A Framework for Adaptive Cluster Computing
using JavaSpacesl;I

Jyoti Batheja and Manish Parashar
The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering,
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854
{jbatheja, parashar}@caip.rutgers.edu

Abstract

Heterogeneous networked clusters are being increasingly used as platforms for resource-
intensive parallel and distributed applications. The fundamental underlying idea is to provide large
amounts of processing capacity over extended periods of time by harnessing the idle and available
resources on the network in an opportunistic manner. In this paper we present the design,
implementation and evaluation of a framework that uses JavaSpaces to support this type of
opportunistic adaptive parallel/distributed computing over networked clusters in a non-intrusive
manner. The framework targets applications exhibiting coarse grained parallelism and has three key
features: (1) portability across heterogeneous platforms, (2) minimal configuration overheads for
participating nodes, and (3) automated system state monitoring (using SNMP) to ensure non-
intrusive behavior. Experimental results presented in this paper demonstrate that for applications
that can be broken into coarse-grained, relatively independent tasks, the opportunistic adaptive
parallel computing framework can provide performance gains. Furthermore, the results indicate that

monitoring and reacting to the current system state minimizes the intrusiveness of the framework.

Keywords: Adaptive cluster computing, Parallel/Distributed computing, JavaSpaces, Jini, SNMP.

Introduction

This paper presents the design, implementation and evaluation of a framework that uses
JavaSpaces [1] to aggregate networked computing resources, and non-intrusively exploits idle

resources for parallel/distributed computing.

' The research presented in this paper is based upon work supported by the National Science Foundation under Grant

Number ACI 9984357 (CAREERS) awarded to Manish Parashar.

Traditional High Performance Computing (HPC) is based on massively parallel processors,
supercomputers or high-end workstation clusters connected by high-speed networks. These
resources are relatively expensive, and are dedicated to specialized parallel and distributed
applications. Exploiting available idle resources in a networked system can provide a more cost
effective alternative for certain applications. For example, a large percentage of the resources at an
enterprise are idle after regular working hours and can be exploited by stealing their idle
computational cycles for useful work. This option allows the enterprise to leverage its existing
computational resources, rather than investing in dedicated parallel/distributed systems. However,
there are a number of challenges that must be addressed before such opportunistic adaptive cluster
computing can be a truly viable option. These include:

e Heterogeneity: Cluster environments are typically heterogeneous in the type of resources, the
configurations and capabilities of these resources, and the available software, services and tools
on the systems. This heterogeneity must be hidden from the application and addressed in a
seamless manner, so that the application can uniformly exploit available parallelism.

e Intrusiveness: A key requirement for exploiting idle resources is that the effect of stealing
computational cycles from resources on local applications should be minimized. That is, a local
user should not be able to perceive that local resources are being stolen for foreign
computations. Furthermore, inclusion into the framework should require minimal modifications
to existing (legacy) code or standard practices.

e System configuration and management overhead: Incorporating a new resource into the
cycle stealing resource cluster may require system configuration and software installation. This
includes installing and configuring system software to enable application execution, as well as
installing the application software itself. These modifications and overheads must be minimized
so that cluster can be expanded on the fly to utilize all available resources.

e Adaptability to system and network dynamics: The availability and state of system and
network resources in a cluster can be unpredictable and highly dynamic. These dynamics must
be handled to ensure reliable application execution. This requires monitoring system/network
state, and reacting to changes by adding or removing a resource from the available pool,
modifying scheduling policies, changing task configurations, etc.

e Security and privacy: Secure and safe access to resources in the cluster must be guaranteed so
as to provide assurance to users making their systems available for external computations.
Policies must be defined and enforced to ensure that external application tasks adhere to the

limits and restrictions set on resource/data access and utilization.

