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Abstract

This paper presents the design of a prototype peer-to-
peer collaboratory for imaging, analyzing, and seamlessly
sharing tissue microarrays (TMA), correlated clinical data,
and experimental results across a consortium of distributed
clinical and research sites. The overarching goal of this
project is to facilitate cooperative oncology research aimed
at improved understanding of the underlying mechanisms
of disease onset and progression while simultaneously pro-
viding new insight into therapy planning and treatment.
Key components of the collaboratory include a specifica-
tion of metadata schematics for characterizing TMA spec-
imens and abstracting their interpretations, an framework
for automated and accurate analysis of digitized TMAs and
a peer-to-peer infrastruture for indexing and discovery of
TMA data and metadata, and a novel, optimized decen-
tralized search engine that supports flexible querying with
search guarantees and bounded costs. Prototype implemen-
tations of the automated TMA analysis component and the
storage/discovery component and their evaluations are pre-
sented.

1. Introduction

The tissue microarray (TMA) technique enables re-
searchers to extract small cylinders of tissue from his-
tological sections and arrange them in a matrix con-
figuration on a recipient paraffin block such that hun-
dreds can be analyzed simultaneously. A key advantage
of TMA technology is that it allows amplification of lim-
ited tissue resources by providing the means for producing
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large numbers of small core biopsies, rather than a sin-
gle section. Using this technology, a carefully planned
array can be constructed with cases from pathology tis-
sue block archives, such that a 20-year survival analysis
can be performed on a cohort of 600 or more patients us-
ing only a few microliters of antibody. Another major
advantage of the TMA technique is the fact that each spec-
imen is treated in an identical manner. Therefore, reagent
concentrations are consistent across discs within each spec-
imen, as are the incubation times, temperatures and washing
conditions. Using conventional protocols, a study com-
posed of 300 tissue samples would involve processing of
300 hundred slides, i.e. at least 20 batches of 15 slides. Us-
ing TMA the entire cohort can be processed on a single
slide. As a result, TMA technology holds great poten-
tial for reducing the time and cost associated with con-
ducting research in tissue banking, proteomics, and out-
come studies. However capturing, organizing, analyzing
and characterizing, and sharing TMA data presents a num-
ber of significant challenges.

A key challenge is the analysis and evaluation of TMA
samples. Currently, the primary methods used to evaluate
the arrays involve manual, interactive review of TMA sam-
ples while they are subjectively evaluated and scored. An
alternate, but less utilized approach for evaluation is to
sequentially digitize each specimen for subsequent semi-
quantitative assessment [7]. Both procedures ultimately in-
volve the interactive evaluation of TMA samples which is a
slow, tedious process that is prone to error.

Another challenge is the large volume of TMA data. To-
day, TMAs can contain from tens to hundreds of samples
(0.6 to 2mm in diameter) arranged on a single slide. A dig-
itized TMA specimen containing just 400 discs can easily
approach 18GB in size. Given the increasing number of
institutions and investigators utilizing TMA technology it
is likely that modern facilities may easily generate tens of
thousands of entries and terabytes of data. Clearly archiv-
ing, indexing and cataloging and mining this data across
the TMA research community is a significant challenge and



centralized solutions quickly become infeasible.
Finally, the increasing popularity of TMA has lead to

more and more medical and research institutions being in-
terested and conducting research in this area. While the ex-
act focus of the research conducted by each of these groups
may differ in terms of the patient group, the type of can-
cer, and/or the nature of the staining, being able to share
data and meta-data has many advantages. Sharing ex-
perimental results and clinical outcomes data could lead
to huge benefits in drug discovery and therapy plan-
ning. While some leading institutions are developing
data management systems for TMA data, these sys-
tems are only minimally useful if the data isn’t accessible
to others in the scientific community. While there are on-
going efforts focused on developing standards to represent
TMA data (e.g. [2]), existing efforts on sharing mi-
croarray data is based on centralized databases (e.g.
http://ihome.cuhk.edu.hk/˜b400559/arraysoft public.html).
However, the size of the data involved as well as is-
sues of ownership can quickly limit the scalability and
feasibility of this approach.

