the resource or component. The AutoMate Access Control Engine addresses
these issues and provides dynamic access control to users, applications, services,
components and resources. The engine is composed of access control agents associated
with various entities in the system. The underlying dynamic role based access control
mechanism extends the RBAC (Role Based Access Control) model to make access
control decision based on dynamic context information. The access control engine
dynamically adjusts Role Assignments and Permission Assignments.

SESAME: Context Sensitive Access Management

» Objective:

— support dynamic, seamless and secure interactions between the
participating entities (i.e. components, services, application, data,
instruments, resources and users)

* Issues:

— access rights in highly dynamic and heterogeneous Grid environments

depends on the entity's privileges, capabilities, context and state

* e.g. the ability of a user to access a resource or steer a component depends on
users' privileges (e.g. owner), current capabilities (e.g. resources available),
current context (e.g. secure connection) and the state of the resource or

component
Role . Perr_nission
. Approach @ Fesignmert RD;ES Fesignmert @

— extend Role Based Access Control (RBAS) to S

make access control decision based on :

dynamic context information
— dynamically adjust Role Assignments and Contn ot

Permission Assignments based on context Pgent Agert

[i
|‘.'§f e Subject] component
i
|
I

Figure 12

PAWN: P2P MESSAGING

Pawn is a peer-to-peer messaging substrate that builds on project JXTA to support
peer-to-peer interactions on the Grid. Pawn provides a stateful and guaranteed messaging
to enable key application-level interactions such as synchronous/asynchronous
communication, dynamic data injection, and remote procedure calls. It exports these
interaction modalities through services at every step of the scientific investigation
process, from application deployment, to interactive monitoring and steering, and group
collaboration.

A conceptual overview of the Pawn P2P substrate is presented in the figure. Pawn
is composed of peers (computing, storage, or user peers), network and interaction
services, and mechanisms. These components are layered to represent the requirements
stack enabling interactions in a Grid environment. The figure can be read from bottom to
top as: “Peers compose messages handled by services through specific interaction
modalities”.

Pawn: A P2P Messaging Substrate

+ Objective
— Engineer a peer-to-peer messaging
Substrate that extends existing solutions to

enable high-level interactions for scientific s Interactions -\‘,
applications. Synchronous/Asynchronous; Dynamic Data
- Architecture Injection; Remats Frocedure Calls
— Peers, Messages, Services, Interactions Services
* Key Features Application Execution; Application Runtimes
— Stateful messages Contrad; Application Maonltaring and
. . Slﬁerlng, Collaboaration
— Guaranteed messaging semantics
— Publish/subscribe mechanisms across Messages
peer-to-peer domains Platform-indepandant; Soordination;
— High-level messaging semantics Guarantees
* Sync/Async Messaging
« PUSH (dynamic injection) Peers
« PawnRPC ._ Client; Rendazvous, Application _/}
* Built on Project JXTA
— Pipes
Wy — Resolver
..

Figure 13

SQUID: DECENTRALIZED Discover

A fundamental problem in large, decentralized, distributed resource sharing
environments such as the Grid is the efficient discovery of information, in the absence of
global knowledge of naming conventions. For example a document is better described by
keywords than by its filename, a computer by a set of attributes such as CPU type,
memory, operating system type than by its host name, and a component by its aspects
than by its instance name. The heterogeneous nature and large volume of data and
resources, their dynamism (e.g. CPU load) and the dynamism of the Grid make the
information discovery a challenging problem. An ideal information discovery system has
to be efficient, fault-tolerant, self-organizing, has to offer guarantees and support flexible
searches (using keywords, wildcards, range queries). Decentralized peer-to-peer (P2P)
systems, by their inherent properties (self-organization, fault-tolerance, scalability),
provide an attractive solution.

SQUID supports decentralized information discovery in AutoMate. It is a P2P
system that supports complex queries containing partial keywords, wildcards, and range
queries, and guarantees that all existing data elements that match a query will be found
with bounded costs in terms of number of messages and number of nodes involved. The
key innovation is a dimension reducing indexing scheme that effectively maps the
multidimensional information space to physical peers.

