Controlling Unresponsive Connections in an Active Network
Architecture

Niraj Prabhavalkar and Manish Parashar

The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854
parashar@caip.rutgers.edu

Abstract: This paper presents the design, implementation and evaluation of Limiting Greedy Connections
(LGC), an active mechanism for controlling unresponsive connections and minimizing the degradation in
network performance caused by bandwidth greedy applications. The primary objectives of the LGC mechanism
are to limit the impact of greedy connections on a congested node, to keep a loose upper bound on the packet
queue occupancy at the intermediate nodes of the network and to minimize packet loss. The LGC mechanism is
evaluated for a variety of network topologies, transmitting sources and node queue parameters, using a Java-
based active network testbed.

Key words: Active congestion control, Active networks, Random early detection.

1. INTRODUCTION

Network congestion continues to persist and grow in spite of continued research efforts in industry and
academia to eliminate it. Closed-loop congestion control mechanisms have become the norm in the Internet
today [1]. In these mechanisms, the network provides negative feedback to the transmitting sources when it is
congested or when congestion is building up. The mechanisms then rely on the transmitting sources to exercise
control by cutting back their effective rate of transmission. However, an increasing number of applications such
as voice, audio and broadcast services require a constant bit rate of transmission, while some others, e.g.
streaming and multimedia applications, Internet telephony and fast data exchange services, tend to “grab” as
much network bandwidth as available. These applications by their very nature tend to ignore or underplay
congestion-related feedback from the network.

The Random Early Detection (RED) [2] mechanism for congestion avoidance helps keep the average queue
size low, allows occasional packet bursts, and prevents global synchronization of source windows due to its
randomness in marking or dropping packets at a congested node. However, it has been proven through
simulations [3] that an unresponsive bandwidth greedy connection gets a larger than fair share of the bandwidth

at a bottleneck link when competing with responsive connections at a RED gateway. Other congestion

2 N. Prabhavalkar and M. Parashar

avoidance schemes suggested in [3] require multiple queues to be maintained at the intermediate nodes of the
network.

Active networks [4] provide an innovative networking platform that is flexible and extensible at runtime and
supports the rapid evolution and deployment of networking technologies to suit current needs. They allow the
network nodes to perform application specific computation on the data flowing through them. Although active
networking provides tremendous potential for refining current applications and introducing new ones, it is
important to demonstrate the performance benefits accrued from an active networking platform.

In this paper we present the design, implementation and evaluation of the Limiting Greedy Connections (LGC)
congestion control mechanism that uses active network capabilities to address the shortcomings of RED and
limit the degradation in network performance caused by bandwidth greedy application flows. LGC limits the
impact of greedy connections at a congested node by: (1) maintaining a loose upper bound on the buffer queue
occupancy at the intermediate nodes of the network, (2) controlling congestion caused by bandwidth greedy
applications, (3) providing a negative incentive to greedy flows, and (4) addressing scalability to handle multiple
greedy flows. It requires a single FIFO queue to be maintained at the intermediate active nodes and is optimized
for a reservation-less active network.

The rest of this paper is organized as follows. Section 2 presents work related to active network technologies.
Section 3 presents the design of the LGC active congestion control mechanism. Section 4 gives an overview of
the LGC implementation. Section 5 presents an experimental evaluation of LGC. Section 6 presents our

conclusions.

2. BACKGROUND AND RELATED WORK

2.1 Active Networks:

In active networks, the network is no longer viewed as a passive mover of bits, but rather as a more general
computational engine: information injected into the network may be modified, stored or redirected while it is
being transported. The active network architecture adopted has a direct bearing on its utility and the applications
that it can support. Proposed active network architectures include: (1) Smart Packets [5], being developed by
BBN Technologies, (2) Active Node Transfer System (ANTS) [6], a continuing research effort of the Software
Devices and Systems group at the MIT Laboratory of Computer Science, (3) SwitchWare [7], the active
networks research effort at the Department of Computer and Information Science at University of Pennsylvania
and Bellcore [8], (4) Composable Active Networks Elements (CANES) [9], the research project at Georgia
Institute of Technology, and (5) NetScript [10], a programming language and environment for building
networked systems.

There are primarily two ways in which the active network can support processing at intermediate nodes in the

network. In the language-based approach the active datagrams carry programs that are executed in a suitable

Controlling Unresponsive Connections in an Active Network Architecture 3

environment at the nodes. Users are allowed to inject code into the network making the system highly dynamic
and flexible. However, special care must be taken to safeguard the system against malicious users and buggy
code. In the menu-based approach the active node supports a fixed set of services. Designated operators may
add new services into the node. Active datagrams carry a reference to the type of servicing they require. The
implementation details of services are hidden from end user applications. We believe that the menu-based
approach gives a strict administrative control over the services that the network can offer and provides a secure
infrastructure at the cost of reduced dynamism. Hence, we adopt the menu-driven approach in designing our
active network.

The current active network architectures are in the developmental phase and a consensus on a standard
architecture has still not been reached. Table 1 shows a comparison of the active network architectures described
above. Note that the list of contributions and applications is not exhaustive. The Rutgers Active Networks

Initiative (RANI) network, which serves as the testbed for our simulation, is presented in Section 4.

Table 1 — Comparison of active network architectures

Architecture Approach Key Contributions Applications
Smart Language-based Mobile agents Network management
Packets and diagnostics
ANTS Language-based Application specific protocol Distributed applications

development and web caching
SwitchWare | Language-based Programming language Active bridges,
development, network security | bootstrap architectures
CANES Menu-based Active components WAN caches, selective
packet treatment
NetScript Language-based Designing scripts, mobile Management by
agents delegation
RANI Menu-based Design and implementation of | Controlling bandwidth
an active network testbed greedy connections,
Active Traceroute

2.2 Mechanisms for Managing Network Congestion and Unresponsive Connections:

In this paper we consider the following definitions for network congestion. They are based on the user’s

perspective and on a demand-supply relationship in the network.