This paper presents the design of a prototype peer-to-
peer collaboratory for imaging, analyzing, and seamlessly
sharing tissue microarrays (TMA), correlated clinical data,
and experimental results across a consortium of distributed
clinical and research sites. Key components of the collabo-
ratory addressed in this paper include:

Specification of Semantic Metadata Schematics for
TMA: A key requirement for effective sharing of TMA data
and metadata is the definition of semantic schemas for de-
scribing the TMA sample, the patient parameters, the eval-
uations conducted and the observed results. We propose an
XML schema that is sufficiently rich to capture these di-
mensions and can be effectively parsed and presented using
conventional technologies.

Mechanisms and Tools for Automated TMA Analy-
sis: As mentioned above, current procedures for TMA anal-
ysis ultimately involve the interactive evaluation of TMA
samples which is a slow, tedious process that is prone to er-
ror. Recent studies showed that having a pathologist score
the specimens yields results that are subjective, difficult to
reproduce, and do not reflect subtleties. Reliable quantita-
tive measurements will allow investigators to make accurate
predictions about patient outcomes and response to therapy.
But for the most part, the promise of TMAs remains unre-
alized because scientists lack methods of high throughput,
automated quantitative evaluation. To address this issue, we
propose a prototype framework for automatically imaging,
analyzing, and archiving tissue microarrays.

Peer-to-Peer Infrastructure for Indexing and Discov-
ery of TMA Data and Metadata: In addition to the algo-
rithmic and software development that is required for ana-
lyzing tissue microarrays, reliable tools are also needed to

enable individual groups to dynamically acquire and seam-
lessly share imaged specimens and correlated metadata.
However scalable information discovery in the absence of
global knowledge of naming conventions remains a funda-
mental problem in large, decentralized, distributed environ-
ments. This is due to the heterogeneous nature and large
volume of data and resources, their dynamism and the dy-
namism of the sharing environment. As a result, an informa-
tion indexing and discovery system has to be efficient, fault-
tolerant and self-organizing. Further, in the case of TMA
data, security as well as the ability of each research group
to maintain ownership as well as access control capabili-
ties to their data is critical.

As a part of the TMA collaboratory we propose Squid,
a P2P information indexing and discovery infrastructure.
Each peer (e.g. research institution) in this system main-
tains ownership of its data and only publishes (in a con-
trolled manner) metadata describing its data, which can then
be discovered and search externally. The key innovation is a
dimension reducing indexing scheme that effectively maps
the multidimensional metadata information space to phys-
ical peers. Note that access to TMA data in this system is
always controlled by the owner of the data.

Flexible Query Engine with Search Guarantees: A
key requirement for the TMA collaboratory is the abil-
ity to flexibly and efficiently search TMA data and meta-
data across peer site using keywords, partial keywords,
wildcards and ranges. Further, the underlying query engine
should guarantee that all existing data elements that match
a query are found with bounded costs. The Squid query en-
gine supports such complex queries and guarantees that all
existing data elements that match a query will be found with
bounded costs in terms of number of messages and number
of nodes involved.

The rest of this document is organized as follows. Sec-
tion 2 present the overall architecture of the collaboratory.
Section 3 presents the automated TMA analysis system.
Section 4 describes the Squid P2P indexing and discovery
infrastructure and the Squid query engine. Section 5 dis-
cusses the overall integration of the collaboratory. Section
6 presents related work in P2P and TMA data sharing re-
search. Section 7 concludes this paper.

2. System Architecture

A schematic overview of the overall architecture of the
prototype collaboratory is presented in Figure 1. The data
gathering module collects the data that is processed and
shared. There are three major sources of data: the TMA
slides, which are constructed as presented in Figure 2, the
clinical history of the donors, and the information related
with the construction and preparation of the TMA slides.
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Figure 1. A schematic overview of the peer-to-peer TMA collaboratory.

The data processing module employs imaging and an-
alyzing algorithms to extract relevant data from the TMA
slide (i.e., the TMA-AID system). The data gathered is
stored in the database using the Array Archiving (AA) sub-
system. The TMA-AID system can be accessed remotely
using the Distributed Telemicroscopy (DT) subsystem. The
data access module enable remote access to the data stored
in the local database.