This paper presents the design, implementation and evaluation of a framework for adaptive and
opportunistic cluster computing that address these issues. The framework builds on Java and
JavaSpaces technologies. Java provides support for naturally managing the heterogeneity in the

b

cluster. Furthermore, its “sandbox” execution model enables us to handle security and privacy
concerns. JavaSpaces provides mechanisms for scheduling, global deployment, and execution of
tasks on remote hosts. It also provides support for coordination and communication between
processes and tasks. The application task deployment protocol is designed to minimize
configuration and management costs. Cluster nodes are remotely configured and application code is
dynamically loaded at runtime. Finally, the framework supports a sustained monitoring of the state
of the cluster resources using SNMP (Simple Network Management Protocol) [2][3], and provides
policies and mechanisms to automatically handle system/network dynamics so as to minimize
intrusiveness at the cluster nodes. The framework is evaluated using 3 real-world applications, viz.
ray tracing, stock option pricing, and web page pre-fetching. The evaluation demonstrates that for
this class of coarse-grained applications, adaptive cluster computing can provide significant
performance advantages. Furthermore, the evaluation shows that monitoring and reacting to the
state of the cluster resources enables the framework to non-intrusively maximize its utilization of
the cluster resources.

The rest of this paper is organized as follows. Section 2 presents background material and
discusses related work in adaptive cluster computing. Section 3 provides an overview of the
Jini/JavaSpaces infrastructure and describes its use for adaptive computing. Section 4 describes the
architecture and operation of the proposed framework. Section 5 presents an experimental
evaluation of the framework. Section 6 presents our conclusions and outlines current and future

work.

Background and Related Work

Heterogeneous networked clusters are being increasingly used as platforms for resource-
intensive parallel and distributed applications. The fundamental idea is to provide large amounts of
processing capacity over extended periods of time by harnessing the idle and available resources on
the network in an opportunistic manner. Recent advances in cluster computing have followed two
approaches:

Job level parallelism: In this approach, entire application jobs are allocated to available idle
resources for computation. The state of the resources are monitored, and if a resource becomes
unavailable (e.g. an interactive user logs in), the job(s) executing on it are migrated to a different

resource that is available. Systems supporting job level parallelism are required to support

mechanisms for check-pointing the state of an application job on one machine and restoring the
state on a different machine, to enable job migration. The Condor system [4][S] supports cluster-
based job level parallelism.

Adaptive Parallelismq In the adaptive parallelism approach, an application job is broken into
smaller tasks, and scheduling and load balancing schemes are used to distribute these tasks across
idle resources in the cluster. This approach targets applications that can be easily decomposed into
independent tasks. In this case, the available processors are treated as part of a resource pool. Each
processor in the pool aggressively competes for application tasks. Under adaptive parallelism, the
pool of processors executing a parallel program may grow or shrink during the program execution
based upon the processor availability. Adaptive computing techniques for parallel/distributed
processing can be divided into cluster based and web based approaches. Cluster based systems
revolve around deploying computational tasks across loosely coupled networked resources. These
architectures exploit available resources within a networked cluster, such as a LAN, for
parallel/distributed computing. Web based approach extends this model to resources over the
Internet. The collection of machines connected over the Internet; if aggregated, can potentially

provide unparalleled processing capacity. Web based approaches attempt to exploit this potential.

Adaptive Parallelism Job Level Parallelism

> Condor I

Cluster Based - ATLAS

4>[ObjectSpace I

Charlotte

Javelin

Web Based

Figure 1 — Frameworks for Opportunistic Cluster Computing

2 To best of our knowledge, the term “adaptive parallelism” was coined by the Piranha project [7].

Systems supporting Adaptive parallelism include cluster-based systems such as Piranha [6][7],
Atlas [8], and ObjectSpace/Anaconda [9], and web-based systems such as Charlotte [10][11],
Javelin [12], and ParaWeb [13]. Systems such as Entropia [14] and [15] have been
widely successful in effectively solving real world problems by aggregating vast unused processing

cycles from resources spread across the Internet.