0O A network is said to be congested from the perspective of user i if the utility of i decreases due to

an increase in the network load [12] (where utility refers to the user’s preference for a set of

4 N. Prabhavalkar and M. Parashar

resources). In this definition, congestion is defined as an end-user perception of the state of the
network. If the utility of the network remains unaffected for a specific user, even under highly loaded
conditions, the network is not congested for that user. However if the utility of the network is
adversely affected for other users, they will perceive the network as congested.

o If, for any interval of time, the total sum of demands on a resource is more than its available
capacity, the resource is said to be congested for that interval [12]. This definition uses a demand-
supply relation to identify congested periods in the network. The demand consists of delivering
information from end-to-end and satisfying user constraints such as allowable delays and reliability.
The supply includes, but is not limited by, network resources such as buffer space, link bandwidth and
processor speed. The network is not considered congested if all demands are met. Note that, as shown
in [12], congestion is in fact worsened by an ad-hoc increase in these network resources. Rather than
controlling congestion by increasing supply to match demand, a sound design strategy is needed to
minimize the effects of congestion.

In the following subsections we discuss two relevant schemes for congestion avoidance: Random Early
Detection (RED) [2] and Explicit Congestion Notification (ECN) [11]. The RED algorithm signals congestion
by marking or dropping packets at a gateway or a router. ECN is a specific implementation of RED in which
packets are marked to minimize packet loss during congestion at the gateway. RED has been proven to be

ineffective in controlling bandwidth greedy connections as explained below.

2.2.1 RED (Random Early Detection) gateways

RED gateways have a packet queue that is closely monitored to detect the build up of congestion. Based on
queue occupancy, the average queue length (avg) is computed using a low pass filter with an exponentially
weighted moving average. The gateway notifies connections of congestion either by dropping or by marking
packets arriving at the gateway. If a packet arrives at a full queue, it is discarded. The gateway has two pre-set
thresholds — min,, (minimum threshold) and max, (maximum threshold). For every arriving packet, avg is
computed and compared to these two thresholds. If avg is less than min,, arriving packets are neither dropped
nor marked. If avg exceeds max,, all arriving packets are marked or dropped. If avg lies between min, and
max;, the gateway notifies a connection of congestion with a probability that is approximately proportional to
that connection’s share of the bandwidth through the gateway. The average packet queue length, i.e. avg, is
computed as follows:

avg = (1I-w)*avg + w*g
where
w <1 is a queue weight that determines the degree of burstiness permissible by the gateway

q is the number of packets in the queue

Controlling Unresponsive Connections in an Active Network Architecture 5

The value of avg is computed at every packet arrival at the gateway. However in RED, when a packet arrives
at an empty queue (g = 0), avg is calculated differently. The gateway first calculates the idle time for the packet
queue as the difference between the time at which the packet arrived and the time at which the queue length
became zero. The average packet queue (avg) is then computed as if the gateway had transmitted m packets
during the idle time. The factor m is linearly dependent on the time for which the queue was idle. Thus for an
empty queue,

m = f (time - q (time))
avg = ((1 - w)**m) * avg
where
q (time) is the time at which q became zero
time 1is the time at which a packet arrives to the empty queue
time — q(time) is the idle time of the packet queue
f() is a linear function representing the rate at which the packet queue is drained

A detailed explanation of the RED algorithm can be found in [2].

2.2.2 ECN (Explicit Congestion Notification) capable gateways

Explicit congestion notification [11] is a mechanism that notifies transmitting sources of incipient congestion
by setting a bit in the IP header of the packet (i.e. packet marking). When the marked packet reaches its
destination, congestion notification is echoed back to the sender via the acknowledgement packet. The sender is
then expected to cut back the packet transmission rate. The end hosts must be capable of responding to marked

packets, i.e. they must be ECN capable, for the scheme to work.

3. THE LGC CONGESTION CONTROL MECHANISM

Limiting Greedy Connections (LGC) is an active mechanism for controlling unresponsive connections and
minimizing the degradation in network performance caused by bandwidth greedy applications. This section
describes the design and operation the LGC algorithm. The primary objectives of LGC are to limit the impact of
greedy connections on a congested node, to keep a loose upper bound on the packet queue occupancy at the
intermediate nodes of the network and to minimize packet loss. Key design requirements include.

0 The algorithm must be simple and easily deployable in the Rutgers Active Network Initiative (RANI)
testbed. Congestion leads to performance degradation of a network. Deploying a complex algorithm
would amount to consuming network resources at a time when resources are scarce.

O The designed algorithm must be efficient and effective. An efficient algorithm would have minimal
overheads. The effectiveness of the algorithm must be verified through experimentation.

0 The algorithm must accurately detect bandwidth greedy connections at a congested node. It is

important to note that unresponsive connections are not necessarily bandwidth greedy. If that were the

6 N. Prabhavalkar and M. Parashar

case our algorithm would restrict all UDP connections in the active network. Our aim is to limit the
degradation in network performance caused by transport mechanisms that tend to either increase or
maintain their effective rate of transmission of packets, despite being asked to cut back during periods
of congestion.

0 The algorithm must provide a negative incentive to greedy connections in order to limit the growth of
applications that promote them.

O The algorithm must scale well. It should be capable of handling multiple greedy connections through a

congested node.

3.1 A High-level Design of the LGC Algorithm:

Congestion not
triggered

Monitor the
nodes packet
queue

Congestion
triggered

Pick out the
greedy flow (if

Greedy flow any) All other flows
Control by mobile Control by RED
filtering mechanism mechanism

A A

Figure 1 — An overview of the LGC Congestion Control Mechanism

Limiting Greedy Connection (LGC) is an active congestion control mechanism for minimizing the degradation
in network performance caused by bandwidth greedy applications. The primary objectives of the LGC are to
keep a loose upper bound on the packet queue occupancy at the intermediate nodes of the network, and to
prevent under or over utilization of network resources. The LGC mechanism extends the RED queue

management techniques to detect the onset of congestion at an intermediate node.