The metadata extraction module extracts metadata de-
scribing the shared data from the local database. The meta-
data is published in Squid P2P storage and discovery sys-
tem. Finally the collaboratory GUI allows users to flexi-
bly search TMA data and metadata in Squid and access it
through the Database Portal.
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Figure 2. TMA slide preparation.

3. TMA-AID (Automated Imaging and Diag-
nostic) System

Traditionally, diagnostic pathology and cancer research
was conducted by staining and analyzing hundreds upon
hundreds of individual tissue sections-all in the name of one
part, of one experiment. Increasingly such low-throughput

monotony is giving way to ”omics”-style science thanks to
tissue microarrays. By reducing the amount of time and ef-
fort to process them this technology is accelerating the pace
of research for oncologists, drug discoverers, and other sci-
entists seeking to make sense of the data being generated
out of genomics and proteomics laboratories.

In order to facilitate large-scale, multi-institutional stud-
ies a quick, reliable means for processing tissue microar-
rays is needed. We have developed a web-based prototype
which features automated imaging, registration and intelli-
gent archiving of tissue microarrays.

The system consists of a robotic microscope interfaced
with a JAVA-based micro-controller and imaging worksta-
tion. The system utilizes a combination of sophisticated
image processing and pattern recognition strategies to co-
register specimens while the software directs a robotic mi-
croscope to systematically image specimens at multiple op-
tical magnifications, delineate array discs, extract spectral
and spatial signatures and populate the databases with the
resulting data including pointers to imaged arrays. The sys-
tem features a visually intuitive interface which enables lo-
cal and remote users to manipulate the configuration of dig-
itized arrays in order to facilitate new experimental designs
and data assimilation.

Due to slight variations in specimen preparation and the
possibility of mechanical distortion, software was devel-
oped to automatically compensate for these variations. Op-
tical and mechanical system is automatically calibrated and
measured by the TMA to ensure accurate stage location and
measurements. An entropy-based, fast auto-focusing was
developed to ensure image quality [3].

Algorithms which can automatically recover the grid
structure of the array from a very low-resolution image map



 
Figure 3. Result of color decomposition. (a) One sub-field of original disc image. (b) The DAB staining map.
(c) The hematoxylin staining map. Please note that some hematoxylin stained nuclei (arrow 1) are absent in
the DAB staining map and some DAB stained nuclei (arrow 2) are absent in hematoxylin map. The majority of
nuclei, however, bear a combination of the two stains (arrow 3).

and locate and index each disc with proper column and row
indexes has already been developed for the system. The size
of tissue discs in the image map is estimated based upon the
approximate core diameter of the physical array and the sys-
tem while taking into account the scan settings at the time
of acquisition. The image map is convolved with a template
and a two-step, top-hat peak detection strategy applied to
determine local maximums of the convolution output. Spa-
tial constraints are applied in order to ensure that there is
only a single candidate center point for each disc on the mi-
croarray [4].

When only a single stain is used to prepare a specimen,
the integrated pixel density, i.e. luminance, within the cor-
responding microscopic image, can serve as a measure of
target units present, which relates to the amount of specific
antigen molecules or binding sites. When two or more dyes
are used, however, one stain is often used to reveal the his-
tological context within the specimen. In these cases each
of the colors within the specimen can contribute to the lu-
minance of the image. In this case, proper color separation
should be performed before taking the luminance measure-
ment.

We have developed a means for color decomposi-
tion which can reliably detect and characterize the staining
characteristics within tissue microarray specimens. Dur-
ing the course of feasibility studies, we conducted experi-
ments using specimens which had been stained with DAB
chromogen and counter-stained with hematoxylin. The tis-
sue microarray images in these studies exhibited multiple
shades and combinations of these two dye colors.

