

Page Rank Prefetching for Optimzing Accesses to Web Page
Clusters

Victor Safronov and Manish Parashar
Department of Electrical and Computer Engineering

Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854-8058
Tel: (732) 445-5388 Fax: (732) 445-0593

Email: {safronov,parashar}@caip.rutgers.edu

This paper presents a Page Rank based prefetching technique for accesses to web page clusters. The approach uses
the link structure of a requested page to determine the “most important” linked pages and to identify the page(s) to
be prefetched. The underlying premise of our approach is that in the case of cluster accesses, the next pages
requested by users of the web server are typically based on the current and previous pages requested. Furthermore,
if the requested pages have a lot of links to some “important” page, that page has a higher probability of being the
next one requested. An experimental evaluation of the prefetching mechanism is presented using real server logs.
The results show that the Page-Rank based scheme does better than random prefetching for clustered accesses, with
hit rates of 90% in some cases.

Keywords: Web prefetching, Page Rank, Web Server, HTTP Server, Page Clusters.

1. Introduction

It is indisputable that the recent explosion of the World Wide Web has transformed not only
the disciplines of computer-related sciences and engineering but also the lifestyles of people and
economies of countries. The single most important piece of software that enables any kind of
Web activity is the Web server. Since its inception the Web server has always taken a form of a
daemon process. It accepts an HTTP request, interprets it and serves a file back. While CGI and
Servlets extend on these capabilities, file serving remains a key function of the Web server. As
Web service becomes increasingly popular, network congestion and server overloading have
become significant problems. Great efforts are being made to address these problems and
improve Web performance.

Web caching is recognized as one of the effective techniques to alleviate the server
bottleneck and reduce network traffic, thereby reducing network latency. The basic idea is to
cache recent requested pages at the server so that they do not have to be fetched again. Regular
caching however, only deals with previously requested files, i.e. by definition, new files will
never be in the cache. Web prefetching, which can be considered as “active” caching, builds on
regular Web caching and helps to overcome its inherent limitation. It attempts to guess what the
next requested page will be. For regular HTML file accesses, prefetching techniques try to
predict the next set of files/pages that will be requested, and use this information to prefetch the
files/pages into the server cache. This greatly speeds up access to those files, and improves the

users’ experience. To be effective however, the prefetching techniques must be able to
reasonably predict (with minimum computational overheads) subsequent web accesses.

In this paper, we present a Web prefetching mechanism for clustered accesses based on Page
Rank. Clustered accesses are access to closely related pages. For example access to the pages of
a single company or research group or to pages associated with the chapters of a book. Clustered
accesses are very common and accounted for over 70% of the accesses in the server logs that we
studied. These included logs from Rutgers University Center for Advanced Information
Processing (for year 2000). Page Rank uses link information in a set of pages to determine which
pages are most pointed to and, therefore, are most important relative to the set. This approach has
been successfully used by the GOOGLE [1] search engine to rank pages (or clusters of pages)
that match a query. In the prefetching mechanism presented, we examine requested pages and
compute Page Rank for the pages pointed by the requested page. We then use this information to
determine the page(s) to be prefetched. Note that the most pointed to page may not have been
requested before. Therefore, the approach we describe here is prefetching and not simple
caching. This paper makes the following contributions:

 It introduces the concept of Web page clusters and presents heuristics for identifying
clusters.

 It defines a Page Rank based mechanism to predict accesses to page in web-page
clusters. The predictions are used to drive a web-page prefetching mechanism that
prefetches pages into the server cache to improve access times.

 It designs, implements and evaluates a distributed cluster-based architecture for the
Page Rank prefetching server. The architecture provides good scalability and further
improves server speed.

The rest of this paper is organized as follows. Section 2 describes web prefetching and
presents related work. Section 3 introduces Page Rank and describes the Page Rank based
prefetching approach. Section 3 also presents the algorithm, analyzes its complexity. Section 4
presents an experimental evaluation of the approach. Section 5 presents conclusions and future
work.