SQUID: A Decentralized Discovery Service

» Overview/Motivation:

— Efficient information discovery in the absence of global knowledge of naming
conventions is a fundamental problem in large, decentralized, distributed
resource sharing environments such as the Grid

» adocument is better described by keywords than by its filename, a computer by a
set of attributes such as CPU type, memory, operating system type than by its host
name, and a component by its aspects than by its instance name.

— Heterogeneous nature and large volume of data and resources, their
dynamism (e.g. CPU load) and the dynamism of the Grid make the
information discovery a challenging problem.

+ Key features

— P2P system that supports complex queries containing partial keywords,
wildcards, and range queries

— Guarantees that all existing data elements that match a query will be found
with bounded costs in terms of number of messages and number of nodes
involved.

— The system can be used as a complement for current resource discovery

— mechanisms in Computational Grids (to enhance them with range queries)

Figure 14

SQUID OPERATION

The overall architecture of SQUID is a distributed hash table (DHT), similar to
typical data lookup systems. The key difference is in the way we map data elements to
the index space. In existing systems, this is done using consistent hashing to uniformly
map data element identifiers to indices. As a result, data elements are randomly
distributed across peers without any notion of locality. Our approach attempts to preserve
locality while mapping the data elements to the index space. In our system, all data
elements are described using a sequence of keywords (common words in the case of P2P
storage systems, or values of globally defined attributes - such as memory and CPU
frequency - for resource discovery in computational grids). These keywords form a
multidimensional keyword space where the keywords are the coordinates and the data
elements are points in the space. Two data elements are “local” if their keywords are
lexicographically close or they have common keywords. Thus, we map documents that
are local in this multi-dimensional index space to indices that are local in the 1-
dimensional index space, which are then mapped to the same node or to nodes that are
close together in the overlay network. This mapping is derived from a locality-preserving
mapping called Space Filling Curves (SFC).

In the current implementation, we use the Hilbert SFC for the mapping, and
Chord for the overlay network topology. The overall operation of SQUID is presented in
the figure. (a) shows a 2-dimensional keyword space. The data element “Document” is
described by keywords “Computer” and “Network”. (b) shows the mapping of the 2-
dimensional space to a curve. The query (011, *) defines clusters on the curve
(segments). (c) shows the recursive refinement of query (011, *) viewed as a tree. Each
node is a cluster, and the bold characters are the cluster's prefixes. (d) illustrates the query
resolution process by embedding the leftmost tree path (solid arrows) and the rightmost
path (dashed arrows) onto the overlay network topology.

SQUID: Operation

g R el s TS =
H no[TSI TEP]
E wi [T te T | o1,
100 Ir_I L J LT__-
o1 1 [-]
Network __.‘/ I P = ot
u)
m il
?;; = | —
Computer keyword 000 001 010011 10D 100 110 111 lgmnll
(@) (b)

Van

[l
i1 \‘
. 011010, 011111
g x 01011,
011100

Figure 15

V-GRID AUTONOMIC APPLICATION MANAGEMENT

Truly realistic scientific and engineering simulations require enormous amounts
of resources that can surpass even the aggregated capacity of the Grid. The V-Grid
(virtual Grid) infrastructure is an application of autonomic computing to science and
engineering that is based on the concept of virtualizing grid resources and application
execution (analogous to virtual memory). The V-Grid autonomic runtime management
framework allows the implementation of a simulation to be driven by the requirements of
the science being modeled rather than the size and configuration of the machine that it
will be run on.

The autonomic behavior in the V-Grid has three primary aspects: (1) V-Grid
Monitoring, (2) V-Grid Deduction, and (3) V-Grid Execution.

The V-Grid monitoring engine is a decentralized entity composed of context
agents that provides application and system context awareness. Application monitoring
uses sensors exported by the autonomic components and services and provides
information about the current state, dynamics and requirements of components and the
application. System/resource monitoring builds on context information provided by
OGSA and existing Grid middleware (e.g. NWS, Globus, Autopilot) and extends their
capabilities to support dynamic monitoring requirements and information aggregation.