Controlling Unresponsive Connections in an Active Network Architecture 7

Once congestion is detected at a node, the competing flows are divided into two distinct categories - greedy
and non-greedy flows based on the queue occupancy. We rely on RED mechanisms to control the non-greedy
flows. A process of recursive mobile packet filtering controls the “greedy” flows. Specifically, we install a
packet filter for identified “greedy” connections at the congested node and use active messages to dynamically
move the filter towards the source of the connection. This relieves the already congested node of the
responsibility of filtering packets. Furthermore, it protects the network resources between the source of the
connection and the congested node from the aggressive flow. If congestion is not controlled in spite of filtering
the greediest flow, the LGC mechanism continues to successively pick out flows in the order of their greediness
and subjects them to active filtering. Figure 1 presents an overview of the LGC mechanism. The key

components of the algorithm are described below.

3.1.1 Detection and Isolation of Bandwidth-greedy Flows

Network nodes are the first to be affected when the demand on the network exhausts available resources and
the network gets congested. When a node is congested its packet queue gets heavily occupied, eventually
forcing the node to drop packets that overflow the queue. Hence, packet queues at the intermediate nodes in a
network are the ideal location for detecting the build up of congestion. We use queue occupancy metrics to
detect bandwidth greedy connections.

In [3], Dong et. al. have proved that bandwidth consumption at a bottleneck link is directly related to the queue
occupancy of the connection at the node. A connection with a large share of bandwidth consumption on a link
has a correspondingly larger share of packet queue occupancy at the node. Furthermore, in RED gateways, it has
been observed that the maximum disparity between queue occupancy for non-greedy and greedy connections
occurs when the average queue size (avg) exceeds the maximum threshold (max,;). At this time the packet queue
is about to overflow and we label the node as being in a “severely congested” state. In this state, it becomes
easier to correctly identify a bandwidth greedy flow at the node.

To identify the greedy connection at a severely congested node, we first need to determine the fair share (f) of
a packet queue. The fair share in terms of total packet queue occupancy (p) and the number of connections in the
queue (n) is given as follows:

f = Total queue occupancy (p) / number of connections in the queue (n) ---- [a]

For example, consider an active node having total packet queue occupancy of 75 packets with 5 connections
competing for a share of the bandwidth. In this case = 75/5 = 15 packets. Ideally, to ensure a fair distribution of
the bandwidth, each connection should not have more than 15 packets buffered at the node. Note that note all
connections with more that this fair share of packets are non-responsive. A responsive connection may have
more than its fair share of packets buffered at the node due to several reasons [13] including the bursty nature of

Internet traffic, high delay-bandwidth links on the receive port of the node, and connections being in different

8 N. Prabhavalkar and M. Parashar

phases of operation. We provision for these discrepancies by a factor &, £ > 1. This factor determines the degree
of permissible disparity between greedy and non-greedy sources. Selecting a small value of £ may cause the
algorithm to incorrectly classify a responsive source as greedy. On the other hand, selecting & to be too large
will make it nearly impossible for the algorithm to detect a greedy connection. We have empirically selected & to
be log.(3n). A similar value is chosen in [14] for identifying flows using disproportionate bandwidth. However
the scheme in [14] also relies on the characterization of a conformant TCP source based on an assumed value of
round trip time for the connection. Our approach for detecting a greedy connection is purely based on the queue
occupancy of the connections when a node is severely congested. We use the observation that if the separation
between the min,, and max,, is sufficiently large, avg is unlikely to increase from min,, to max,, before providing
ample time for the responsive connections to back off. In this case, when average queue size exceeds the max,
and a large disparity occurs between queue occupancies of competing connections, it is safe to assume that the
connection with an exceptionally large number of packets buffered at the severely congested node is bandwidth
greedy and unresponsive. Continuing with our example, k = log. (3*5) or k = 2.708. We calculate the responsive
share (r) of the packet queue occupancy as:
r=[k¥] - [b]

In our example r = 2.708 *15 = [40.62 1. So, in this example, a connection that has at most 41 packets in the
queue (i.e. 54.66% of queue occupancy) during its severely congested state is considered responsive. All
connections having more than a responsive share of the packet queue are considered unresponsive. Among the
unresponsive connections identified above, the one having the maximum number of packets buffered at the
severely congested node is singled out as the “greediest” connection. Combining equations [a] and [b] we

have:

r=[(log.(3n))*(p/n) | - [c]

Finally, the percentage permissible queue occupancy (go) is given as:
qo= 100*r/p = 100* log.(3n)/n ---- [d]

Figure 3 shows the percentage permissible queue occupancy (go) plotted against the number of connections
(n) represented in the queue. The slope of the graph is steep for smaller values of n and becomes a gradual
decline as n increases. This implies that a larger variation in queue occupancy is permitted when fewer
connections cause severe congestion at a node. One anomaly appears for the special case of n=1. In this case a
connection will not be classified as greedy even if it exhausts the entire packet buffer at the node. This is in fact
necessary to ensure that a single connection will never be filtered, as there are no competing connections.