2. Web Page Prefetching – Overview and Related Work

2.1 Overview

If the World Wide Web is to be approached from a client-server view then, as the name
suggests, Web server is the server part of the scheme and a browser is the client. In a typical
interaction a user will request a file from a server either by clicking on a link or typing the
request in manually. The browser translates it into an HTTP request, connects to the proper
server, sends the request and waits for a reply. Meanwhile the Web server has been waiting for
requests. It accepts the connection from the client, parses the HTTP request and extracts the
name of the file. The server then gets the file from its cache or from its disk, formats an HTTP
reply that satisfies the request and sends it to the browser. The browser then closes the
connection.

Access to disk is much slower than access to memory. Just as in the case of OS file systems,
caching techniques are used in Web servers to reduce disk accesses. One difference is that Web
server file accesses are read-only due to the nature of the application. In this context the cache is
a collection of files that logically belong on the disk but are kept in memory to optimize
performance.

Web prefetching builds on web caching to improve the file access time at web servers. The
memory hierarchy made possible by the caches helps to improve HTML page access time by
significantly lowering average memory/disk access time. However, cache misses can reduce the
effectiveness of the cache and increase this average time. Prefetching attempts to transfer data to
the cache before it is asked for, thus lowering the cache misses even further. Prefetching
techniques can only be useful if they can predict accesses with reasonable accuracy and if they
do not represent a significant computational load at the server. Note that prefetching files that
will not be requested not only wastes useful space in the cache but also results in wasted
bandwidth and computational resources.

In this paper we address prefetching rather than caching. Caching assumes a page has been
requested at least once while prefetching tries to guess what page a user will request in the
future. We chose server-side prefetching for the following reasons. The cost of a miss in the case
of client-side prefetching is much larger than that for server-side. For example, in the worst-case
scenario, a client-side prefetcher consistently asks for pages the user never wants to see. These
will approximately double the load on the server as well as the bandwidth requirements with
absolutely no benefit to the user. The same scenario with prefetching on the server side will only
waste some server cache space and there is a greater chance that somebody else will eventually
request that page anyway. The presented algorithm makes decisions on which pages to cache and
prefetch based on the access popularity. The popularity of a page can best be determined on the
server side. While time saved on the server side may be considered small it is becoming a
significant part of the overall web access time. This is clearly evident while accessing a very
busy server or when using a fast connection. Finally, our algorithm doesn’t preclude caching on
a proxy or a client side - it is complementary to it.

 2.2 Related Work

Existing prefetching approaches can be classified as client-side, proxy-based or server-side.
Table 1 summarizes the main features, advantages and disadvantages of each of these
approaches.
 Architecture Advantages Disadvantages
Client-side • Effectively is

part of the
browser.

• Devoted entirely
to one user.

• Can be very fast

• Can cache

requests from
multiple servers.

• Requires
browser code
modification or
plug-in.

• Can increase

server load and
demand
bandwidth
without user
benefit.

Proxy • Sits in the
middle between
the server and
the browser.

• Usually devoted
to a group of
users with
similar interests.

• Can cache

requests from
multiple servers.

• Can be built into

a hierarchy.

• Can increase
server load and
demand
bandwidth
without user
benefit.

• Cache

coherency
protocol may
become very
complicated.
Additional
messaging is
required.

Server-side • Part of the
server.

• No increase in
bandwidth
demand.

• Simple cache

coherency
protocol.

• Known and

limited number
of potential
pages to cache.

• Increase in
server
complexity.

• No easy way to

track user
patterns/docume
nt popularity
across multiple
servers.