The V-Grid deduction engine uses application/components specifications, context
and predicted behavior to deduce objective functions and execution and management
strategies. This includes identifying and characterizing natural regions, defining Virtual
Computational Units or VCUs that reflect the current state of the application, mapping
them onto Virtual Resource Units or VRUs based on their specifications, and outlining
scheduling policies and constraints. This mapping of VCUs onto VRUs exploits the
spatial, temporal and functional heterogeneity of the application to reduce couplings and
maximize performance.

The V-Grid execution engine implements polices and strategies defined by the
deduction engine using OGSA and autonomic Grid services. The main activities of this
engine are (1) dynamic reservation and allocation of VRUs, (2) adaptive mapping and
scheduling of VCUs to VRUs, and VRUs to physical resources, and (3) autonomic
management, control and adaptation of application execution.

V-Grid: Autonomic Application Management

irtual
Resource

~WAN

Capability
j z
3
|

o irtual
Resource
Unit

Virtual

Resource ---Institutional

---Divisional/
Departmental

-..Computing

|

Virtual Grid Resource
Autonomic Runtime Manager (ARM)

VCU: Virtual Ci

NR: Application Natural Regions

Loop for each level of Grid/Application hierarchy

Self-learning

V-Grid Monitoring

(Self-observation, Context-awareness)
System states (CPU, Memory,
Bandwidth, Availability etc.)
Application states
(Computation/Communication!
Ratio, Nature of Applications,
Application Dynamics)

V-Grid Deduction

(Self-adaptation, Self-optimization, Self-

healing)

Identify and characterize natural
regions

Define objective functions and
management strategy

Define VCUs

V-Grid Execution
Partition, Map and Tune

Uit Application Domain Hierarchy

atory

Figure 16

ADAPTIVE MESH REFINEMENT

Dynamically adaptive mesh refinement (AMR) methods for the numerical
solution to partial differential equations (PDEs) employ locally optimal approximations,
and can yield highly advantageous ratios for cost/accuracy when compared to methods
based upon static uniform approximations. These techniques seek to improve the
accuracy of the solution by dynamically refining the computational grid in regions with
large local solution error.

Structured AMR (SAMR) techniques start with a coarse base grid with minimum
acceptable resolution that covers the entire computational domain. As the solution
progresses, regions in the domain with large solution error, requiring additional
resolution, are identified and refined. Refinement proceeds recursively so that the refined
regions requiring higher resolution are similarly tagged and even finer grids are overlaid
on these regions. The resulting grid structure is a dynamic adaptive grid hierarchy (such
as the SAMR formulation by Berger and Oliger, shown in the figure).

Methods based on SAMR can lead to computationally efficient implementations
as they require uniform operations on regular arrays and exhibit structured
communication patterns. Distributed implementations of these methods, however, lead to
interesting challenges in dynamic resource allocation, data-distribution, load-balancing,
and runtime management.

Adaptive Mesh-Refinement

Adaptive Mesh Refinement

Start with a base coarse grid with
minimum acceptable resolution

* Tag regions in the domain requiring
additional resolution and overlay finer
grids on the tagged regions of the
coarse grid

* Proceed recursively so that regions
on the finer grid requiring more
resolution are similarly tagged and
even finer grids are overlaid on these
regions

* Resulting grid structure is a dynamic
adaptive grid hierarchy

Figure 17

STRUCTURE ADAPTIVE MESH REFINEMENT APPLICATIONS

Structured adaptive mesh refinement (SAMR) methods are being effectively used
for adaptive PDE solutions in many domains, including computational fluid dynamics,
numerical relativity, astrophysics, and subsurface modeling and oil reservoir simulation.

The top-left application belongs to the Zeus kernel coupled with GrACE (SAMR
infrastructure) and Cactus (problem solving environment) packages, and shows a 3-D
blast wave in the presence of a uniform magnetic field with 3 levels of refinement. Zeus-
MP solves the equations of ideal (non-resistive), non-relativistic, hydrodynamics and
magnetohydrodynamics, including externally applied gravitational fields and self-gravity.