Utilizing this novel color decomposition strategy,
each of the discs within the arrays are split into DAB
and Hematoxylin staining maps based upon their pro-
files in L*h1/v*C1/v* color space [5]. Figure 3 shows an
original stained section of a disc and the corresponding out-
put images after they have undergone quantitative analysis.
As shown the staining characteristics of each nucleus ap-
pears as a continuous representation of staining intensity
for each of the dyes. It is interesting to note that the pro-
tocol that we have described is able to unveil and quan-
tify the underlying staining characteristics of even those
cells which suffer from visual masking due to the counter-

 
Figure 4. (a) integrated staining intensity, (b) ef-
fective staining area and (c) effective staining in-
tensity of all discs on one TMA specimen.

staining.
The software automatically generates the following mea-

sures for each tissue disc: 1) integrated staining intensity
which is computed as sum of the DAB staining intensity
over the entire disc; 2) effective staining area which in-
cludes only those pixels which express above the thresh-
old ; and 3) effective staining intensity which is computed
as the average staining intensity divided by the effectively
stained pixels. Using the color maps which are displayed to
the right of each sub-figure, Figure 4 illustrates the results
of measures (1-3) as they were computed over a specimen
of 10x14 discs. The system scores discs exhibiting an effec-
tive staining area below 1000 pixels as non-stained. These
discs are automatically assigned with 0 effective staining in-
tensity.

Although the integrated staining intensity represents the
overall staining level of each disc, given the heterogene-
ity of tissue specimens, it is only efficient in representing
the staining level of the desired target when justified by
the effective staining area. Figure 5 shows an example of
two discs having different effective stained areas but sim-
ilar stained color (effective staining intensity) resulting in
different integrated staining intensities.

A Distributed Telemicroscopy (DT) subsystem [6] has
been integrated with the TMA analysis prototype to enable
individuals to control each other’s robotic scopes from re-
mote locations. Once a user logs into the system and issues
the ”Registration” command, the remote microscope auto-
matically begins acquiring digital images of slightly over-
lapped frames of the tissue microarray sample in a raster
pattern. The client application receives scaled version of
the images and automatically stitches them together, in the
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Figure 5. Due to heterogeneity of tissue composi-
tion, two discs having different integrated staining
intensities can have the same effective staining in-
tensity. Shown (a) (b) are two discs located at 5th
row 5th column and 9th row 8th column, respec-
tively, having the same effective staining intensity
(e), but different integrated staining intensities (c)
due to differences in effective stained area (d).

same raster pattern, giving rise to an image map. The un-
supervised registration protocol is subsequently performed
on the image map and the registration results appear in a
heads-up display for the user as shown on the client inter-
face with the recovered grid structure superimposed on the
original map image. During preliminary performance stud-
ies the unsupervised TMA registration software was shown
to reliably complete the low-resolution scan and success-
fully recover the grid structures of the samples, despite vari-
ations in the staining and rotation of the arrays. Upon com-
pletion of the registration process the software directed the
robotic scope to sequentially digitize each core at multiple
resolutions, archived the images, and populated an Oracle8i
database with the location of each digitized specimen.

The Array Archiving (AA) subsystem was designed to
provide the means for dynamically populating the database
with new cases including image metrics and correlated pro-
files. This subsystem will continue to incorporate new stan-
dards for data exchange of tissue microarrays as they con-
tinue to evolve and gain acceptance [2].

The database is organized as shown in Figure 6. The
physical specimen layer (PSL) of the database records in-
formation related to the construction and preparation of the
physical TMA sample. These data are referred to as ”array
profile”. A visually intuitive interface, array profile editor,
has been developed and integrated into this layer to facilitate
the design, editing and managing array profiles. The digi-
tal sample layer (DSL) of the database stores archived digi-
tal images including the image map and imaged tissue discs
(at multiple resolutions). High-resolution images of tissue

 
Figure 6. Organization of the database. The ma-
jor entities are highlighted in gray while auxiliary
tables are rendered in black and white

discs are broken down into subregions in order to facilitate
network access. The third layer of the database, the quan-
tification layer (QL), provides a data structure, which sup-
ports automated segmentation and computation of protein
expression across each disc. The constituent entities of the
AA subsystem were designed to be generalizable, to pro-
vide the underlying structure which can support a broader
range of imaging applications.

4. Squid - Information Storage and Discovery
System

This section presents Squid, a P2P information discov-
ery system. Unlike most existing information discovery sys-
tems, Squid supports complex queries containing partial
keywords, wildcards, and range queries and guarantees that
all existing data elements that match a query will be found
with bounded costs in terms of number of messages and
number of nodes involved. The key innovation is a dimen-
sion reducing indexing scheme that effectively maps the
multidimensional information space to physical peers.