Table 1. Summary of prefetching approaches

2.2.1 Client-side prefetching

In the client-side prefetching approach, the client determines pages to be prefetched and
request them from the server. Client-side prefetching is presented by Jiang et al in [2]. A key
drawback of this approach is that it typically requires modifications to the client browser code or
use of a plug-in, which may be impractical. Furthermore, it may double the required bandwidth,
actually resulting in deteriorated performance. For example, in the worst-case, the prefetcher will
repeatedly request files that the user never wants to see. Therefore, the number of requests to the
server will double without any benefit to the user. Finally, maintaining cache coherency in the
client-side prefetching approaches is expensive. Cache coherency deals with the following issue.
If a file in cache has changed on the server the new version of the file needs to be presented to
the user instead of the stale cached version. This requires checking with the server on the state of
the file(s) in the cache (possibly through a special protocol). As a result there is an increased
complexity on the client and the server side, as well as increased traffic between the two.

2.2.2 Proxy prefetching

The proxy-based prefetching approach uses an intermediate cache between the server and a
client [3]. This proxy can request files to be prefetched from the server, or the server can push
some files to the proxy. Both of these schemes increase the required bandwidth. Furthermore,
like client-side schemes, maintaining cache coherency in proxy-based schemes is expensive.
This overhead gets even more significant when multiple levels of proxy caches are employed.

One advantage of client and proxy side prefetching is that they separate the HTTP server part
from the caching part thus allowing greater geographic and IP proximity to the client. By the
same token a proxy cache dedicated to a particular organization will do a good job following that
organization’s preferences. Another advantage is that requests from multiple servers can be
cached.

2.2.3 Server-side prefetching

In server-side approaches, the entire prefetching mechanism resides on the Web server itself.
These approaches avoid the problems mentioned above. There is no increase in the bandwidth, as
no files that haven’t been requested will be sent to the client. Furthermore, maintaining cache
coherency in this case is straightforward. Proxy-based caches and client-side prefetching
mechanisms require additional messaging and protocols between the cache and the HTTP server
for cache coherency. This overhead can become significant in terms of wasted bandwidth. In the
case of server side schemes there is no complicated protocol and no extra messaging outside the
server. As the file system is either local or mounted, in this case, all the messaging is within the
server and does not require external bandwidth. Furthermore, the OS file system guarantees
access to the latest copy of a file, and provides efficient and easy to use mechanisms to check file
attributes such as creation and modification times and dates. This assists in maintaining cache
coherency. Another advantage of the server side schemes is that, while client side schemes make
decisions on which files to prefetch based on the particular user’s preferences, the server side
prefetching makes decisions based on the document popularity, and more than one client can
benefit from it.

A server-side prefetching approach based on analyzing server logs and predicting user
actions on the server side is presented by Su et al in [4]. Tracking users on a server, however, is
quickly becoming impractical due to the widespread use of web proxies. The proxy either
presents one IP address to the server for a large group of users, or it cycles through some set of
IP addresses according to its load-balancing scheme. Both cases render a single user identity
moot.

The work presented by Zukerman et al in [5] uses Artificial Intelligence-related techniques to
predict user requests. They implement a learning algorithm, such as a variation of Markov
chains, and use a previous access log in order to train it. This approach also relies on tracking
user patterns. Furthermore, it does not handle newly introduced pages or old pages that have
changed substantially. Finally, this approach requires a rather long sequence of clicks from a user
to learn his/her access patterns.

The Page Rank based prefetching technique presented in this paper is a server-side approach
and uses the information about the link structure of the pages and the current and past user
accesses to drive prefetching. The approach is effective for access to web page clusters, is
computationally efficient and scalable, and can immediately sense and react to changes in the
link structure of web pages. Furthermore, the underlying algorithm uses relatively simple matrix
operations and is easily parallelizable, making it suitable for clustered server environments.

