
Self-Adapting, Self-Optimizing Runtime Management of Grid Applications
using PRAGMA∗

H. Zhu and M. Parashar
The Applied Software System Laboratory

Dept. of Electrical and Computer Engineering
Rutgers, The State University of New Jersey

Piscataway, NJ 08854, USA
hailan,parashar@caip.rutgers.edu

J. Yang, Y. Zhang, S. Rao and S. Hariri
High Performance Distributed Computing

Dept. of Electrical and Computer Engineering
University of Arizona

Tucson, AZ 85721, USA
jm yang,zhang,sojanya,hariri@ece.arizona.edu

Abstract

The emergence of the computational Grid and the po-
tential for seamless aggregation, integration and interac-
tions has made it possible to conceive a new generation of
realistic, scientific and engineering simulations of complex
physical phenomena. The inherently heterogeneous and dy-
namic nature of these application and the Grid presents
significant runtime management challenges. In this paper
we extend the PRAGMA framework to enable self adapting,
self optimizing runtime management of dynamically adap-
tive applications. Specifically, we present the design, pro-
totype implementation and initial evaluation of policies and
mechanisms that enable PRAGMA to autonomically man-
age, adapt and optimize structured adaptive mesh refine-
ment applications (SAMR) based on current system and ap-
plication state and predictive models for system behavior
and application performance. We use the 3-D adaptive
Richtmyer-Meshkov compressible fluid dynamics applica-
tion and Beowulf clusters at Rutgers University, University
of Arizona, and NERSC to develop our performance mod-
els, and define and evaluate our adaptation policies. In our
prototype, the predictive performance models capture com-
putational and communicational loads and, along with cur-
rent system state, adjust processors capacities at runtime
to enable the application to adapt and optimize its perfor-
mance.

1 Introduction

The emergence of the computational Grid and the poten-
tial for seamless aggregation, integration and interactions

∗The work presented in this paper is supported by the National Science
Foundation NGS program via grant EIA-0103674

has made it possible to conceive a new generation of re-
alistic, scientific and engineering simulations of complex
physical phenomena. These next-generation scientific and
engineering simulations will be built on widely distributed
computational Grids and will provide new and important
insights into complex systems such as interacting black
holes and neutron stars, formations of galaxies, subsurface
flows in oil reservoirs and aquifers, and dynamic response
of materials to detonation. These applications however,
are inherently heterogeneous, dynamic and combine mul-
tiple physics, computational models and phases. Further-
more, the underlying Grid infrastructure is similarly hetero-
geneous and dynamic. As a result, configuring, managing
and optimizing the execution of these applications to ex-
ploit the underlying computational power in spite of its het-
erogeneity and dynamism presents significant runtime man-
agement challenges.

The overall goal of the PRAGMA project is to realize a
next-generation adaptive runtime infrastructure capable of
support self managing, self adapting and self optimizing ap-
plications on the Grid - i.e., the runtime can sense current
system and application state, anticipate system and appli-
cation behavior and proactively and reactively adapt appli-
cation execution to optimize its execution. This approach
has been inspired by human autonomic nervous system that
has the ability to self-configure, self-tune and even repair
themselves without conscience human involvement.

In this paper we extend our prototype PRAGMA
framework[1, 2] to enable self adapting, self optimizing
runtime management of dynamically adaptive applications.
Specifically, we present the design, prototype implemen-
tation and initial evaluation of policies and mechanism
that enable PRAGMA to autonomically manage, adapt and
optimize structured adaptive mesh refinement applications
(SAMR) based on current system, application state and
predictive models for system behavior and application per-



formance. We use the 3-D adaptive Richtmyer-Meshkov
(RM3D) compressible fluid dynamics application and Be-
owulf clusters at Rutgers University, University of Arizona,
and NERSC to develop performance models and formulate,
implement and evaluate our autonomic adaptation and opti-
mization policies. Specifically, we define and evaluate poli-
cies that will enable the applications to adapt to variabil-
ity in computational and communication load and available
memory. In our prototype, the predictive performance mod-
els capture computational load, communication loads and
along with current system state, adjust processor capacities
at runtime to enable the application to redistribute its com-
putations in order to adapt and optimize its performance.