The top-right figure is taken from the IPARS oil reservoir simulator and shows
the multi-block grid structure and oil concentration contours. The MACE (Multi-block
Adaptive Computational Engine) infrastructure support multi-block grids where multiple
distributed and adaptive grid blocks with heterogeneous discretization are coupled
together with lower dimensional mortar grids.

The CCA (Common Component Architecture) and GrACE application at bottom-
left investigates the direct numerical simulation of flames with detailed chemistry solving
the Navier-Stokes and species evolution equations without approximations. The figure
shows this simulation for a mixture of H, and Air in stoichiometric proportions, with 3
hot spots at 1000K causing H,-Air mixture to ignite and create many different radicals.
The scientific problems being studied are the flame stabilization mechanisms of unsteady
laminar and turbulent flames, with emphasis on the flame structure at the flame base.

The bottom-right application simulates the dynamic response of materials, with
the goal to develop a Virtual shock physics Test Facility (VTF) for a wide range of
compressive, tensional, and shear loadings, including those produced by detonation of
energetic materials. GrACE is the computational engine underlying the VTF. The figure
shows the compressible turbulence simulation solving the Richtmyer-Meshkov instability
in 3D (RM3D) using adaptive refinements. The Richtmyer-Meshkov instability is a
fingering instability that occurs at a material interface accelerated by a shock wave.

A Selection of SAMR Application Enabled

Multi-block grid structure and oil concentrations contours

Blast wave in the presence of a uniform -
L IPARS, M. Peszynska, UT Austin)

magnetic field) — 3 levels of refinement. (Zeus +
GrACE + Cactus, P. Li, NCSA, UCSD) A

Fempatas (%)

o H

B

B —— Mixture of H2 and Air in stoichiometric Richtmyer-Meshkov - detonation in a deforming

|‘AI '::..,. proportions with a non-uniform temperature field tube - 3 levels. Z=0 plane visualized on the right
i (GrACE + CCA, Jaideep Ray, SNL, Livermore) (VTF + GrACE, R. Samtaney, CIT)
atory

Figure 18

ARMADA: AUTONOMIC RUNTIME MANAGEMENT OF DYNAMIC
APPLICATIONS

ARMaDA is a framework for the autonomic run-time management and
optimization for dynamic SAMR applications. Autonomic behavior is achieved by
adapting SAMR application execution to optimize partitioning, load-balancing, and
scheduling. Adaptation parameters include the partitioning scheme based on current
runtime state (GrACE, Vampire, etc.), granularity/patch size affecting load balance and
overhead, dynamic allocation of processors (from beginning or “on-demand”). Other
optimizations include hierarchical decomposition using dynamic processor groups,
communication optimization, latency tolerance, multithreading, etc.

Autonomic application management involves system-sensitive and application-
sensitive adaptation. System-sensitive application management uses current and predicted
system state characterization to make application adaptation decisions. For example, the
information about the current load and available memory may determine the granularity
of the mapping of the application components to the processing nodes, while the
availability and “health” of the computing elements on the grid may determine the nature
(refined grid size, aspect ratios, etc.) of refinements to be allowed.

Application sensitive adaptations use the current state of the application to drive
the run-time adaptations. The abstraction and characterization of the application state is
used to drive the resource allocations, partitioning and mapping of application
components onto the grid, selection of partitioning and load-balancing algorithms and
their configurations, communication mechanisms, etc.

ARMaDA: Autonomic Run-time Management and
Optimization for Dynamic (SAMR) Applications

« Partitioning, load-balancing and scheduling of SAMR
applications.

— Partitioning Scheme
» “Best” partitioning based on application/system configuration and current
application/system state
— G-MISP+SP, pBD-ISP, SFC (Vampire, GrACE, Zoltan, ParMetis, ...)
Granularity

» patch size, AMR efficiency, comm./comp. ratio, overhead, node-
performance, load-balance, ...