3. Page Rank-Based Web Prefetching

 3.1 Background

Serving files to a requesting client had been implemented long before the advent of the Web.
Applications such as file servers and networked file systems are well known. However, it has
been recognized that serving Web requests presents a unique set of challenges. General Web
files are text files containing HTML [5] syntax, and tend to be relatively small in size. A key
feature of HTML is the ability to embed links to other files. For each page a user is viewing there
is a good chances that that page contains links to other pages. Unless the user is not interested in
the subject or does not want to surf further he or she is likely to click on one of the links and
request another file from a server. From this point of view each page can be represented by a
node in a directed graph and each URL link in that page is an arc to another node. Attempts have
been made to try to utilize this special structure of HTML files for various purposes, particularly
searching. One application based entirely on the link structure is the Page Rank technique
utilized by the GOOGLE [1] search engine.

3.2 Page Rank Algorithm

The Page Rank technique [6][7] provides a ranking of web pages based on the premise that
pages pointed to the most must be the most important ones. In this technique, the importance of a
page is defined recursively, that is, a page is important if important pages link to it. To calculate
the actual rank of the page a stochastic matrix is constructed as follows:

1. Each page i corresponds to row i and column i of the matrix.
2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those n

successors of page j, 0 otherwise
The prefetching scheme presented in the paper addresses server side prefetching and so is

applied to pages on the server of interest. Note that in this context the server is any collection of
entities serving related Web pages and may actually be a stand-alone machine or cluster of
machines. While, with the proper protocols and communication infrastructure we can put any
number of the traditionally defined Web servers under the “single server” umbrella for our
purposes, we do need to limit our universe. If we considered every link we would end up
processing the entire Web graph. That would be impractical for our prefetching application
where we need to make a decision which page on the local server to prefetch.

Once the matrix has been populated, Page Rank calculation is performed. This essentially
consists of a principal Eigenvector calculation [8]. Some additional modifications are required in
order to avoid a few Web graph quirks. Web pages that have no outward links or those that only
link to themselves have to be specially dealt with. One solution to these problems is to “tax” each
page some fraction of its current importance instead of applying the matrix directly. The taxed
importance is distributed equally among all pages. The overall algorithm is presented below.

To illustrate the Page Rank algorithm used for prefetching, consider the web page graph
shown in Figure 1. This graph shows a cluster of three pages, A, M and N; A is linked to N and
M, N is linked to A and to itself, M is linked only to itself.

MA

N

Figure 1. Example Graph of a Cluster
In this case, the equation to be solved to compute the Page Rank is as follows:
















+
































=

















2.0
2.0
2.0

002/1
2/110
2/102/1

a
m
n

a
m
n

As can be seen from the graph N links to A and to itself. Hence the first column (column of

node N) has ½’s in rows corresponding to N and A. M links only to itself. Therefore second
column has 1 in M’s row. By the same token A has links to M and A producing corresponding
arrangement in its column.

The solution of this equation is computed iteratively until it converges. Convergence here
means the difference between the norm of the current resulting vector and that from the previous
iteration is less than a small threshold (∆). Notation

1
R shows the first norm of vector R. The

first norm (1-norm) is defined as follows. ∑
=

=
n

i
ir

1
1

R . It is used to describe the size of the

vector.
Therefore, if M is the matrix and R is the [n, m, a] vector, the following algorithm is

executed.

requests;
ofnumber by therank spage'each Multiply

; R - Rprevious WHILE
];1[2.0RMR

R;Rprevious
DO

11
∆>

×+×=
=

The number of iterations for the solution to converge in our experiments was typically less
than 20. For the above example, the solution of the equation is n = 7/11; m = 21/11; a = 5/11 -
i.e. M is the most important page.

3.3 Page Rank-Based Prefetching

The Page Rank-based prefetching approach uses the link structure of requested pages to
determine the “most important” linked pages and to identify the page(s) to be prefetched. The
underlying premise of the approach is that the next pages requested by users of the web server
are typically based on the current and previous pages requested. Furthermore, if the requested
pages have a lot of links to some “important” page, that page has a higher probability of being
the next one requested. The relative importance of pages is calculated using the Page Rank
method as described above. The important pages identified are then prefetched into the cache to
speed up users’ access to them. For each page requested, the Page Rank algorithm performs the
following operations.