The rest of this paper is organized as follows. Section
2 outlines the characteristics of dynamically adaptive ap-
plications and specifically RM3D. Section 3 presents an
overview of PRAGMA and describes its components. Sec-
tion 4 defines and evaluates policies for system sensitive
autonomic adaptations. Section 5 presents concluding re-
marks.

2 Enabling Realistic Simulations Using
Structured Adaptive Mesh Refinement

The design of the PRAGMA adaptive runtime frame-
work is driven by large-scale dynamically adaptive Grid
simulations based on Structured Adaptive Mesh Refine-
ment (SAMR) techniques. In this paper, we use the 3-
D Richtmyer-Meshkov (RM3D1) instability encountered in
compressible fluid dynamics. The RM instability occurs
when a plane shock interacts with a corrugated interface be-
tween two fluids of different densities. As a result of such
an interaction, interface perturbation starts to grow because
the transmitted shock is converging at the wave peak and di-
verging at the valley. Converging shock increases pressure
and accelerates perturbation peak into the second fluid. RM
instabilities occur over a wide range of scales, from nearly
microscopic objects, such as laser fusion pellets, to objects
of astronomical size, such as supernovae.

A key challenge in such a simulation is that the physics
exhibits multiple scales of length and time. If one were
to employ zoning, which resolves the smallest scales, the
required number of computational zones would be pro-
hibitive. One solution is to use adaptive mesh refinement
with multiple independent timesteps, which allows the grid
resolution to adapt to a local estimate of the error in the so-
lution. With AMR, the number of zones along with their
location in the problem space is continuously changing.
Besides dynamic communication and storage requirements,

1RM3D has been developed by Ravi Samtaney as part
of the virtual test facility at the Caltech ASCI/ASAP Center
(http://www.cacr.caltech.edu/ASAP).

another challenge is that the local physics may change sig-
nificantly from zone to zone as fronts move through the sys-
tem.

Structured adaptive mesh refinement (SAMR) methods
are based on uniform patch-based refinements overlaid on a
structured coarse grid. In SAMR methods, dynamic adap-
tation is achieved by tracking regions in the domain that
require higher resolution and dynamically overlaying finer
grids on these regions. These techniques start with a coarse
base grid with minimum acceptable resolution that cov-
ers the entire computational domain. As the solution pro-
gresses, regions in the domain with large solution error, re-
quiring additional resolution, are identified and refined. Re-
finement proceeds recursively so that the refined regions re-
quiring higher resolution are similarly tagged and even finer
grids are overlaid on these regions. The resulting grid struc-
ture is a dynamic adaptive grid hierarchy.

Distributed implementations of these SAMR-based sim-
ulations lead to interesting challenges in dynamic resource
allocation, data-distribution and load balancing, communi-
cations and coordination, and resource management. Fur-
thermore, the complexity and heterogeneity of the Grid
make the selection of a “best” match between system re-
sources, application algorithms, problem decompositions,
mappings and load distributions, communication mecha-
nisms, etc., non-trivial. System dynamics coupled with
application adaptivity makes application configuration and
runtime management a significant challenge. In this paper,
we address self-adaptation and optimization using dynamic
system-sensitive partitioning and load-balancing.

3 PRAGMA: A Framework for Adaptive
Proactive & Reactive Runtime Manage-
ment of Grid Applications

The overall goal of the PRAGMA project is to realize a
next-generation adaptive runtime infrastructure capable of
support self managing, self adapting and self optimizing ap-
plications on the Grid - i.e., the runtime can sense current
system and application state, anticipate system and appli-
cation behavior and proactively and reactively adapt appli-
cation execution to optimize its execution. This approach
has been inspired by the human autonomic nervous sys-
tem that has the ability to self-configure, self-tune and even
repair themselves without conscience human involvement.
PRAGMA addresses 3 key research challenges:

1. Formulation of predictive performance functions that
hierarchically combine analytical, experimental and
empirical performance models for individual elements
of a heterogeneous, distributed computational environ-
ment, and use these functions along with current sys-
tem/network state information to anticipate the opera-

2



tions and expected performance of applications for a
given workload and system configuration.

2. Development of mechanisms for monitoring and char-
acterizing the state of adaptive applications and ab-
stracting their current computational, communication
and storage requirements, and using this information
to maximize application efficiency and performance.