Number of processors/Load per processor

» Dynamic allocations/configuration/management
— 1000+ processor from the beginning or “on-demand”

Hierarchical decomposition using dynamics processor groups
Communication optimizations/latency tolerance/multithreading
— Auvailability, capabilities, and state of system resources

« SNMP, NWS

Figure 19

ARMADA: AUTONOMIC RUNTIME MANAGEMENT

Starting in the upper-left of the figure, the SAMR application is monitored by the
V-Grid Monitoring Engine to enable the V-Grid Planning and Analysis Engines to
identify natural regions and characterize application state. Simultaneously, the V-Grid
Monitoring Engine also monitors and characterizes the system. The synthesized system
capability combines monitored information with history and predictive models. Both of
these characterizations flow into the V-Grid Analysis and Execution Engines. The V-Grid
Analysis Engine deduces objective functions, strategies, and normalized work and
resource metrics, using policies and constraints to navigate the decision space. The V-
Grid Execution engine uses this information to autonomically partition or repartition the
application into VCUs that are mapped and scheduled onto VRUs. Global-Grid
Scheduling (GGS) is first used across VRUs and then Local-Grid Scheduling (LGS)
within a VRU. The V-Grid Execution Engine then allocates and configures Grid
resources and schedules execution of VRUs. This execution is, in turn, is monitored by
the monitoring engine. This flow of events occurs within a distributed framework.

A dynamic topology of V-Grid framework agents will locally monitor the
application and resources. Changes in the local natural regions will be monitored along
with changes in the local resource performance. The V-Grid Analysis Engine may be
able to make many local decisions, but may also be able to make improved decisions by
“comparing notes” with neighboring framework agents. The autonomic partitioning and
scheduling may move work among agents or may acquire new resources and add new
agents to the framework.

ARMaDA: Autonomic Runtime Management

Self-:
Observation: Auamamn
b DverheadS

Application & Analysis;

i ! Machamsm
Dynamics] Dala Adaptive
i Mlgratlun Paritioning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Dynamlc Driver Appllcatlon

! Communication

i Nature of
1 Adaptation
:

i |Application State Characterization|

Decision
Memury Space AannnEc;w
Flequlremem
Granulafity
Load

\Current Application State

777777777777777777

Application

Monitoring
Service

§ Monitoring & !

| Objective Normalized Work Metric
! i | Prescriptions I
iContext-Aware! s an e By s D::';?::" - Function |Normalized :
Services | Natural Reglon Characterization o Synthesizer Resource Metric
: L _CPU : : 1 NRM NWM
Memory i | Current System State =
Bandwidth | capahility T CAiAlE
Availability | e e " S Partitioning
Actess Policy] :Se -Optn_mzatlon Partition/Compose
1 1& Execution Repartition/Recompose
W B Sysiemsoe | | G
: Virtual Grid =
; RIpTesizer] 1 Autonomic V|rtual_
; i Bintioe Computation
..; N linit
1 Resource History Module|
! Performance Autonomic Scheduling
Prediction v Mapping z d
i__ Module : Distribution | GlobarGrid Local Gria
|1 Heterogeneous, Dynamic I | e e o s o
| H H i 23 VGTS: Virtual Grid Time Schedulir
| Computational Environment Execution U unit | VGSS: Virual Grid Space Scheduing
htnw

Figure 20

ARMADA: APPLICATION-SENSITIVE ADAPTATIONS

The ARMaDA framework performs adaptive application-sensitive partitioning
based on the input parameters and the application’s current runtime state. Partitioning
behavior is characterized based on the {Partitioner, Application, Computer System}
(PAC) tuple. Each PAC tuple is evaluated using a 5-component metric that includes load
imbalance, communication requirement, amount of data migration, partitioning induced
overhead, and the partitioning time. The PAC relationship is dynamic and the partitioner
P is a function of the state of the application A and the computer system C at that time.
The octant approach is used to classify application runtime state with respect to the
adaptation pattern, computations/communications, and activity dynamics.