1. The URL is scanned to see if it belongs to a cluster. If it does, as soon as the contents of
that page are retrieved, they are used to populate or update that cluster’s matrix.

2. As soon as the matrix update operation is complete, the Page Rank calculations are
performed to determine the most important pages among those requested or pointed to in
the cluster.

3. A configurable number of these pages are then prefetched into the cache. It is also
important to note that if the matrix and/or cache cannot hold all the pages, Page Rank is
used as a replacement mechanism, i.e. those pages with the lowest rank get replaced with
new ones.

 3.3.1 Web Page Clusters

Since any random page on the server does not necessarily link to other pages on the same
server we define the concept of web page clusters. Clusters are groups of pages that are tightly
interlinked. The Page rank scheme excels in prefetching pages in these clusters. A separate Page
Rank calculation is performed for each cluster. As soon as the server determines that a requested
page belongs to a cluster, it is scheduled for the Page Rank calculation. In our implementation
we heuristically define any Web directory with 200 or more files under it as a candidate cluster.
We find the node closest to the root having this property but exclude the root itself. The
justification is that there is a greater chance that these files are related and are interlinked, and
their hierarchies are sufficiently wide and deep. A more sophisticated approach would be to run a
spider that crawls all the pages on the server and discovers the clusters based on some optimal
criteria of the width and depth of the page linkage graph.

While GOOGLE uses the Page Rank technique for Web searching, we use it for prefetching
i.e., it is not used as a “spider” scouting the whole of the Web. We apply the ranking calculations
described above only to pages on a single server. Furthermore, we only apply it for pages that are
part of a defined cluster. Finally, prefetching calculations are real time by nature. As soon as new
cluster access is processed the ranking calculations are performed to determine how the graph of
requested pages has changed and which new pages need to be prefetched as a result of those
changes. In other words, instead of building a static graph of the Web as in the original
application, we build a dynamic graph of user accessed pages in a particular cluster on the server
and use Page Rank to determine which pages will be asked for next.

3.4 Computational Complexity of the Page Rank Prefetching Algorithm
The prefetching mechanism has to be invoked for each access at the server. Consequently, it

is imperative that the underlying algorithm be efficient. A complexity analysis of the algorithm is
presented in this section. The main part of the Page Rank algorithm consists of populating the
matrix and then calculating its principal eigenvector. These are two consecutive operations:

1. Matrix population (simplified)

• For each newly requested page, find all the pages it links to and all the pages that link
to it. A length n array is used to help keep track of pages in memory. Let n be the
number of links on a page. Our observations show that it is rare for a page to have
more than 20 links to pages on the same server.

• Find all pages that the new page links to. This requires a full array scan. For each
array element, all the links on the new page need to be checked. Our observations
show that it is rare for a page to have more than 20 links to pages on the same server.
We can safely make an assumption that n is the maximum number of links on a page.
Then the worst case performance is O(n2).

• Find all the pages that link to the new page. This again requires a full array scan
consisting of a scanning of the links on the current page and comparing them to the
link to the new page. Making the same assumption, that n is the maximum number of
links on a page, we have a worst case performance of O(n2).

• The 2 operations above are consecutive and can be combined into one with the same
O(n2) complexity. Furthermore, ordering the array wouldn’t change the worst-case
performance.

• Recalculate the matrix values. This as an O(n2) complexity as well.
2. Matrix multiplication.

• Iterative matrix-vector multiplication and addition. This typically converges in less
than 20 iterations.

• The cost of multiplying a n x m matrix by a m x p matrix is O(nmp). We have n x n
by n x 1 therefore our multiplication algorithm’s cost is O(n2).