3. Design, development and deployment of an active con-
trol network combining application sensors and ac-
tuators, policies, and application management agents
capable of configuring application and execution en-
vironment at runtime, allocating and setting up re-
quired resources, monitoring application and system
state, proactively and reactively adapting the applica-
tion and execution environment to satisfy application
requirements, maintaining application quality of ser-
vice, improving performance and/or respond to system
failures.

The runtime management framework is composed of
three key components: a system characterization and ab-
straction component, a performance analysis module, and
an active control network module, described as follows.

3.1 System Characterization and Abstraction

The objective of the system characterization/abstraction
component is to monitor, abstract and characterize the cur-
rent state of the underlying computational environment, and
use this information to drive the predictive performance
functions and models that can estimate its performance in
the near future. Networked computational environments
such as the computational “grid” are highly dynamic in na-
ture. Thus, it is imperative that the application management
system be able to react to this dynamism and make run-
time decisions to satisfy application requirements and op-
timize performance. These decisions include selecting the
appropriate number, type, and configuration of the comput-
ing elements, appropriate distribution and load-balancing
schemes, the most efficient communication mechanism, as
well as the right algorithms and parameters at the applica-
tion level. Furthermore, proactive application management
by predicting system behavior will enable a new generation
of applications that can tolerate the dynamics of the grid and
truly exploit its computational capabilities.

3.2 Performance Analysis Module

The performance analysis module is built on Perfor-
mance Functions. Performance Functions (PF) describe the
behavior of a system component, subsystem or compound
system in terms of changes in one or more of its attributes.

Using the PF concept, we can characterize the operations
and performance of any resource in a distributed environ-
ment. Once the PFs of each resource used by an application
are defined, we compose these PFs to generate an overall
end-to-end PF that characterizes and quantify application
performance.

Our PF-based modeling approach includes three steps.
First, we identify the attributes that can accurately express
and quantify the operation and performance of a resource
(e.g., Clock speed, Error, Capacity). The second step is to
use experimental and analytical techniques to obtain the PF
that characterizes and quantifies the performance of each
system component in terms of these attributes. The final
step is to compose the component PFs to generate an overall
PF that can be used during runtime to estimate and project
the operation and performance of the application for any
system and network state. This composition approach is
based on the performance interpretation approach for paral-
lel and distributed applications [9, 10].

3.3 Active Control Network

The underlying mechanisms for adaptive runtime man-
agement of SAMR applications are realized by an active
control network of sensors, actuators, and management
agents. This network overlays the application data-network
and allows application components to be interrogated, con-
figured, and deployed at runtime to ensure that application
requirements are satisfied. Sensors and actuators are em-
bedded within the application and/or system software and
define interfaces and mechanisms for adaptation. This ap-
proach has been successfully used to embed and deploy sen-
sors and actuators for interactive computational steering of
large, distributed and adaptive applications [7].

3.4 Autonomic Runtime Management in
PRAGMA

Autonomic management, adaptation and optimization in
PRAGMA are based on three processes (see Figure 1):
Monitoring, Analysis, and Adaptation. Monitoring is re-
sponsible for detecting conditions under which the param-
eters affecting application execution deviate from their ac-
ceptable behavior or operation. For example, the applica-
tion performance may degrades severely due to increased
computational and/or network load, low available memory,
or due to software or hardware failures. Analysis encapsu-
lates the adaptation policy and determines the appropriate
application reconfiguration strategy, and the resources re-
quired to optimize the application performance. Once an
appropriate adaptation/optimization strategy is identified,
the Adaptation process initiated its execution. In what fol-
lows we present SAMR Grid applications.

3



    

Application 
   State

   
   

   
 P

ol
ic

y 
D

at
ab

as
e

   

    Performance Function

 
     

Adaptive Computional Engine

 APPLICATION (RM3D)

(GrACE)

Control Network
Sencor & Actuator

Adaptation/Optimization

Capacity Calculator 

          PRAGMA

    Performance Engine 

   
   

   
   

   
   

   
 S

ys
te

m
 S

ta
te

Pe
rf

er
m

an
ce

 M
od

ul
e

Figure 1. Autonomic Runtime Management in
PRAGMA.