The ARMaDA framework has three components: application state monitoring and
characterization, partitioner repository and policy engine, and an adaptation component.
The state characterization component implements mechanisms that abstract the current
application state in terms of the computation/communication requirements, application
dynamics, and the nature of the adaptation. The policy engine provides an association for
mapping octants to partitioners and the partitioning repository includes a selection from
popular software tools such as GrACE (ISP) and Vampire (pBD-ISP, GMISP+SP).
Subsequently, the meta-partitioner or adaptation component dynamically selects the
appropriate partitioner at runtime and configures it with associated parameters such as
granularity. As shown in the slide, experimental results demonstrate the improvement in
SAMR application execution using application-sensitive partitioning — 26.19% for
VectorWave-2D application on 32 processors on Linux Beowulf cluster “Frea” and
38.28% for RM3D application on 64 processors on IBM SP2 “Blue Horizon”.

ARMaDA: Application-sensitive Adaptations

+ PAC tuple, 5-component metric P= f(A, C‘)ﬁ.——'""'-n,
» Octant approach: app. runtime state Dynamic £AC ’ rpte e
* GrACE (ISP), Vampire (pBD-ISP, ety

GMISP+SP) partitioners i

* ARMaDA framework SR oy
— Computation/communication [T
— Application dynamics st computer sysem
— Nature of adaptation c

+ RM3D, 64 procs on “Blue Horizon”
— 100 steps, base grid 128*32*32 el .- -

— 3levels, RF = 2, regrid 4 steps RUED application on 64 processors on "Blue Harizen"

126°32°32 base grid size, 3 levels, 100 iteratians)

ARMaDA evaluation for VectorWave-2D applica-

tion on 32 processors on “Frea” g %
g

506551

401691

NI

e

SFC or ISP PED-ISF ARMaDAWIth SFC start

Partitioner Execution time (sec) f’
STC 637478 .
G-MISPISP 611,749 £ 1o
pBD-ISP 592.05
ARMaDA with SFC start 470,531

Partifonies

Figure 21

ARMADA: SYSTEM-SENSITIVE ADAPTATIONS

The ARMaDA framework reacts to system capabilities and current system state to
select and tune distribution parameters by dynamically partitioning and load balancing
the SAMR application grid hierarchy. Current system state is obtained at runtime using
the Network Weather Service (NWS) resource monitoring tool. NWS measurements
include CPU availability, end-to-end network bandwidth, free memory, and the amount
of space unused on a disk. System state information along with system capabilities are
then used to compute the relative capacity of each computational node as a weighted sum
of the normalized system metric. The weights are application dependent and reflect its
computational, memory, and communication requirements. These relative capacities are
used by the “system-sensitive” partitioner for dynamic distribution and load-balancing.

The system-sensitive partitioner is evaluated using the RM3D CFD kernel on a
32-node Linux-based workstation cluster. The kernel used 3 levels of factor 2 space-time
refinements on a base mesh of size 128*32*32. System-sensitive partitioning reduced
execution time by about 18% in the case of 32 nodes. The table in the slide illustrates the
effect of sensing frequency on overall application performance. Dynamic runtime sensing
improves application performance by as much as 45% compared to sensing only once at
the beginning of the simulation. In this experimental setup, the best application
performance was achieved for a sensing frequency of 20 iterations.

ARMaDA: System-sensitive Adaptations

Partitions

+ System characteristics using NWS appiications
* RM3D compressible turbulence
application
— 128x64x64 base (coarse) grid
— 3 levels, factor 2 refinement
» System/Environment
— University of Texas at Austin (32 Ck = Wch + Wka + Wka
nodes), Rutgers (16 nodes)

Weights
Bandwidth

900
800
Dynamic Static 700
Procs | Sensing (s) | Sensing (s) | execution 300
2 4237 805.5 | "metes) 4o et
4 292 450 fgg B System-Sensitive
0
6 272 424 4 8 16 32
A= | s 225 430 procencors

Figure 22

ARMADA: PROACTIVE MANAGEMENT

The ARMaDA framework uses performance prediction functions to estimate
execution time and application performance. Performance Functions (PF) describe the
behavior of a system component, subsystem or compound system in terms of changes in
one or more of its attributes. The PFs of each resource used by an application can be
composed to generate an overall end-to-end PF that quantifies application performance.