As a result we have the overall complexity of the Page Rank prefetching algorithm as O(n2).
Note that for n=200 a single-threaded implementation processed 90 requests per minute on

an 850 MHz PIII with 256 MB RAM running Windows 2000. This is equivalent to serving a
month worth of requests in less than 5 hours.

3.5 Design and Implementation of a Cluster Based Prefetching Server.

…
…

C

C

C

R

…
…

HTTP

C
lie

nt
s

P

P

P

Figure 2. Server Architecture.

3.5.1 Design Issues
3.5.1.1 Parallelism

A key motivation for implementing the server on a cluster of machines was to exploit the
inherent parallelism in the Page Rank prefetching algorithm and maintain server scalability. Page
Rank computations for different page clusters can be performed in parallel each on its own
dedicated machine. Furthermore, the associated matrix computations can also be parallelized.
This introduces a new level of parallelization that is not bounded by the number of page clusters.
Both levels of parallelization can be employed simultaneously to achieve maximum performance
gain.

The distributed server achieves almost perfect scalability as processing for each cluster is
performed independently. The overall runtime in this case is the maximum of the computation
times for the cluster plus some communication overheads. A single server would have processed
the requests sequentially resulting in an overall runtime equal to the sum of the computation
times for each cluster.

3.5.1.2 Matrix size

Our experiment showed that a matrix size n = 200 resulted in the most appropriate balance
between speed and effectiveness of prefetching. Matrices of size less than 10 produce results that
were fast but were not useful for prefetching. On the other hand, running with a matrix size of

1000 took an unacceptably long time on an 850MHz PIII with 256 MB RAM running Windows
2000. A matrix size of 200 gave good prefetching predictions and had a reasonable
computational cost.

3.5.1.3 Cache organization

Similarly, we empirically found that the most appropriate fraction of pages in the cache that
should be prefetched is 0.25. Values that were too high wasted cache space while values that are
too low wasted computational effort. For example, we found that prefetching a fraction of the
pages 0.5 and higher did little to increase the hit rate but caused a lot of files that were never
used to reside in the cache only to be replaced later. On the other hand, values less than 0.1
produced a marked decrease in the hit rate.

3.5.2 Implementation overview

We have implemented a prototype server with Page Rank prefetching. The server was built
on a cluster and performed all the basic functions required, but didn’t include any extra
optimizations such as any optimizations for the matrix multiplication algorithm. It additionally
maintained runtime statistics (i.e. hit rate). The architecture of the server is shown in Figure 2.
The main components of the server are the Router (R), and the HTTP handler (C) and Prefetcher
(P) pairs. Each component was implemented as a separate process. The P-C pairs were identical
and were implemented on separate nodes of the cluster. The Router ran on a dedicated machine.
The Router was simple and efficient. It accepted an incoming HTTP request, determined which
cluster it belonged to, and handed it off to a P-C pair for Page Rank computations. Both the
Router and the Prefetcher are multithreaded for further efficiency. The internal structure and a
few details of operations for each component are given below.

3.5.2.1 HTTP handler (Basic Server)

This component performs the functions of a regular HTTP server with caching and custom
prefetching. It could be used as stand-alone simple Web server. The HTTP handler operates as
follows. When it receives an HTTP request it parses it to get the file name and checks if the file
is in the cache. If so it verifies it’s the file’s freshness using a simple timestamp check. If the file
is not in the cache or is stale it’s fetched from the disk. The handler then formats a proper HTTP
reply and sends it to the requesting object (prefetcher in our case). Also, when the HTTP handler
receives a prefetch request from the Prefetcher it will get the files from the disk and puts them
into its cache. The cache is implemented as a user-level memory cache indexed by the filenames.