4 Policies for System Sensitive Adaptation
and Optimization for SAMR Applications

Autonomic system sensitive adaptation in PRAGMA
uses system state information including computational and
communication load and available memory to select and
tune distribution parameters and to dynamically partition
and load balance the SAMR grid hierarchies. It builds on
our earlier work on adaptive runtime management[1, 2] and
system sensitive partitioning[11]. In what follows we first
summarize the operation of the adaptive system-sensitive
partitioner and then define and evaluate policies for en-
abling autonomic adaptation to variations in computational
load, available memory and available bandwidth. The pro-
totype PRAGMA implementation has been integrated into
the GrACE (Grid Adaptive Computational Engine)[8] in-
frastructure’s adaptive runtime system. GrACE is a data-
management framework for parallel/distributed AMR. The
policies are evaluated using the RM3D CFD kernel on Be-
owulf clusters at Rutgers University, University of Arizona,
and NERSC.

4.1 Adaptive, System Sensitive Runtime Parti-
tioning and Load Balancing

The adaptive system sensitive partitioner uses current
system parameters, obtained using predictive performance
functions and the resource-monitoring tools, to compute

their relative computational capacities at each of the proces-
sors as follows [11]. Let us assume that there are K proces-
sors in the system among which the partitioner distributes
the workload and CK is the relative capacity of each pro-
cessor such that,

K∑

k=1

Ck = 1 (1)

If the total work to be assigned to all the processors is de-
noted by L, then the work Lk assigned to the kth processor
can be computed as Lk = CkL. In order to enable the ap-
plication self-optimize at runtime, we need to dynamically
adjust the capacity of each processor based on its current
computational load and the state of its computing and com-
munication resources (e.g., available memory and commu-
nication bandwidth). In what follow, we describe in detail
how to dynamically adjust the capacity Ck for each proces-
sor for the RM3D application. At runtime PRAGMA mon-
itors application and system state on each processor. Appli-
cation state includes the levels of refinement, the number,
shape and aspect ration of the refined patches and the dy-
namism of the application[3, 4]. System state include com-
putational load available memory and link bandwidth. The
performance engine uses the application configuration and
this state information to select the appropriate performance
function and to predict the execution time of the applica-
tion for the next time step on each processor. Let tk(t) be
the execution time on processor k at time t, and tavg(t) be
the average execution time for the next iteration on all the
processors, i.e.,

tavg =
K∑

k=1

tk(t)/K (2)

The performance function for predicting the execution
time for the RM3D application on a processor k for a given
application load X1 and AMR level X2 is empirically de-
fined as follows:

tk = a0 + a1X1 + a2X2 + a3X1X2 +
a4X1

2 + a5X2
2 + a6X1

2X2 +
a7X1X2

2 + a8X1
2X2

2 (3)

where

a0 = 0.004928425
a1 = 1.1312091e− 005
a2 = −0.098176435
a3 = 8.264314e− 006
a4 = 7.8054074e− 013

4



a5 = 0.086556022
a6 = 2.89973974e− 012
a7 = −0.3955486e− 005

and

a8 = −1.71450838e− 012

The execution time should be adjusted based on the cur-
rent load on the processor. Our experimental results show
that the execution time of a program increased linearly with
the current system load. As a result, the execution time for
one iteration of the RM3D application as a function of the
system load is given as:

tk
′
= tkxLd (4)

Where Ld is the current system workload.
To balance the load on each processors, the execution

time for the next iteration should be the same on all proces-
sors. We can adjust the capacity of each processor such that
their execution time during the next one or more iterations
will be identical within an acceptable tolerance. The adjust-
ment factor associated with each processor can be computed
as,

Fi(t) = tavg(t)/ti(t) (5)

Consequently, if the execution time on a given processor
is less than the average time, this adjustment factor will be
greater than 1 and more work will be assigned to this pro-
cessor. However, if the execution time is greater than the
average time, the adjustment factor will be less than 1 and
the work assigned to this processor will be reduced. Once
the adjustment factor is determined, we can compute the
capacity of processor k for the next iteration as follows:

Ck(t) = Ck(t − 1)xFI(t) (6)

To make sure that the sum of the capacities on all proces-
sors is equal to 1, the new capacities are adjusted as follows:

Ck

′
(t) = Ck(t)/

K∑

k=1

Ck(t) (7)

The frequency of capacity adjustment depends on the
rate at which system/application dynamics and SAMR
adaptivity lead to an overall imbalance. The frequency of
capacity adjustment typically depends on the application
regridding frequency, and is usually done just just before
regridding so that any subsequent regridding can use the
new capacities during redistribution of load. In a similar
approach, we can use the performance functions that pre-
dict the application execution time with respect to available
communication delays as well as available memory, in con-
junction with system monitoring tools, to adjust the relative
capacity associated with each processor as outlined in[11].