2.1. Related Work in Opportunistic Cluster Computing
Frameworks supporting opportunistic cluster computing are presented in Figure 1. These
frameworks are summarized in Table 1. Note that most of these systems (including the framework
presented in this paper) implement the master worker paradigm in one form or the other — the
master is responsible for generating “work” and managing its execution, while workers consume
the work and perform the computations. A key shortcoming of existing systems is that they require
manual management — for example they present the user with a graphical interface for stopping
background tasks at a worker when the machine is no longer available. Such event driven interfaces
at the application layer are easy to implement on the worker machines, but require knowledge and
explicit effort on the user's part. The framework presented in this paper makes three key
contributions:
e [t uses Java as the core programming language to ensure portability across heterogeneous
systems.
e [t uses remote worker configuration and dynamic loading of application code to minimize setup
and configuration overheads.
e [t provides a dedicated network management module that uses SNMP to identify idle resources,
monitors system state, and enables the system to automatically adapt to the current system state

to minimize intrusiveness.

Table 1 Comparison of Opportunistic Cluster Computing Frameworks

Architecture Category Approach Key Contributions Sample Applications
Condor [4][5] | Cluster Job level parallelism, Queuing mechanism, High Throughput Monte
based Asynchronous offloading | Check pointing and Carlo Simulations
of work to idle resources | process migration, Remote
on a request basis procedure call and
matchmaking
Piranha [6][7] | Cluster Adaptive parallelism, Implementation of Linda Monte Carlo simulations,
based Centralized work Model using tuple spaces, | LU Decomposition, Ray
distribution using the survives partial failure, Shade
master worker paradigm | efficient cycle stealing
ATLAS [8] Cluster Adaptive Parallelism, Fault Tolerance, improved | Double recursion to
based Hierarchical work scalability due to compute Fibonacci
stealing hierarchical model, safe numbers, (POV-Ray) Ray
heterogeneous execution, Tracing

mailto:SETI@home

no administration effort
ObjectSpace/ | Cluster Job level parallelism at Eager scheduling, Traveling Salesman
Anaconda [9] | based brokers automated/manual job Problem
replication
Charlotte Web based | Adaptive parallelism, Abstraction of Distributed | Matrix multiplication,
[10][11] Centralized work Shared Memory, directory | statistical physics
distribution using look up service for idle application for computing
downloadable applets resource identification, the 3D Ising model
embedded lightweight
class server on local hosts,
direct inter-applet
communication, fault
tolerance
Javelin [12] Web based | Adaptive parallelism, Heterogeneous, secure The Mersenne Prime
Centralized work execution environment, Application: a primality
distribution using portability to include test
downloadable applets Linda and SPMD
programming models
ParaWeb [13] | Web based | Adaptive parallelism, Implementation of Java Parallel matrix
Centralized work Parallel Runtime System multiplication
distribution using and Java Parallel Class
scheduling servers Library to facilitate upload
and download of execution
code across the web

3.

Jini & JavaSpaces: An Overview

Jini [16] technology, developed by Sun Microsystems, is a runtime infrastructure that assists in
building and deploying truly distributed systems that are organized as a federation of services [17].
It provides a set of APIs, mechanisms and network protocols that enable addition, discovery, access
and removal of services. Jini presents a service-based model of distributed computing; a Jini service
joins a federation to share its services with clients while a Jini client joins a federation to gain
access to services. Discovery of services by clients is facilitated by a lookup service. The lookup
service primarily maintains a mapping between each Jini service and its attributes. Whenever a Jini
enabled device advertises its service, the lookup server adds its information to the map. A Jini client
can request the lookup service for a list of Jini servers that match its desired attributes.