Severe congestion (avg > max,;,) at a node, caused by a greedy application(s) not responding to congestion
notification sent by the RED mechanism, are identified as described above. All other flows are assumed non-
greedy. Non-greedy (conforming) sources either respond to congestion notification or do not make a heavy

demand on network bandwidth during congested periods. In the case of these sources, the control loop is

Controlling Unresponsive Connections in an Active Network Architecture 9

stretched from the congested node to the packet source. We rely on RED mechanisms and the packet source to
control the rate at which packets enter the congested node. In the case of greedy connections, stretching the
control loop to the packet source is ineffective and hence congestion caused by greedy sources is controlled
within the network without relying on the greedy sources to cut back their effective rate of packet transmission.
We make use of the processing capability of an active network to control these greedy connections as described

below.

| =—100"log(3*n)/n |

120

100 -

Percentage queue
occupancy
» D [o]
o o o

N
o
|

0 +rrrr T T T T T

~ 0 0O M N~ T IO OO M NN — 10 0O M NN T I 0O M N~ - I O M N~
- —~ N N N O O F O L © © © N M 0O 0 O O O

Number of connections (n)

Figure 2 — Percentage of permissible queue occupancy (qo) v/s number of connections (n)

3.1.2 Controlling Bandwidth-greedy Flows — Active Filtering

To prevent the severely congested node from degrading into a drop-tail node, it becomes imperative to control
the non-conforming bandwidth-greedy flows. We feel that the only effective way to control the inflow of
packets from such a greedy connection is by actively filtering packets belonging to the connection. The packet
filtering must continue until such a time that the queue occupancy of the packet buffer at the severely congested
node is reduced to acceptable levels. Once this happens responsive connections may compete for a fair share of
the bandwidth that they were previously denied. A packet filter is first installed at the congested node for the
identified greedy connection. The filter is then progressively migrated towards the source of the greedy
connection up to the first hop node of the connection. In doing so, the packet drops are made early thus reducing
the wastage of network resources.

Filtering packets belonging to a flow is a relatively harsh mechanism of controlling congestion but is deemed
necessary, considering the damage that can be done to network resources by the (non-conforming) greedy
connection. As multiple flows could be identified as bandwidth greedy, we pick out the greediest flow and

dynamically filter packets belonging to it. If congestion is not controlled despite actively filtering the greediest

10 N. Prabhavalkar and M. Parashar

flow, the algorithm continues to successively isolate and filter the remaining identified greedy flows in the order

of their greediness.

4. LGC IMPLEMENTAION
LGC active congestion control has been implemented on the RANI (Rutgers Active Network Initiative)

testbed described below. We use the menu-based approach in designing our active network for the evaluation of
LGC, since it enables strict administrative control over the services that the network offers and provides a secure

infrastructure, although at the cost of reduced dynamism.

4.1 RANI (Rutgers Active Network Initiative) Testbed

The RANI network simulator consists of a number of active nodes connected to each other via virtual links.
For simplicity, we assume that the virtual links are reliable in delivering datagrams. A node can communicate
with other nodes in the network by sending datagrams across the virtual links. Datagrams may be marked as
either active or passive. Datagrams that do not need active processing are marked as passive datagrams. Passive
datagrams are simply stored and forwarded, similar to traditional network forwarding. Datagrams that request
additional processing at the intermediate nodes in the network are marked as active datagrams. Each datagram is
considered an atomic element and is processed individually by the active nodes.

The datagram header consists of a few fields in addition to the IPv4 header. These include a previous node
visited (PrevNode) field, which carries the IPv4 address and port number of the last active node visited by the
packet. Active servicing is requested through a type of service (70S) field in the header of the active packet.
The time to live (77L) field is modified to represent a time-based upper bound on the life of a packet in the
RANI network as opposed to placing a limit on the hop count in traditional networks. Finally, the active (Acf)
field is set to true for an active packet and is false otherwise.

The active node is implemented on the Java (v1.1) platform as a user space process on the Windows NT
operating system. The node runs at the application layer in the TCP/IP protocol stack. Application-oriented
processing of active packets may be required at the end nodes as well as intermediate nodes in the network.
Thus, we do not distinguish between intermediate nodes and end nodes. Virtual links are implemented as an
UDP (User Datagram Protocol) socket pair — one socket is used for receiving datagrams and the other for
sending them. Active or passive packets are created and subsequently injected into the active network via the

user interface at the node. These packets are propagated as UDP datagrams in the RANI network.

4.2 Mobile Filtering

The process of mobile filtering begins with the congested node extracting a packet belonging to the greedy
connection from its packet buffer. This packet reveals the source of the greedy connection. A greedy connection

identifier (GCI) consisting of the IP address and port number of the source is formed. Next, the virtual link

Controlling Unresponsive Connections in an Active Network Architecture 11

object connecting the congested node to the greedy source is obtained from the routing table using the GCI. The
node uses the GCI to create a packet filter on the receive port of this virtual link. The packet filter is installed for
a pre-determined interval of time called /time (Intermedate node filter installation time) and drops packets
originating from the identified greedy connection. The virtual link reveals the active node to which it connects.
The IP address and port number of this active node is called the PHI (Previous Hop Identifier). The node then

creates and sends an active packet destined for the previous hop requesting active filtering (ActiveFilter) service.

V7

v

0 ¢ (%)
©

Figure 3 — Mobile filtering mechanisms

For example (see Figure 3) consider a greedy connection G (identified by the procedure described in section
3.1.1) at the severely congested node N4. This connection competes with four other responsive sources (R) for
link V9. Node N4 extracts a packet belonging to greedy connection G from its packet queue and forms the GCI.
Using this GCI and looking up its routing table, node N4 learns that the packet was received over link V6 which
is connected to node N3. Node N4 first creates a packet filter on the receive side of link V6 to drop packets
belonging to greedy connection G. It then sends an active packet carrying the GCI and requesting active filter
service to node N3, the previous hop node for the identified greedy connection G. Node N3, on receiving the
active filter message similarly installs a packet filter for the GCI and propagates the active filter message to the
next hop closer to G’s source, i.e. to node N2.