4.2 Autonomic Adaptations to Computational
Load

In this subsection, we experimentally demonstrate the
application of the approach outlined above to autonomically
adapt to system load dynamics. Current load is obtained
using the on-line monitoring and performance prediction as
discussed in Section 4.1. In this experiment we compare the
performance of the application with and without the self-
optimizing runtime. Table 1 presents the performance gains
for different base grid sizes on 4 processors, while Table 2
presents the performance gains for 8 processors for a base
grid size of 64∗64∗32. We are currently benchmarking the
performance gain on larger number of processors.

Table 1. Self-optimizing performance gain for different
base grid sizes on 4 processor cluster.

Problem Execution time Execution time Percentage
size without self- with self- improvement

optimization optimization
64*16*16 438.83 362.97 17.29%
64*32*16 780.95 660.67 15.40%
64*32*32 2326.1 1681.68 27.70%
64*64*32 4165.28 3535.3 15.12%

Table 2. Self-optimizing performance gain for base grid
size of 64 ∗ 64 ∗ 32 on 8 processor cluster.

Execution time without self-optimization 2109.43
Execution time with self-optimization 1651.33

Percentage improvement 21.72%

4.3 Autonomic Adaptations to Memory Availabil-
ity

0

100

200

300

400

500

P1 P2 P3 P4

M
em

or
y 

av
ai

la
bi

lit
y 

   
(M

eg
ab

yt
es

)

Figure 2. Memory availability of 4 processors.

5



Memory availability of each processor is captured using
system monitoring tools and is used by PRAGMA to adapt
and optimize GrACE partitioning parameters, i.e. the upper
bound on the size of SAMR patches is tuned so that it con-
forms to the available memory. In the case of processors
with higher memory availability, the PRAGMA attempts to
maximize the size of SAMR patches at each level so as to
increase cache locality and reduce overall communication.
However, when the available memory is limited, PRAGMA
constrains the size of the patches to conform to the available
memory. As smaller patches can lead to increased commu-
nication overheads, PRAGMA tries to assign the smaller
refined patches and assigns them to the processors with lim-
ited memory before breaking the larger patches. The capa-
bility of PRAGMA to autonomically adapt to variation in
memory availability is evaluated using RM3D on 4 proces-
sors. A “rogue” program that random hogs memory is exe-
cuted on each of the processors and simulates the variabil-
ity in available memory. In our experiment, two processors
(P1 and P2) are set to have higher memory availability and
the other two processors (P3 and P4) have limited memory
availability. Figure 2 presents the memory availability for
the 4 processors. As the application executes, processors
P3 and P4 are assigned smaller patches to match their lim-
ited available memory. P1 and P2 on the other hand, are
assigned relatively large patches. Figure 3 and Figure 4 il-
lustrate the adaptation of the maximum patch size (in terms
of grid points) assigned to each processor based on the rel-
ative memory availability at the processor.

0

50000

100000

150000

200000

250000

300000

P1 P2

�

Partition without
memory �
adaptation �
�
 Partition with �
 memory�
 adaptation

�
�

� �
�
�

�

Processor #

�

M
ax

 p
at

ch
 s

iz
e 

(g
rid

s)

Figure 3. Max patch size (grid points) variance
for P1, P2 with two partitioning scheme.