A typical interaction in a Jini based distributed system is as follows. Jini service providers first
locate the Jini lookup service. This is done using the Jini discovery protocol. The protocol consists
of broadcasting a presence announcement by dropping a multicast packet on a well-known port.
This packet contains the host’s IP address and port number so that the lookup server can contact it.
When the lookup server receives this broadcast request, it returns its address to the host. Once it has
located the lookup service, the service provider uses the join protocol to become a part of the
federation and register itself with the lookup service. When a Jini client connects to the system, it

first locates the lookup service using the Jini discovery protocol. The client then requests a service

by sending the desired list of attributes to the lookup server. The lookup server does an associative
lookup and returns a list of services matching these attributes. It is then up to the Jini client to select
a specific Jini server from the returned list and directly request service.

JavaSpaces is a Java implementation of a tuple-space [6][7] system, and is provided as a Jini
service. A JavaSpaces is a shared, network accessible repository for Java objects [18], and provides
a programming model that views applications as a collection of processes cooperating via the flow
of objects into and out of one or more spaces. The JavaSpace API leverages the Java type semantics
and provides operations to store, retrieve and lookup Java objects in the space.

Several aspects of distributed computing are inherently handled by JavaSpaces. It provides
associative lookup of persistent objects. It also addresses fault-tolerance and data integrity through
transactions. All access operations to objects in the space such as read/write/take can be executed
within a transaction. In event of a partial failure, the transaction either completes successfully or
does not execute at all. Using a JavaSpaces-based implementation allows transacting executable
content across the network. The local instances of the Java objects retrieved from the space are
active — i.e. their methods can be invoked and attributes modified. JavaSpaces provides
mechanisms for decoupling the semantics of distributed computing from the semantics of the
problem domain. This separation of concerns allows the two elements to be managed and
developed independently [19]. For example, the application designer does not have to worry about
issues such as multithreaded server implementation, low level synchronization, or network

communication protocols.

* Collects tasks

» Executes
* Returns results
into space
Writing
Input
Parameters

« Collects tasks

Vaster >

* Creates tasks « Executes
* Loads into Space * Returns results
« Awaits collection of into space

resuts <mm

Collect
Result
Parameters
Legend: » Collects tasks
» Executes
——» Writing Task * Returns results
Ar—— Writing Results into space

Figure 2 — Master-Worker Parallel Computing using JavaSpaces

3.1. JavaSpaces and Parallel Computation

JavaSpaces naturally supports the master-worker parallel/distributed-computing paradigm. In this
paradigm (see Figure 2), the application is distributed across available worker nodes using the bag-
of-tasks model. The master produces independent application tasks and puts them into the space.
The worker consumes the tasks from the space, computes on these tasks, and places results back
into the space. This approach supports coarse-grained applications that can be partitioned into
relatively independent tasks. It offers two key advantages. (1) The model is naturally load-balanced.
Load distribution in this model is worker driven. As longs as there is work to be done, and the
worker is available to do work, it can keep busy. (2) The model is naturally scalable. Since the tasks
are relatively independent, as long as there are a sufficient number of task, adding workers

improves performance.

A Framework for Opportunistic Adaptive Parallel Computing on Clusters

The framework presented in this paper employs JavaSpaces to facilitate adaptive (opportunistic)
master-worker parallel computing on networked clusters. It targets applications that are sufficiently
complex and require parallel computing, that are divisible into relatively coarse-grained subtasks
that can be solved independently, and where the subtasks have small input/output sizes. Real world
applications having these characteristics span many disciplines including those evaluated in this
paper, viz. financial modeling (stock-option pricing), visualization (ray-tracing) and web-serving

(page-rank based prefetching).

4.1. Framework Architecture

A schematic overview of the framework architecture is shown in Figure 3. The framework
consists of 3 key components: the Master Module, the Worker Module, and the Network
Management Module.
Master Module: The master module runs as an application level process on the master processor.
It hosts the JavaSpaces service and registers it with the Jini substrate. The master module defines
the problem domain for a given application. It decomposes the application into independent tasks

that are JavaSpaces enabledE! and places these tasks into the space.

3 JavaSpace required the Objects being passed across the Space to be in a Serializable format. In order to transfer an entry
to or from a remote space, the proxy to the remote space implementation first serializes the fields and then transmits it

into the space.