3.5.2.2 Prefetcher

Prefetcher is the component in charge of making a decision about which files need to be
prefetched. As it passes the response to the client back to the Router it parses it and creates a list
of “href” links to local pages in the page. It should be noted that the HTML parser has to be very
forgiving. Special provisions have to be made to accept anchors with or without quotes and other
attributes. Very few pages were found to follow strict HTML syntax since browsers tend to
overlook many HTML syntax errors. The parser also converts relative paths into absolute ones
for ease and uniformity of processing. The resulting list of links, including the link to the current
page, is fed into the Page Ranker component. Page Ranker returns a list of new highest-ranking
pages. This list is then sent to the HTTP handler to be prefetched into its cache.

The Page Rank prefetcher calculates the pages to be prefetched on the fly allowing the server
to respond very quickly to any change in access pattern popularity. The server prefetches pages
that are not yet accessed and registers changes in the page’s contents as soon as the page is
accessed again. In other words, the Prefetcher maintains a running rank of pages on the server
based on the pages accessed so far.

 4. Experimental Evaluation

We used server logs from Rutgers University Center for Advanced Information Processing
(for year 2000) (www.caip.rutgers.edu) to experimentally evaluate the Page Rank-based
prefetching mechanism. In particular, we chose September 2000 log as a representative one for
our experiment. The experiment consisted of identifying the access clusters in the logs and
extracting requests to these clusters. The accesses were then used to drive the evaluation, which
consisted of measuring the hit rate for accesses at server with the Page Rank-based prefetching
scheme versus a random prefetching scheme.
To simulate client requests we implemented a simple driver. The driver read server access log,
sent an HTTP request corresponding to the original access and waited for the response. This
operation is easily parallelizable. We only needed to break the log file into multiple pieces and
start the drivers simultaneously for each piece. This simulated multiple clients with repeatable
behavior. While the primary objective of our experiment was not to find out how many clients
the server could handle multiple clients did speed up the experiment as well as demonstrated our
server’s scalability.

The objective of this paper is to introduce a new prefetching scheme. We consider server
caching to be a subset of prefetching and so do not separate the two. Instead we make a
comparison to a random prefetching scheme (also with server caching). In this way we compare
two prefetching schemes rather than comparing prefetching and caching. It has also been shown
in previous research that on the Web the maximum hit rate achievable by any caching algorithm
is just 40% to 50% [10] [11]. Our prefetching scheme exceeds this result by a good margin.

4.1 Hit Rate

We defined hit rate as follows. Let H be the number of user requests that were found in cache
at the time of the request. Let M be the number of user requests that were not found in the
prefetch cache. Then the total number of requests is H + M and the hit rate is defined as

%100×
+

=
MH

HRateHit

Only the clusters with hit rate greater than 10% and with more than a 100 accesses are

plotted. In Figure 3 each point on the X-axis represents a cluster in the order of initial access.
Left Y-axis represents the % hit rate (for the bars) while right Y-axis represents a % of all files
on the server that files in a given cluster constitute (for the line). I.e. in Figure 3 cluster 8
achieves 90% hit rate while files in the 8th cluster are about 8% of all the files on the server.

In case of the CAIP server log for November 2000 we found the following. There are 12
clusters as defined by our heuristic. Files in those clusters constitute 49% of all the files on the
server. Requests to those files constitute 39% of all the server requests.

http://www.caip.rutgers.edu/

Figure 3 shows the cluster accesses for the CAIP log. As can be seen from the chart the hit
rate varies from 20% all the way to 95% with only one cluster having the hit rate less than 30%.
One half of all the clusters have hit rate greater than 70% and one quarter reach or exceed 90%.
This shows that cluster pages are common, that they account for a substantial number of
requests, and that the Page Rank scheme does very well prefetching these type accesses.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

% hit rate
% all files

Figure 3. CAIP Clusters and Accesses

It should be noted that the heuristic we employed is a temporary solution to finding the

clusters. It should be relatively straightforward to develop a spider that will crawl all the pages
on the server and discover clusters. Threshold of connectivity for the cluster definition is a
subject of future research. We predict that having defined the clusters in a more systematic way
will increase hit rate even further. It may also discover more clusters and files belonging to
clusters.