5 Conclusions

The emergence of the computational Grid and the poten-
tial for seamless aggregation, integration and interactions
has made it possible to conceive a new generation of re-
alistic, scientific and engineering simulations of complex
physical phenomena. The inherently heterogeneous and
dynamic nature of these application and the Grid presents
significant runtime management challenges. In this paper

0

50000

100000

150000

200000

P3 P4

Processor #

Partition without
memory adaptation

Partition with
memory adaptation

M
ax

 p
at

ch
 s

iz
e 

(g
rid

s)

Figure 4. Max patch size (grid points) variance
for P3, P4 with two partitioning scheme.

we extended the PRAGMA framework to enable self adapt-
ing, self optimizing runtime management of dynamically
adaptive applications. Specifically, we presented the design,
prototype implementation and initial evaluation of policies
and mechanisms that enable PRAGMA to autonomically
manage, adapt and optimize structured adaptive mesh re-
finement applications (SAMR) based on current system and
application state and predictive models for system behav-
ior and application performance. We used the 3-D adaptive
Richtmyer-Meshkov compressible fluid dynamics applica-
tion and Beowulf clusters at Rutgers University, University
of Arizona, and NERSC to develop our performance mod-
els, and define and evaluate our adaptation policies. In our
prototype, the predictive performance models capture com-
putational and communicational loads and, along with cur-
rent system state, and adjust processor capacities at runtime
to enable the application to adapt and optimize its perfor-
mance. We are currently extending our policies to simulta-
neous adapt to variations load, available memory and com-
munication bandwidth. We are also experimenting with dif-
ferent (and larger) system configurations and working with
other applications.

References

[1] M. Parashar, and S. Hariri. PRAGMA: An Infras-
tructure for Runtime Management of Grid Applica-
tions. Proceedings of the NSF Next Generation Sys-
tems Program Workshop, IEEE/ACM International
Parallel and Distributed Processing Symposium, Fort
Lauderdale, FL, CDROM, IEEE Computer Society
Press, 8 pages April 2002.

[2] S. Chandra, S. Sinha, M. Parashar, Y. Zhang, J. Yang,
and S. Hariri. Adaptive Runtime Management of
SAMR Applications. Proceedings of the 9th Inter-
national Conference on High Performance Comput-
ing (HiPC 2002), Lecture Notes in Computer Science ,
Editors: S. Sahni, V.K. Prasanna, U. Shukla, Springer-

6



Verlag, Bangalore, India, Vol. 2552, pp 564 - 574, De-
cember 2002.

[3] S. Chandra and M. Parashar. ARMaDA: An Adap-
tive Application-Sensitive Partitioning Framework for
Structured Adaptive Mesh Refinement Applications
Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing Systems
(PDCS 02), Cambridge, MA, ACTA Press, pp. 446 -
451, November 2002.

[4] S. Chandra, J. Steensland, M. Parashar, and J. Cum-
mings. An Experimental Study of Adaptive Applica-
tion Sensitive Partitioning Strategies for SAMR Ap-
plications. Proceedings of the 2nd Los Alamos Com-
puter Science Institute Symposium (also best research
poster at Supercomputing Conference 2001), October
2001.

[5] S. Hariri, P. K. Varshney, L. Zhou, H. Xu and S.
Ghaya”, A Hierarchical Analysis Approach for High
Performance Computing and Communication Appli-
cations. Proceedings of the 32nd Hawaii International
Conference on System Sciences, Maui, HW, January
1999.

[6] S. Hariri, H. Xu, and A. Balamash. A Multilevel Mod-
eling and Analysis of Network-Centric Systems. Spe-
cial Issue of Microprocessors and Microsystems Jour-
nal, Elsevier Science on Engineering Complex Com-
puter Systems, 1999.

[7] S. Kaur, V. Mann, V. Matossian, R. Muralidhar, and
M. Parashar. Engineering a Distributed Computational
Collaboratory. Proceedings of the 34th Hawaii Inter-
national Conference on System Sciences, Maui, HW,
January 2001.

[8] M. Parashar and J. Browne. On Partitioning Dynamic
Adaptive Grid Hierarchies. Proceedings of the 29th
Hawaii International Conference on System Sciences,
Maui, HW, January 1996.

[9] M. Parashar and S. Hariri. Interpretive Perfor-
mance Prediction for Parallel Application Develop-
ment. Journal of Parallel and Distributed Computing,
vol. 60(1), pp. 17-47, January 2000.

[10] M. Parashar and S. Hariri. Compile-Time Perfor-
mance Interpretation of HPF/Fortran 90D. IEEE Par-
allel and Distributed Technology, Spring 1996.

[11] S. Sinha and M. Parashar. Adaptive Runtime Partition-
ing of AMR Applications on Heterogeneous Clusters.
Proceedings of the 3rd IEEE International Conference
on Cluster Computing

7