The architecture of the Squid P2P information retrieval
system is based on data-lookup systems [8, 13], and es-
sentially implements an Internet-scale distributed hash ta-
ble (DHT). The key difference is in the way we map the
data elements1 to the DHT space. In existing systems this
is done using a hashing function that uniformly distributes
data elements to nodes, and as a result a data element can
be retrieved only if its exact identifier is known. In contrast,
Squid uses a dimension-reducing mapping called Hilbert
Space Filling Curve (SFC) [11], which is recursive and en-
ables complex queries.

1 We will use the term ’data element’ to represent a piece of informa-
tion that is indexed and can be discovered. A data element can be a
document, a file, an XML file describing a resource, etc.



4.1. Publishing data

To support keyword searches, data elements in Squid are
associated with a sequence of descriptive keywords. These
keywords form a multidimensional keyword space where
data elements are points in the space and the keywords are
the coordinates. The keywords can be viewed as base-n
numbers, for example n can be 10 for numeric keywords
or 26 if the keywords are english words. An examples of a
keyword space is shown in Figure 7.
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Figure 7. A 3-Dimensional keyword space for
storing TMA resources (e.g. metadata files for
TMA data, and the locations of data), using the at-
tributes: cancer type, drug regimen and response
to drug.

An SFC [11] is a continuous mapping from a d-
dimensional space to a 1-dimensional space, generated re-
cursively. Figure 9 (b) shows an example of Hilbert SFC in
a 2-dimensional space. Aditional details about the use of
Hilbert SFC in Squid can be found in [12].

In Squid, SFCs are used to generate the 1-d index space
from the multi-dimensional keyword space. Applying the
Hilbert mapping to this multi-dimensional space, each data
element can be mapped to a point on the SFC. Any range
query or query composed of keywords, partial keywords, or
wildcards, can be mapped to regions in the keyword space
and the corresponding clusters (segments on the SFC curve)
in the SFC.

The 1-dimensional index space is mapped onto an over-
lay network of peers. In our current implementation we use
the Chord [13] overlay network topology. In Chord each
node has a unique identifier ranging from 0 to 2m-1. These
identifiers are arranged as a circle modulo 2m. Each node
maintains information about (at most) m neighbors, called
fingers, in a finger table. The finger table is used for ef-
ficient routing and enables data lookup with O(log N) cost
[13], where N is the number of nodes in the system. The fin-
ger table is constructed when a node joins the overlay, and
it is updated any time a node joins or leaves the system. The
cost of a node join/leave is O(log2N).

In our implementation, node identifiers are generated
randomly. Each data element is mapped, based on its SFC-
based index or key, to the first node whose identifier is equal
to or follows the key in the identifier space. This node is
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Figure 8. Example of the overlay network. Each
node stores the keys that map to the segment
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called the successor of the key. An example of an overlay
network with 5 nodes and an identifier space from 0 to 24-1
is shown in Figure 8.

To summarize, publishing a data element in Squid con-
sists of the following steps: attach keywords that describe
the content of the data element, use the SFC-mapping to
construct the index of the data element, and using this in-
dex, store the element at the appropriate node in the over-
lay. Figure 9 illustrates the publishing process.
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Figure 9. The process of publishing a data ele-
ment: (a) the data element (2, 1) is viewed as a
point in a multidimensional space; (b) the data ele-
ment is mapped to the index 7, using Hilbert SFC;
(c) the data element is stored in the overlay (an
overlay with 5 nodes and an identifier space from
0 to 26-1) at node 13, the successor of the index 7.

4.2. The Query Engine

The primary function of the query engine is to efficiently
process user queries. The expected result of a query is the
complete set of data elements that match the user’s query.

As described above, data elements in the system are as-
sociated with a sequence of up to d keywords, where d is
the dimensionality of the keyword space. The queries can
consist of a combination of keywords, partial keywords, or
wildcards. For example (30-40, breast cancer, Arimidex, *)
is a valid query, specifying data regarding patients 30 to
40 years old, with breast cancer, treated with Arimidex and
with any response to the treatment.

Processing a query consists of two steps: translating the
keyword query to relevant clusters of the SFC-based index



space, and querying the appropriate nodes in the overlay
network for data-elements.