This process continues till the first hop node N1 for the greedy connection is reached. A node determines
whether it is the first hop node and stop propagating the mobile filter as follows. Prior to creating the active
filter message each active node performs a previous hop check. The check consists of a comparison of the GC/
and the PHI fields. If they match it means that the filter has reached the first hop node for the connection G. The

packet filter is then installed for a longer duration of time FHTime (First Hop filter installation zime) and the

12 N. Prabhavalkar and M. Parashar

node does not propagate the active filter message any further. Sending the active filter message to the source of
a greedy connection would be futile. Continuing with the above example, when the active filter message reaches
node N1, both PHI and the GCI are set to G and the filter is not propagated any further.

Once a greedy connection is identified and filtered at the congested node, the packet queue occupancy is
expected to drop. However, the value of avg changes gradually as compared to the instantaneous queue length,
closely following a low pass filter mechanism. As a result, its value may continue to be greater than max,, even
after the queue occupancy has decreased. This will once again trigger the LGC algorithm. To ensure that LGC is
not triggered multiple times within a short interval of time, a minimum idle period, Tx, is chosen between two
consecutive triggers of LGC.

The selection of the two timing parameters, /Time and FHTime, is critical to the success of the active filter
mechanism. The /Time parameter is based on the time taken for the active filter to migrate from an intermediate
node to the previous node along the path of the greedy connection. If its value is set too high, both these nodes
will suffer the overheads of actively filtering a greedy connection. If its value is set too low, active filtering at
the intermediate node will terminate before it begins at the previous node. From empirical measurements on the
RANI network, we set this parameter to about five seconds.

The choice of FHTime determines the period for which the greedy connections actively filtered at its first hop
node. If FHTime is too small, the unresponsive connection will not be filtered for a sufficiently long period and
may congest the network once again. If it is too large, the connection may close but the packet filter will
continue to exist adding unnecessary overheads at the node at which it is installed. We set FHTime to about 100
seconds in the RANI test bed.

The LGC algorithm is summarized in Appendix 1.

5. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the ability of the LGC algorithm to correctly identify and filter a
greedy connection. Since the LGC algorithm is triggered only during severe congestion, in all our experiments
we first force a node into severe congestion. Note that in order to reduce complexity, only necessary
components of the RED algorithm were implemented.

The evaluation was conducted using the RANI testbed running on Intel Pentium II 300 MHz processor
machines running Windows NT and interconnected via a 10BaseT Ethernet LAN. The experiments presented
below simulated both responsive and unresponsive connections and demonstrate the effectiveness of the LGC
algorithm. Sources are simulated using a packet generator that can be selected to behave as a non-greedy or a
greedy source. The transport mechanism for a non-greedy connection is simulated as a TCP source. A detailed
explanation of the TCP protocol can be found in [15]. The transport mechanism for a greedy connection is

simulated as a constant packet-rate source.

Controlling Unresponsive Connections in an Active Network Architecture 13

5.1 Experiment 1 — Basic Operation

In this experiment we test the ability of the LGC algorithm to correctly identify and filter a greedy connection.
The test network consisting of six responsive sources, one greedy source, one interconnecting node and a sink
node is shown in Figure 4.Node 1 is the greedy source and nodes 2,3,4,5,6 and 7 are responsive sources. Node 7
behaves as a responsive source and is targeted for severe congestion. Node 8 is the common sink for all the
sources. Virtual links are shown as double-ended arrows. Node 7 is forced into a severely congested state by
having all the sources transmit packets at approximately the same time. To prevent packet drops due to
expiration of the TTL field, all packets injected into the network have an initial TTL of 10 seconds. The queue
parameters for node 7 are set with queue weight = 0.02, maxy, (Upper threshold) = 25 and buffer size = 50. The
responsive sources inject 50 packets each with an initial TCP slow-start threshold set to 16. The greedy source

injects 200 packets in 5 bursts with an inter-burst duration of 1 second.

Figure 4 — Network topology for experiments

In Figure 5, the x-axis shows the packets arriving at node 7 and the y-axis shows the queue size measured in
packets. The solid line (y = 25) represents the configured value of maxy, at the node. Notice that the low pass
filtering mechanism of RED causes the average queue size to change slowly in comparison to the actual queue
size. For brevity, the first few packet arrivals have been omitted in Figure 5. Initially as the responsive sources
open their windows, the actual queue size remains low (<10). Once the competing sources have sufficiently
large windows, the actual queue size increases rapidly. When the average queue size crosses maxy, viz. 25 in this
case, the LGC algorithm is triggered. From the node’s packet queue we observe that the total queue occupancy
is 39 packets. Of these, 21 packets belong to connection 1, 4 packets belong to connection 2, 5 packets belong to
connection 3, 3 packets belong to connection 4 and 2 packets each to belong connections 5, 6 and 7. In all, there

are seven active connections at node 7. Fair queue occupancy is 39/7 = 5.57. With a permissible factor k of

14 N. Prabhavalkar and M. Parashar

log.(21), the permissible queue occupancy is [5.57 *3.0445 1= 17 packets. Connection 1 has 21 packets in the
node queue and is correctly identified as an unresponsive connection. Since Node 7 is the first-hop node for this
connection, the migration of the packet filter was not necessary and a packet filter for connection 1 was installed

at Node 7 for a duration FHTime (100) seconds.