Performance functions model the application execution time for SAMR-based
RM3D and describe overall behavior with respect to the computational load metric on the
machine of choice (such as IBM SP “Seaborg” and Linux Beowulf “Discover”). The
evaluation on IBM SP yields 2 PFs for small loads (<30,000 work units) and large loads
(>30,000 units) respectively, whereas the Linux Beowulf produces a single PF. The error
in modeling the execution time is low — 0-8% for IBM SP and 0-6% for Linux Beowulf.

The PF modeling approach is used by the ARMaDA framework to determine
when the benefits of dynamic load redistribution exceed the costs of repartitioning and
data movement (if workload imbalance exceeds a certain threshold). A threshold of 0
indicates regular periodic load redistribution while a high threshold represents the ability
of the application hierarchy to tolerate workload imbalance. The RM3D evaluation on 8
processors on Linux Beowulf cluster analyzes the effect of dynamic load redistribution
on application recompose time for redistribution thresholds of 0 and 1. The application
uses 3 refinement levels on a base mesh of size 64*16*16 with regriding every 4 steps.
Threshold of 1 considers the costs of redistributing load and results in recompose time
being reduced by half (improvement of almost 100%) as compared to a threshold of 0.

ARMaDA: Proactive Management

* Performance Function (PF) — behavior in terms of attribute changes

* “Computational load” metric to model RM3D execution time

IBM SP “Seaborg” (NERSC)
— PF,—small loads (< 30000 units), PF, — large loads (> 30000)
— Error in modeling execution time is low (0 — 8%)

* Linux Beowulf “Discover” (Rutgers) 10 .
— Single PF PF=>) b«
=0

— Error in modeling execution time is low (0 — 6%)

» Dynamic load redistribution for RM3D & effect on “recompose” time
— 8 processors, base mesh 64*16*16, 3 levels of factor 2 refinements
— Redistribution thresholds of 0 and 1
— Thresh=1 improves recompose time by 100% compared to thresh=0

Figure 23

AUTONOMIC OIL WELL PLACEMENT

The goal of this application is to dynamically optimize the placement and
configuration of oil wells to maximize revenue. The peer components involved include:

1. Integrated Parallel Accurate Reservoir Simulator (IPARS) providing sophisticated

simulation components that encapsulate complex mathematical models of the
physical interaction in the subsurface, and execute on distributed computing systems
on the Grid.

2. IPARS Factory responsible for configuring IPARS simulations, executing them on

resources on the Grid and managing their execution.

3. Very Fast Simulated Annealing (VFSA) optimization service based on statistical

physics and the analogy between the model parameters of an optimization problem
and particles in an idealized physical system.
4. Economic Modeling Service that uses IPARS simulation outputs and current market

parameters (oil prices, costs, etc.) to compute estimated revenues for a particular

reservoir configuration.

5. Discover Middleware that integrates Globus Grid services (GSI, MDS, GRAM, and

GASS), via the CORBACog, and Discover remote monitoring, interactive steering,
and collaboration services, and enables resource discovery, resource allocation, job
scheduling, job interaction and user collaboration on the Grid.
6. Discover Collaborative Portals providing experts (scientists, engineers) with
collaborative access to other peer components. Using these portals, experts can

discover and allocate resources, configure and launch peers, and monitor, interact

with, and steer peer execution. The portals provide a shared workspace and
encapsulate collaboration tools such as Chat and Whiteboard.
(This slide is courtesy M. Peszynska)

Autonomic Oil Well Placement

* Optimization algorithm: use VFSA (Very Fast Simulated
Annealing)
— requires function evaluation only, no gradients
* |IPARS delivers
— fast-forward model (quess->objective function value)
— post-processing
* Formulate a parameter space
— well position and pressure (y,z,P)
» Formulate an objective function:
— maximize economic value Eval(y,z,P)(T)
* Normalize the objective function NEval(y,z,P) so that:

min Neval(y,z,P) <> max Eval(y,z,P)
o

ratory

Figure 24

AUTONOMIC OPTIMIZATION OF OIL RESERVOIR

These peer entities involved in the optimization process need to dynamically
discover and interact with one another as peers to achieve the overall application
objectives. The experts use the portals to interact with the Discover middleware and the
Globus Grid services to discover and allocate appropriate resource, and to deploy the
IPARS Factory, VFSA and Economic model peers ((1)). The IPARS Factory discovers
and interacts with the VFSA service peer to configure and initialize it ((2)). The expert
interacts with the IPARS Factory and VFSA to define application configuration
parameters ((3)). The IPARS Factory then interacts with the Discover middleware to
discover and allocate resources and to configure and execute IPARS simulations ((4)).