Worker Module: The worker module runs as an application level process on the workers nodes. It
is a thin module and is configured at runtime using the Remote Node Configuration Engine — i.e.
worker classes, providing the solution content for the application, are loaded at runtime. This
minimized the overheads of deploying application code. Note that the workers need not be Jini
aware in order to interact with the master module. Interaction between the master and the worker
processes is via virtual, shared JavaSpaces. The worker module operation is controlled by the
network management module using the Rule-Base Protocol as described in the following section.
Network Management Module: The network management module serves two functions, viz.
monitoring the state of worker machines, and providing a decision-making mechanism to facilitate
the utilization of idle resources and ensure non-intrusive code execution. In order to exploit idle
resources while maintaining non-intrusiveness at the remote nodes, it is critical that the framework
monitors the state of the worker nodes, and uses this state information to drive the scheduling of
tasks on workers. The Monitoring Agent component of the network management module performs
this task. It monitors the state of registered workers and uses defined policies to decide on the
worker's availability. The policies are maintained by the Inference Engine component and enforced
using the Rule-Base Protocol.

The monitoring agent uses SNMP [2][3] to monitor remote worker nodes. The SNMP layer
consists of two components: the manager component that runs on the SNMP server and the worker-
agent component that runs on the worker nodes to be monitored. The monitoring agent uses JNI
(Java Native Interface) to access the SNMP layer and query the worker-agents to get relevant

system parameters such as CPU load and available memory.

Master Worker Network Management
Module Module Module

Remote Node
Configuration Engine

Worker
Process

Master —

Process é{

Inference
Engine

Common Services

Rule Based
Protocol

" Java Native
Java Space Monitoring
Infrastructure Agent

S Rule Based

Protocol

PLATFORM INFRASTRUCTURE (OPERATING SYSTEM) I

Figure 3 — Framework Architecture

4.2. Framework Operation

The framework implements the master-worker pattern with JavaSpaces as the backbone. The
overall operation of the framework consists of three potentially overlapping phases, viz. task-
planning, compute, and result-aggregation. During the fask-planning phase, the master process first
decomposes the application problem into sub tasks. It then iterates through the application tasks,
creates a task entry for each task, and writes the tasks entry into the JavaSpaces. During the
compute phase, the worker process retrieves these tasks from the space using a simple value-based
look up. Each task object is identified by a unique ID and the space in which it resides. If a
matching task object is not available immediately, the worker process waits until one arrives. The
worker classes are downloaded at runtime using the Remote Node Configuration Engine. Results
obtained from executing the computations are returned to the space. Worker operation during the
compute phase is monitored and managed by the network management module using the rule-base
protocol as described in section 4.4. During the result aggregation phase, the master module
removes results written into the space by the workers, and aggregates them into the final solution.

If the resource utilization on a worker node becomes intolerable, the network management
module sends a stop/pause signal to the worker process. On receiving the signal, the worker
completes the execution of the current task and returns its results into the space. It then enters the

stop/pause state and does not accept tasks until it receives a start/resume signal.

4.3. Remote Node Configuration

Remote node configuration uses the dynamic class loading mechanism provided by the Java
Virtual Machine, which supports locating and fetching the required class files, consulting the
security policy, and defining the class object with the appropriate permissions. The implementation
of the remote configuration engine consists of a simple Java application starter program that can
load jar and class files from URL at runtime. Required worker classes are downloaded from a web
server residing at the master in the form of executable jar files.

Our modification of the network launcher [20] provides mechanisms to intercept calls from the
inference engine component of the network management module and use them to signal the
executing worker code. This enables the network management module to manage workers using the
rule-base protocol. The signals are handled by remote node configuration engine. As preempting
worker execution to process the signal may result in the current task being lost, the node
configuration engine waits for the worker to complete its current task, and forwards the signal

before the worker fetches the next task.