— Inst. Qsize
Basic operation A Qsize
——— Upper Threshold
50
, e T
40 | A.. LGC algorithm is
o triggered here
‘w 30
)
>
S 2
c B: Average queue
10 .
size restored below
07%”\HHHHHHHHH\HHHHHHHHHHH\HHHHHHH\HHHHHHH\\\H\\\H\\H\\\HHHHHH\\\H\\\H\\H\\\HHHHHH\\\H\\\H\\H\\\HHHHHHHHHHHHHHHHHHHHHHHHHH\HHHH
vy >~ QN —m en »n - N — " \n - N W N N - N — N wn
O > 0 © —w AN on < O I~ 0 OO AN on < v O v N O
—_— e e e e e = = = N AN NN AN N AN AN on
Packet Arrivals from 65th packet to 313th packet —>

Figure 5 — LCG - Basic Operation

Subsequently all packets arriving from connection 1 were filtered out at node 7. The throughput for responsive
connections was observed to be 100% after the LGC algorithm came into effect, but the greedy connection had a
throughput of 53.5% due to active filtering at node 7. Note that if the RED algorithm were implemented in its
entirety, the throughput observed for the responsive sources would be less than 100%, since the algorithm would
drop all packets arriving at the node when it is severely congested. However, this detail is overlooked in the
evaluation of LGC since RED is not implemented in its entirety i.e. arriving packets at the node under severe
congestion are not dropped or marked. We only wish to isolate the greedy connections and dynamically filter
them to prove that the algorithm is successful.

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop in the queue occupancy once
this connection is filtered. This can be observed in the region of the graph just after the LGC algorithm is
triggered. Eventually the queue size is controlled at point B. The time lapse (marked as 7 in Figure 5) between
the LGC algorithm coming into effect (point A) and the reduction in the average queue occupancy (point B),
occurs due to the low-pass filtering mechanism in the calculation of the average queue size. It confirms the
requirement for the presence of an idle time (7x > T) between two successive triggers of the LGC algorithm. If
the LGC algorithm were not suspended for time 7x, it would be triggered multiple times since avg exceeds

maxy, for duration T, despite active filtering of the greedy connection.

Controlling Unresponsive Connections in an Active Network Architecture 15

Inst. Q size

m—— Avg. Q size

Effect of non greedy unresponsive connection

Upper Threshold

30

25
Qu
eue 20 -
siz

120 131 142 153 164 175 186 197 208 219 230 241 252 263 274 285 296 307 318 329 340 351 362

Packet Arrivals

Figure 6 — Plot of queue size v/s packet arrivals for non-greedy connections

The LGC algorithm must also ensure that non-greedy unresponsive connections must not be filtered. To verify
this requirement we repeated the above experiment with source node 1 injecting 200 packets in 15 bursts with an
inter-burst duration of 3 seconds. Node 1 now simulates a constant packet-rate source making a moderate
demand on network bandwidth at the congested node 7. Figure 6 shows the actual and average queue sizes
plotted against packet arrivals at node 7. The bursty nature of the connections causes the spikes in the value of
instantaneous queue size at the intermediate node 7.

Here, we observe that the average queue size at node 7 remains below 10 at all times implying that demand on
resources does not exceed supply. Thus node 7 does not get congested and LGC is not triggered. Since queue

occupancy remains low (<25), there is no packet loss and throughput is 100% for all the seven connections.

5.2 Experiment 2 — Mobility of The Active Filter

OOy
’ ~N—_

Figure 7 — Network Topology for Experiment 2

16 N. Prabhavalkar and M. Parashar

After the LGC algorithm identifies and filters a greedy connection at the congested node, it uses active
messages to move the filter dynamically towards the source of the identified connection. In doing so, packets
belonging to the greedy connection are filtered ‘closer’ to their source, thereby reducing the wastage in network
resources. In this experiment we study the movement of the mobile filter towards the source of the greedy
connection and the effect of installing the mobile filter at a node. The network topology for the experiment is
shown in Figure 7.

Node 1 is an unresponsive packet source where as nodes 2, 3, 4 and 5 are responsive packet sources that
provide cross traffic to congest [3. Nodes 1, 12 and I3 are interconnecting nodes that forward packets. Node S is
the sink for all the packet sources. Node I3 has a buffer size of 60, maxy, set to 35 and w set to 0.02. The
responsive sources inject 250 packets with an initial TCP slow-start threshold set to 32. The unresponsive source
injects 250 packets in 5 bursts spaced 200 milliseconds apart.

In order to monitor the packet flow in the network we label the packets from the various sources as follows.
Packets from source 1 are labeled al through a250. Packets from source 2 are labeled b1 through b250. Packets
belonging to sources 3, 4 and 5 are labeled similarly.

First, we consider the activities at node I3. In Figure 8, the x-axis shows the packets arriving at node 13 and the
y-axis shows the queue size measured in packets. For brevity, the first few packet arrivals have been omitted in
the chart. When the average queue size crosses 35, the LGC algorithm is triggered. At this time, I3 had received
and forwarded 122 packets belonging to source 1, 84 packets belonging to source 2, 91 packets belonging to
source 3, 85 packets belonging to source 4 and 66 packets belonging to source 5, making a total of 448 packets.

This is shown by the dotted line in Figure 8.

Inst. Q Size
Avg. Q Size
45 Upper Threshold
40
O:as /,_\\-\ /\-NV_\V_{M\

u ~ 7 :
E30 1
1
U .
1
Ezo 1
1
15 :
1
810 1
1
I . !
1
V4 1

E 0 1

Lo T o TS R o B T T = S @3y LoD IRRoEpaEEREER

Packet Arrivals from 324th to 573rd

Figure 8 — Plot of queue size v/s packet at Node 13

Controlling Unresponsive Connections in an Active Network Architecture 17

Based on queue occupancy at the node, source 1 is identified as ‘bandwidth greedy’. Consequently a packet
filter for source 1 is installed for /7ime seconds. 13 also sends an active filter message to the previous hop node
12. Now, packets belonging to source 1 are dropped at I3 as long as the packet filter remains in operation. Soon,
node 12 installs a similar packet filter and the responsibility of controlling the greedy source 1 shifts one hop
closer to the source.