If the query consists of complete keywords (no wild-
card or range) it will be mapped to at most one point in
the index space, and the node containing the matching data-
element is located using the overlay’s lookup protocol. If the
query contains partial keywords, wildcards and/or ranges,
the query identifies a region in the keyword space, which
corresponds to a set of points in the index space. For exam-
ple, in Figure 10 (a), the query (*, 4) identifies 8 data ele-
ments. The index (curve) enters and exits the region three
times, defining three segments of the curve or clusters.

   

0  

13

33

47

51

40

(4-7, 0-3)

(*, 4)

st
ai

ni
ng

 a
re

a

4 7

4

0

3

(*, 4)

(4-7, 0-3)

(a) (b)

staining intensity

Figure 10. Processing the query (*, 4): (a) the
query defines a rectangular region in the 2-
dimensional keyword space, and 3 clusters (3 seg-
ments on the SFC curve); (b) the clusters (the solid
part of the circle) are stored at nodes 33 and 47, so
these nodes will be queried.

Once the clusters associated with a query are identi-
fied, straightforward query processing consists of sending
a query message for each cluster, using the lookup mech-
anism provided by Chord. Figure 10 illustrated the query
processing: the range query (4-7, 0-3) defines a rectangu-
lar region in the 2-dimensional keyword space, and iden-
tifies one cluster. The cluster is stored into the overlay at
nodes 51 and 0, so these two nodes will be queried.

The node that initiated the query can not know if a clus-
ter is stored in the network or not, or if multiple clusters are
stored at the same node, to make optimizations. The number
of clusters can be very high, and sending a message for each
cluster is not a scalable solution. We optimized the query
processing by considering the recursive nature of the SFC.
Details about the optimization can be found in [12].

4.3. Experimental Evaluation

The performance of Squid is evaluated using a simula-
tor. As the overlay network configuration and operations are
based on Chord [13], its maintenance costs are of the same
order as in Chord. An evaluation of the query engine is pre-
sented below.

This experiment measures the scalability of the system.
The system size increases from 1000 nodes to 5400 nodes,
and the number of stored keys (unique keyword combina-
tions) increases from 2*105 to 106. Each key may be asso-
ciated with one or more data elements. 2-dimensional (2D),
and a 3-dimensional (3D) keyword spaces were evaluated,
using the following types of queries:

Q1: Queries with one keyword or partial keyword. For
example (her2, *) and (her2, *, *) are valid Q1 queries, for
cases where a Her2 marker was used.

Q2: Queries with two to three keywords or partial key-
words. For example (breast cancer, arimidex, *) is a query
for breast cancer cases, treated with Arimidex, and any re-
sponse to drug.

Q3: Range queries:
Q3 1: (keyword, range, *).
Q3 2: (range, range, range).

A set of queries of each type were tested. The queries
were chosen such that the number of matches represents the
same fraction of the total data regardless of the size of the
system (number of nodes) and the quantity of data. For each
query we measured the number of nodes that process it (re-
fine it and search for matches) and the number of nodes that
found matching data (data nodes). The results were aver-
aged and normalized.

As seen in Figure 11 (a), (b) and (c) the number of pro-
cessing and data nodes is a small fraction of the total nodes
and increases at a slower rate than the system size. For a
2D keyword space, the average number of processing nodes
is below 8%, and the number of data nodes is below 5%,
and these percentages decrease as the system size increases
(number of nodes and data), demonstrating the scalability
of the system. The number of data nodes is close to the
number of processing nodes, indicating that the query opti-
mizations effectively reduce the number of nodes involved.
Also, Q2 queries are more efficient than Q1 queries, which
is expected. This is because query optimization and prun-
ing are more effective when both keywords are at least par-
tially known.

The 2D and 3D results follow a similar pattern, the only
difference is the magnitude of the results. As described
in Section 4, data elements that share a specific keyword
will typically be mapped to disjoint fragments on the curve
(clusters). In the 3D case the number of such fragments is
larger than in the 2D case - 3 keywords result in a “longer”
curve. Consequently, the results obtained for the 3D case
for all the metrics have the same pattern as the 2D case but
a larger magnitude.