4.4. Dynamic Worker Management for Adaptive Cluster Computing

Inference Engine SNMP Senver SNMP Client Worker
Application

1.

Senver Listens for
:l Client

Connections

sends its I.P. Address
13_ to Sener

Server assigns a Client I.D.

| 2.
U\ Client connects and Q

T g

b

Server invokesSNMP

Senice for the Client‘

5.

U\Invokes Inference Engine

6.
Decides signal for the T ‘
Client
7 \ \
T
L Sends signal to Client through the Server u 8.
Client sendssignal to /U 9
Application [:l
‘ Computations are
110. Goto Step 5. performed

Figure 4 — Rule-Base Protocol for Adaptive Worker Management

The rule-base protocol manages worker execution, and defines the interaction between the
network management module and the worker module (see Figure 4) to enable the worker to react to
changes in its system state. It operates as follows:

The SNMP client, which is part of the worker module, initiates the workers participation in the
parallel computation by registering with the SNMP server at the network management module. The
inference engine, also at the network management module, maintains a list of registered workers. It
assigns a unique ID to the new worker and adds its IP address to the list. The SNMP server then
continues to monitor the state of workers in its list.

The primary SNMP parameter monitored is the average worker CPU utilization. As these values
are returned they are added to the respective entry in the worker list. Based on this return value and
programmed threshold ranges, the inference engine makes a decision on the worker’s current
availability status and passes an appropriate signal back to the worker. Threshold values are based
on heuristics. The rule-base currently defines 4 types of signals in response to the varying load

conditions at a worker, viz. Start, Stop, Pause and Resume. Based on the signal it receives, the

worker can be in 3 possible states: Running, Paused, or Stopped. The worker state transitions are

shown in Figure 5 and are described below.

Running

Paused

Figure 5 - Worker State Transition Diagram

Running: The worker enters the running state in response to a Start or Resume signal. Start or
Resume signals are sent when the CPU load at the worker is in the range of 0% - 25%. While in this
state, worker is considered idle and can start participating in the parallel application. On receiving a
Start signal, the worker initiates a new runtime process. The new thread first goes through the
remote class loading phase and then starts off a worker thread for task execution. If the worker
receives a Resume signal, however, it does not require loading of the worker classes since they are
already loaded into the worker’s memory. It simply removes the lock on the interrupted execution
thread and resumes computations.

Stopped: The worker enters this state in response to a Stop signal. This may be due to a sustained
increase in CPU load caused by a higher priority (possibly interactive) job being executed. The
cutoff threshold value for the Stopped state is in the range of 50% to 100%. While in this state the
node can no longer be used for computations. On receiving the Stop signal, the executing worker
thread is interrupted and shutdown/cleanup mechanisms are initiated. The shutdown mechanism
ensures that the currently executing task completes and its results are written into the space. After
cleanup the worker thread is killed and control returns to the parent process. The next time this
worker becomes available, a transition to the Running state will require the worker classes to be

reloaded.

Paused: The worker enters this state in response to the Pause signal. This state indicates that the
worker node is experiencing increased CPU loads and is not currently idle, and hence it should
temporarily not be used for computation. However, the load increase might be transient and the
node could be reused for computation in the near future. Threshold values for the Paused state are
in the range of 25% - 50%. Upon receiving this signal, the worker backs off, but unlike the stop
state the back off is temporary, i.e. until it gets the resume signal. This minimizes worker
initialization and class loading overheads for transient load fluctuations. As in the stop state, the
pause goes into effect only after the worker writes the results of the currently executing task into the
space. However the worker process is not destroyed in this state but only interrupts the execution
until the resume signal is received hence bypassing the overhead associated with remote node

configuration.