This process continued till the filter migrates to the first hop node. These actions are deduced from the packet
drops for source 1 which occur successively at nodes I3 followed by 12 and finally at I1. In Figure 9, the y-axis
represents the number of packets and the x-axis marks the nodes I1, 12, I3 and the sink. The bars represent the
arrival and departure of packets belonging to source 1 at the nodes 11, 12 and 13.

Let’s start with node I3 where packet filtering begins. When the LGC algorithm was triggered, I3 had received
and forwarded packets al through al22. It then installs the packet filter for source 1 and sends an active filter
message to 12. 13 then drops packets al123 through al35 due to active filtering. Now, 12 installs a packet filter for
source 1 and propagates the filter message to node I1.Subsequently 12 drops packets al36 through al73 and
packets al74 through a250 were filtered at I1. Totally packets al23 through a250 are dropped after LGC is
triggered.

I Entered
300 I Forwarded

R

Sink

[Dropped
250

200

150

100

50 -

Nodes

Figure 9 — Packet flow in Experiment 2 after LGC has been triggered

5.3 Experiment 3 - Multiple Bandwidth Greedy Connections

In this experiment we test the ability of the LGC algorithm to handle multiple bandwidth greedy connections.
The network topology for this experiment is shown in Figure 10. Nodes 1 and 3 are greedy sources where as
nodes 2, 4, 5, 6 and 7 are unresponsive connections making a moderate demand on the network. Node 8§ is the
common sink for all the sources. Node 1 injects 300 packets in a single burst and node 3 injects 300 packets in 3
bursts with an inter-burst spacing of 3 seconds. The other nodes (2, 4, 5, 6 and 7) inject 120 packets each in 30

bursts with 2 seconds inter-burst period.

18 N. Prabhavalkar and M. Parashar

Figure 10 — Network Topology for Experiment 3
The queue parameters for node 7 are set with queue weight = 0.04, maxy, = 35 and buffer size = 250. A large

buffer size is deliberately chosen to observe the queue occupancy at node 7 and prevent tail dropping of packets.

A — Active filtering of greedy source 1 begins
B — Active filtering of greedy source 2 begins

C — Node relieved from congested state
D — Second greedy source congests the

_ Inst. Q Size
m— Avg. Q Size

60

>

50

40+

Q
Si30°

[}
[}
[}
[}
[}
i
[}
20 |
|
[}
[}
[}
[}
I
[}

10+

0
11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30 31 33 34 35
01 2 3 4 5 6 7 8 901 2 3 456 7 8 90 1 2

Packet

Figure 11 — Queue size v/s packet arrivals for multiple greedy sources

Controlling Unresponsive Connections in an Active Network Architecture 19

In Figure 11, the x-axis shows the packets arriving at node 7 and the y-axis shows the instantaneous and
average queue sizes measured in packets. The line (y = 35) represents maxy,. For brevity, the first 110 packet
arrivals at node 7 have been omitted in the chart. Initially the average queue size remains low (<10). Once the
greedy source begins injecting packets, the average queue size increases till maxy, is crossed (point A). Now, the
LGC algorithm is triggered and active filtering of greedy source 1 begins.

At this point the instantaneous queue size drops but the available bandwidth is soon taken up by the second
greedy source. This is observed within the 7x portion of the graph at point D. The difference here is that
although the average queue size crosses the upper threshold (35 in this case), the LGC algorithm is not triggered.
The reason being that a minimum time lapse of 7x is maintained between successive triggering of the LGC
algorithm. After the 7x timer expires (point B), the LGC algorithm successfully identifies and filters the second
greedy source. Queue occupancy is now controlled and the node emerges from its congested state (point C).

Packets arriving at the common sink node 8 reveal that throughput for the moderate connections were 100%
each (mainly due to the large buffer size at node 7). Greedy connection 1 had a throughput of 57.33% and
greedy connection 2 had a throughput of 46% due to active filtering at node 7.

5.4 Observations

At the congested node, if there are a large number of connections represented in the node queue, it is observed
that the greedy connection tends to shut out the responsive connections and grab a large share of the bandwidth
making it easier to identify greedy connections.

There may be some cases in which multiple greedy connections compete for a limited share of the bandwidth
in such a way that they restrict other responsive connections, but all of the greedy connections have individual
queue occupancies within permissible limits. In this scenario the active node gets congested but the LGC
algorithm fails to detect the greedy connections. For example, lets assume that there are ten connections through
a node of which five are non-greedy and five are greedy sources. It is possible that when avg > maxy, each of the
greedy sources have taken up 15% of the queue leaving the remaining 25% of the queue to be shared amongst
the five responsive sources. The permissible value of queue occupancy is obtained from eq. [c] in section 4.8.1.
Thus,

qgo = 100%* log.(3*n)/n = 100*log.(30)/10 = 34.01%

Since all the connections including the greedy connections have queue occupancy well below this limit, the
LGC algorithm does not detect them and the five responsive connections continue to receive a disproportionate
share of the bandwidth. Although this example demonstrates a shortcoming of the LGC algorithm we note that
such scenarios are an exception rather than the rule. It is a rare occurrence for multiple greedy connections to
congest a particular node at the same time and get synchronized in such a way that they make identical demands

on network bandwidth.

20 N. Prabhavalkar and M. Parashar

The overheads of the LGC algorithm include maintaining timers and connection identifiers when the node is
severely congested. However, these overheads are minimal in comparison to the benefits accrued in limiting
greedy connections and relieving the node from its congested state. If extreme measures such as actively
filtering out the greedy connections are not taken there is a high possibility of the node buffer being reduced to a
drop-tail queue.

If the packet filter were to be statically positioned at the congested node, the node would suffer the overhead
of filtering packets at a time when its resources were scarce. Secondly, network resources such as processing
time and bandwidth would be wasted between the source and the congested node at which the packets are being
filtered. For the above reasons we considered it beneficial to use active network technologies to migrate the

packet filter towards the source of the greedy connection and protect network resources.