Note that even under these conditions, the results
are good. A keyword search system like Gnutella
(http://gnutella.wego.com) would have to query the en-
tire network using some form of flooding to guaran-
tee that all the matches to a query are returned, while in the
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Figure 11. (a) Results for 2D keyword space for query types Q1 and Q2; (b) Results for 3D keyword space for
query types Q1 and Q2; (c) Results for 3D keyword space for range queries.

case of a data lookup system such as Chord [13], one would
have to know all the matches a priori and look them up in-
dividually.

We also implemented the system on Project JXTA
(http://www.jxta.org), a general-purpose peer-to-peer
framework. The overlay network (e.g. Chord) and Squid
are implemented as event-driven JXTA services.

The system was evaluated on a Linux cluster consisting
of 64 1.6 GHz Pentium IV machines and an 100Mbps Eth-
ernet interconnection. Each of the 64 acted as a node in the
overlay.

The experiment measured the Squid overhead at a node.
Three sets of queries were used, the first containing wild-
cards, the second containing ranges and the third contain-
ing both wildcards and ranges. The query processing over-
heads at the Squid layer were measured at each node and av-
eraged. The results are plotted in Figure 12. The measured
overhead includes times for cluster refinements and sub-
clusters lookup. As Figure 12 shows, the overhead grows
slowly and at a much smaller rate than the system size.
This demonstrates that Squid can effectively scale to large
numbers of nodes while maintaining acceptable query pro-
cessing times. As expected, the routing times are high for
queries with wildcards as they involve a larger number of
clusters and correspondingly larger number of nodes.
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Figure 12. Query processing overhead at a node.

5. System Integration

5.1. The P2P Infrastructure

The participating peers in the P2P infrastructure typi-
cally run on machines at hospitals, research centers and
universities. Specialized software agents at each local site
extract metadata from the local database, and publish it in
the P2P storage and discovery system. However, rather than
storing the data, only references to the data described by
the metadata are stored. This behavior is desired because
access to data is typically restricted based on access creden-
tials. The Squid P2P infrastructure thus enables global dis-
covery (with some access control restrictions) of metadata
while allowing the peers to maintain ownership and locally
control access to their data.

Since peers typically run on dedicated machines, the ma-
chines will be likely to be robust and stay alive for longer
periods of time, and the P2P system can become quite sta-
ble. While this property is not necessary for Squid, it can
be exploited to reduce the maintenance costs of the over-
lay network.

5.2. Metadata extraction

A part of the data available locally is indexed using meta-
data, and will be used in queries. Certain image files that
don’t have very suggestive metadata associated with them
are not used. The metadata associated with a piece of data is
extracted from the local database by a software agent, who
then publishes it to Squid along with references to the data.
The agent checks the database for changes at regular inter-
vals, looking for new data. The process is illustrated in Fig-
ure 13.

An example of the XML metadata extracted from a
database record (a case) is presented in Figure 14. The val-
ues of the attributes are used as keywords. Squid constructs
the index using the keywords. The index is then used to lo-
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Figure 13. The process of publishing data in
Squid: each piece of data has associated an XML
file with metadata. The metadata is used to pub-
lish the XML and the location of the data in Squid.

cate the peer node where the XML metadata will be stored,
together with the address of the database containing more
information about this case (e.g. images, case history, etc).

<tma entry>
<CaseOrigin>New Jersey</CaseOrigin>

<Age>61</Age>
<CancerType>breast cancer</CancerType>
<Marker>Her2</Marker>
<DrugRegimen>Arimidex</DrugRegimen>

<ResponseToTreatment>high</ResponseToTreatment>
<tma entry>

Figure 14. Example of metadata (XML) extracted
from the database.

5.3. Searching for Data

The system is queried through a friendly graphical user
interface (GUI). The user query is presented to Squid as
an XML file. Squid parses the document, extracts the user
query and resolves it. The results are presented to the user
and consist of links to relevant data in databases maintained
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2. Query
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Figure 15. Searching information using Squid.

by hospitals, research centers, etc. The user can then con-
tact the owners of the data to obtain required permission to

access the data using the database portal. Note that the ac-
cess to the data is outside Squid and is subject to the hospi-
tal’s (or research center’s) regulations. Figure 15 illustrates
this process.