The IPARS simulation now interacts with the Economic model to determine
current revenues, and discovers and interacts with the VFSA service when it needs
optimization ((5)). VFSA provides IPARS Factory with optimized well information ((6)),
which then launches new IPARS simulations ((7)). Experts at anytime can discover and
collaboratively monitor and interactively steer IPARS simulations, configure the other
services and drive the scientific discovery process ((8)). Once the optimal well
parameters are determined, the IPARS Factory configures and deploys a production
IPARS run.

IPARS connects to VFSA
Optimization Services and

presents revenue

Scientists/Engineers
collaboratively
interact with IPARS

*019 Q18]S JojIRW
‘0ou1d 10 JuOIINY)

IPARS Factory
discovers and
initializes VFSA
Optimization Service

One optimal well
placement is
determined, [IPARS

Factory launches
IPARS run

IPARS Factory gets initial
guess from VFSA
Optimization Service
launches IPARS instance
on resource of choice

VFSA Optimization
Service generates

new well placement =t

Client configures and
launches IPARS Factory
and VFSA Optimization
Service(s) on resource
of choice

Autonomic Oil Reservoir Optimization on the Grid

Figure 25

AUTONOMIC OIL WELL PLACEMENT

The figure below show results from the autonomic oil well placement
applications. It shows that the process converges to the optimal placement in 20

iterations.
(This slide is courtesy M. Peszynska)

Autonomic Oil Well Placement %
]
| Contours of NEval(y,z,500)(10) |

.‘.:z-- o e : “f | Pressure contours
o | ermeablhty . - SR
| 5 3 Wells, 2D proﬁle 250 ERbRt 1

= mummm - 200 n:' ' "-i'..':g

VEFSA solution: “walk”:
found after 20 (81) evaluations

300
al
0.22
0.2%
250 021
0.17
200
The
Al spptioa

Figure 26

CONCLUSION

The computational solutions addressed by the AutoMate project are based on
fundamental innovations in the development, optimization and deployment of
component-based Grid applications, thereby allowing the heterogeneity and dynamics of
the applications to match that of the Grid and fully exploit its potential. These
innovations will enable scientists to choreograph high performance, integrated end-to-end
simulations that were never possible or attempted before. The key IT contributions are
the methodology and associated technologies that enable the development of applications
that can manage and exploit the dynamism and heterogeneity of the Grid, and that
address the extremely serious problem of software complexity that is threatening both
academia and industry.

We currently have working prototypes of each of the components presented in
this paper, and are in the process of integrating them to support autonomic structured
adaptive mesh refinement applications (SAMR) in science and engineering. Further
information about AutoMate and its components can be obtained from
http://automate.rutgers.edu.

Conclusion

e

» Autonomic (adaptive, interactive) applications can enable accurate
solutions of physically realistic models of complex phenomenon.
— their implementation and management in Grid environments is a
significant challenge
+ AutoMate provides key technologies to enable the development of
autonomic Grid applications
— ACCORD: Autonomic application framework
RUDDER: Decentralized deductive engine
— SESAME: Dynamic access control engine
Pawn: P2P messaging substrate
— SQUID: P2P discovery service
* Application scenarios
— V-Grid autonomic runtime management of SAMR applications
— Autonomic optimization of oil reservoirs

* More Information, publications, software
. — www.caip.rutgers.edu/TASSL/Projects/AutoMate/
. - automate@caip.rutgers.edu / parashar@caip.rutgers.edu

Figure 27

http://automate.rutgers.edu/