We also note that the Page Rank prefetcher did not do well for non-clustered request. In this
case the hit rate was about 17%. The random prefetcher resulted in a hit rate of about 30%. This
is expected as the Page Rank prefetcher is based on the premise that page link information
determines accesses, which is true for clustered accessed but typically not true for random
accesses.

4.2 Server scalability

We ran the scalability part of the experiment on a cluster of identical SUN workstations with
120MB RAM each. Running with 12 machines in a cluster reduced the overall running time by a
factor of 8. Figure 4 demonstrates the scalability results for the CAIP server logs. It demonstrates
an almost perfect scalability up to the number of file clusters on the server. This experiment
shows that the distributed architecture implemented works very well with the prefetching
scheme.

scalability

1

3

6
8

12

0

10

20

30

40

50

60

0 5 10 15

machines

re
q/
m
in

scalability

Figure 4. Scalability

5. Conclusions and Future Work

In this paper we presented the Page Rank-based prefetching mechanism for clustered web
page accesses. In this approach, we rank the pages linked to a requested page and use the rank to
determine the pages to be prefetched. We also presented an experimental evaluation of the
presented prefetching mechanism using server logs from Rutgers University Center for
Advanced Information Processing (for year 2000). The results show that the Page Rank
prefetching does better than random prefetching for clustered accesses, with hit rates 90% hit
rate in some cases. We have also shown that these clusters are quite common on the server we
explored. They constitute about 50% of all the files on the server. Accesses to pages in the
clusters are about 40% of all the accesses.
We are currently building a spider for discovering page clusters. This work is also investigating
the appropriate depth and breadth thresholds for cluster identification. We are investigating the
type of web sites that can benefit from the Page Rank prefetching approach. Finally, we are
implementing a distributed version of the prefetcher. This version will have its matrix calculation
parallelized. It can be efficiently deployed in a cluster environment.

Acknowledgement
The research presented in this paper is based upon work supported by the National Science
Foundation under Grant Numbers EIA-0103674 (NGS) and ACI-9984357 (CAREERS) awarded
to Manish Parashar.

References:
[1]. The GOOGLE Search Engine. http://www.google.com.
[2]. Z. Jiang and L. Kleinrock. An Adaptive Network Prefetch Scheme. IEEE Journal on

Selected Areas in Communications 1998.

http://www.google.com/

[3]. T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds of Web latency
reduction from caching and prefetching. In Proc. of the 1st USENIX Symposium On
Internet Technologies and Systems, pages 13–22, Dec. 1997.

[4]. Z. Su, Q. Yang, Ye Lu Zhang. WhatNext: A Prediction System for Web Requests using N-
gram Sequence Models. Web Information Systems Engineering, pp 214-221, 2000.

[5]. HTML http://www.w3.org/MarkUp/.
[6]. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In

Proceedings of the Seventh World Wide Web Conference, Apr. 1998.
[7]. S. Brin and L. Page. The PageRank Citation Ranking: Bringing Order to the Web. January

29, 1998.
[8]. S.D. Conte and C. de Boor. Elementary Numerical Analysis, an Algorithmic Approach.

McGraw-Hill 1980.
[9]. I. Zukerman, W. Albrecht and A. Nicholson. Predicting user's request on the WWW.

UM99 -- Proceedings of the Seventh International Conference on User Modeling, 1999.
[10]. N. Niclausse, Z. Liu, and P. Nain. A new efficient caching policy for the world wide web.

In Proceedings of Workshop on Internet Server Performance (WISP'98), Madison, WI,
June 1998

[11]. G. Huston, Telstra. “Web Caching”. The Internet Protocol Journal, September 1999.
Volume 2, Number 3

http://www.w3.org/MarkUp/

	Architecture
	Advantages
	Disadvantages