<tma query>
<CaseOrigin>*</CaseOrigin>

<Age>30-40</Age>
<CancerType>breast cancer</CancerType>
<Marker>*</Marker>
<DrugRegimen>chemo</DrugRegimen>

<ResponseToTreatment>high</ResponseToTreatment>
<tma query>

Figure 16. Example of a user query.

An example of a possible user query is presented in Fig-
ure 16. In the example, the user is interested in data about
patients between 30 and 40, with breast cancer, who are
treated with chemo, and have a high response to the treat-
ment. The marker type and the case origin can be anything.

6. Related Work

A key component of a collaboratory for TMA research
is a scalable and flexible P2P storage and discovery system.
Data to be shared is owned by hospitals and research centers
that would prefer to maintain ownership and control of their
data. As a result, a P2P sharing infrastructure is a natural so-
lution. The number of participanting sites can be large, and
the quantity of data to be shared is also very large, making
scalabilty of the P2P system a critical requirement. Further,
the system must provide search guratees so that even “rare”
data that exists in the sytem must be a found by a matching
query. Finally, the P2P discovery system has to be flexible,
to allow queries with ranges and wildcards. Squid P2P in-
formation storage and discovery system has all above men-
tioned properties. The rest of this section summarizes the
current landscape of P2P storage/discovery systems.

Existing information storage/discovery systems can be
broadly classified as unstructured, hybrid or structured. Un-
structured systems as Gnutella (http://gnutella.wego.com)
support complex queries (including wildcards and ranges),
but they do not offer any search guarantees, since they are
using flooding techniques to process queries. Hybrid sys-
tems, such as Napster (http://napster.com), use centralized
directories to provide guarantees, which can limit their scal-
ability.

Structured systems can be further categorized in “data
lookup” and “structured keyword” systems. Data lookup
systems [13, 8, 10] guarantee that if information exists in
the system, it will be found by the peers within a bounded
number of hops. These systems build on structured overlays
and essentially implement Internet-scale Distributed Hash



Tables (DHT). Information is located using unique and
globally known data identifiers and complex queries are not
supported. Structured keyword search systems extend data
lookup systems with search capabilities. The Squid system,
presented in this article, falls into this category. Other ap-
proaches that fall in this category include PeerSearch [14],
Reynolds and Vahdat [9] and Andrzejak and Xu [1].

Squid differs from these approaches in that it uses an
SFC-based indexing scheme to map data elements to peers
using keywords, and consequently, when resolving a query
only the data elements that match all the keywords in the
query are retrieved. It also supports flexible searching us-
ing partial keywords, wildcards, and range queries. Andrze-
jak and Xu [1] propose a discovery system based on Hilbert
SFC. Unlike Squid [12], this system uses the inverse SFC
mapping, from a 1-dimensional space to a d-dimensional
space, to map a resource to peers based on a single at-
tribute (e.g. cancer type). Squid uses SFC’s to encode the d-
dimensional keyword space to a 1-dimensional index space.
This way we can map and search a resource using multiple
attributes.

To our knowledge, there is no other large-scale dis-
tributed system for sharing TMA data. Until recently, no
standard existed to represent TMA data. Each institution
stored the data in local databases, in a custom format, mak-
ing data sharing impossible. However, as part of a recent ini-
tiative, the TMA community is developing an XML-based,
open TMA data exchange specification [2].

7. Summary and Conclusions

In this paper we presented the design of a prototype peer-
to-peer collaboratory for imaging, analyzing, and seam-
lessly sharing tissue microarrays (TMA), correlated clini-
cal data, and experimental results across a consortium of
distributed clinical and research sites. Specifically, we de-
scribed the design and evaluations of the TMA AID system
for automated TMA analysis, the TMA metadata extraction
module and the Squid P2P storage/discovery infrastructure.

TMA research is becoming increasingly popular and the
TMA research community already spans medical and re-
search institutions across the US and overseas. We believe
that enabling a peer-to-peer sharing of experimental results
and clinical outcomes data across this community could
lead to huge benefits in drug discovery and therapy plan-
ning. The peer-to-peer collaboratory presented in this paper
is an initial prototype of such a sharing infrastructure.
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