6. CONCLUSIONS

In normal closed-loop congestion control mechanisms, the network provides negative feedback to the
transmitting sources when it is congested or when congestion is building up. These methods rely on the
transmitting sources to exercise control by cutting back their effect rate of transmission. However, as bandwidth
greedy applications tend to “grab” as much network bandwidth as available, getting such sources to respond to
congestion signals is sometimes not possible. RED mechanism provides an excellent means for congestion
avoidance, but it falls short when confronted by a greedy connection.

In this paper, we presented the design, implementation and evaluation of the LGC active congestion control
mechanism on the RANI testbed. LGC uses active network capabilities to address the shortcomings of RED and
limits the degradation in network performance caused by bandwidth greedy application flows. A process of
recursive, active mobile filtering is used to throttle non-conformant bandwidth-greedy flows close to the source.
This relieves the congested nodes and minimizes wasted network resources. Experimental results validate the

utility of the LGC mechanism in limiting the effects of bandwidth-greedy connections.

7. ACKNOWLEDGEMENTS

The research presented in this paper was supported in part by the National Science Foundation via grants
numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA-0120934 (ITR) awarded to Manish
Parashar, and by Telecordia Technologies, Morristown, NJ 07960. The authors would like to thank Prathima

Agrawal for her contributions to this research.

8. REFERENCES
1. C.Yangand A. V. S. Reddy, 4 Taxonomy for Congestion Control Algorithms in Packet Switched Networks.

IEEE Network Magazine July/August 1995, Volume 9, Number 5.

Controlling Unresponsive Connections in an Active Network Architecture 21

2.

10.

11.

12.

13.

14.

15.

S. Floyd and V. Jacobson, Random Early Detection Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, Vol. 1, No. 4, pp 397-413, Aug. 1993.

D. Lin and R. Morris, Dynamics of Early Detection. Proceedings of ACM SIGCOMM 97 Conference,
Cannes, France, September 1997.

D. L. Tennenhouse, J. M. Smith, W. David Sincoskie, David J. Wetherall and Gary J. Minden, 4 Survey of
Active Network Research. IEEE Communications Magazine, January 1997, pp. 80-86.

B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, R. D. Rockwell and C. Partridge, Smart Packets:
Applying Active Networks to Network Management, ACM Transactions on Computer Systems, February
2000, Vol. 18, No. 1, pp. 67-88.

D. Wetherall, J. Guttag and D. L. Tennenhouse, ANTS: 4 Toolkit for Building and Dynamically Deploying
Network Protocols. Proceedings of IEE OPENARCH’98, San Francisco, CA, April 1998, pp. 117-129.

D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J. T. Moore, C. A. Gunter, S.
M. Nettles and J. M. Smith, The SwitchWare Active Network Architecture. IEEE Network Magazine,
Special issue on Active and Controllable Networks, May/June 1998, Vol. 12 no. 3, pp. 29-36.
SwitchWare, Department of Computer and Information Sciences, University of Pennsylvania and Bell Core

- http://www.cis.upenn.edu/~switchware/ (visited 06/10/2002)

Composable Active Network Elements (CANES), College of Computing, Georgia Institute of Technology
and Department of Computer Science, University of Kentucky - http://www.cc.gatech.edu/projects/canes/

(visited 06/10/2002)

NetScript, Department of Computer Science, Columbia University,

http://www.cs.columbia.edu/dcc/netscript/ (visited 06/10/2002).

S. Floyd, TCP and Explicit Congestion Notification , ACM Computer Communication Review, V. 24 N. 5,
October 1994, p. 10-23

S. Keshav, Congestion Control in Computer Networks. PhD Thesis published at UC Berkeley, Department
of Electrical Engineering and Computer Science, TR-654, September 1991.

B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C.
Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang, Recommendations on Queue
Management and Congestion Avoidance in the Internet, Request for Comments: 2309, April 1998.

S. Floyd and K. Fall, Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM
Transactions on Networking, Vol. 7, Issue 4, pp. 458-472, Aug. 1999.

Information Sciences Institute, University of Southern California, Transmission Control Protocol, Request

for Comments: 793. September 1981.

http://www.cis.upenn.edu/~switchware/
http://www.cc.gatech.edu/projects/canes/
http://www.cs.columbia.edu/dcc/netscript/

22 N. Prabhavalkar and M. Parashar

APPENDIX I
The LGC algorithm is listed below. The variables used are described in Table 1.

Table 1 — Variables used in the LGC algorithm

avg Calculated average queue size

maXxy, Upper threshold for node queue

Suspen LGC | A Boolean variable used to ensure a minimum idle time between consecutive triggers of LGC

ITime The time for which the packet filter for the greedy connection is installed at an intermediate
node

FHTime The time for which the packet filter for the greedy connection is installed at the First Hop Node

Tx The minimum idle time between successive triggers of the LGC algorithm

The LGC Algorithm

1. initialization
avg = 0, Suspend LGC = false
maxth, 1Time, FHTime and Tx are pre-set and configurable.
2. The LGC algorithm is shown below
If (avg 2 maxth && (! Suspend LGC)) {
Set Suspend LGC to true for Tx
Find out responsive share of packets for a connection (r)
Determine the greedy connection and corresponding GCI
Determine virtual link on which its packets arrive and PHI
If (GCI != PHI) {
Install filter for GCI for ITime on virtual link
Send filter message to previous hop node
}
Else {
Install filter for FHTime for GCI
}
}
3. The process routine of the active filter message
Process (active filter message) {
Extract GCI from payload of active packet received
Determine the virtual link on which its packets arrive and PHI
If (GCI != PHI){
Install packet filter for GCI for ITime on virtual link

Send filter message to previous hop node

Controlling Unresponsive Connections in an Active Network Architecture

}
Else {
Install filter for FHTime for GCI

}

23