Experimental Evaluation of the Framework

The JavaSpaces-based opportunistic cluster-computing framework is experimentally evaluated
using three “real-world” applications: (1) a financial application that uses Monte Carlo (MC)
simulation for option pricing, (2) a scientific ray tracing application, and (3) a web page pre-
fetching technique for server optimization. The evaluation consists of three experiments. The
objective of the first experiment is to study the scalability of the application and our framework,
and to demonstrate the potential advantage of using clusters for parallel computing. The second
experiment measures the costs of adapting to system state. It measured the overheads of monitoring
the workers, signaling, and state-transitions at the workers. We used a set of synthetic load
generators to simulate dynamic load conditions at different worker nodes. Finally, the third
experiment demonstrates the ability of our framework to adapt to the cluster dynamics.

The experiments are conducted on PC clusters running Windows NT (version 4.0). The web
page pre-fetching and parallel ray tracing applications are evaluated on a five PC cluster, with an
800MHz. Intel Pentium III processors and 256 MB RAM. The option-pricing scheme is evaluated
on a larger cluster with thirteen PCs. The PCs in this cluster had 300 MHz. processors and 64MB
RAM. Due to the high memory requirements of the Jini infrastructure, the master module in both

cases runs on an 800 MHz. Intel Pentium III processor PC with 256 MB RAM.

5.1 Application Description
The characteristics of the three applications are summarized in Table 2. The applications and

their implementations within the framework are briefly described below.

Table 2 Classification of the Evaluated Applications

Metrics Option Pricing Scheme Ray Tracing Scheme Pre-fetching Scheme
Scalability Medium High Low

CPU Memory Adaptable depending on High Low

Requirements number of simulations

Task No No Yes

Dependency

5.1.1 Parallel Monte Carlo Simulation for Stock Option Pricing

A stock option is a derivative, that is, its pricing value is derived from something else.
Parameters such as varying interest rates and complex contingencies can prohibit analytical
computation of options and other derivative prices. Monte Carlo simulation, using statistical
properties of assumed random sequences is an established tool for pricing of derivative securities. A
stock option is defined by the underlying security, the option type (call or put), the strike price, and
an expiration date. Furthermore, factors such as interest rate and volatility, affect the pricing of an
option. These financial terms are explained in greater depth in [21]. In our implementation we use
Monte Carlo (MC) simulations, based on the Broadie and Glasserman MC algorithm [22], to model
the behavior of options and account for the various factors affecting its price.
Implementation Overview: In our implementation, the main MC simulation is the core parallel
computation that is distributed. Input parameters are fed in using a simple GUI provided in the
implementation. The simulation domain is divided into independent tasks and the MC simulations
are performed in parallel on these tasks. The total number of simulations is defined by an external
input. Each MC task consist of two iterations, the first one obtains a high estimate and the second
one obtains a low estimate. For the experimental evaluation presented below, the number of
simulations was set to 5000. The problem domain is divided into 50 tasks, each comprising of 100
simulations. As each MC simulation consists of two independent iterations, a total of 100 sub-tasks
were created and put into the JavaSpaces. The workers took the task from the space and performed
the MC simulations.
5.1.2 Parallel Ray Tracing

Ray tracing is an image generation technique that simulates light behavior in a scene by
following light rays from an observer as they interact with the scene and the light sources. Ray
tracing algorithms estimate the intensity and wavelengths of light entering the lens of a virtual
camera in a simulated environment. The quantities are estimated at discreet points in the image
plane that correspond to pixels. These estimates are taken by sending rays out of the camera and

into the scene to approximate the light reflected back to the camera. This process requires

identifying points of intersection among rays and objects in the environment, a technique known as
ray casting. The cost for computing individual pixels can vary dramatically, and depends on the
complexity of the model being rendered and the algorithm employed. Parallel implementations of
ray casting algorithms typically distribute the calculations for a set of pixels in an image in order to
minimize the overall rendering time. These applications are ideal candidates for the replicated-
worker pattern as they are made up of a number of independent and computationally identical tasks.
Implementation Overview: The ray tracing [23] application begins with a model of the scene, and
an image plane in front of the model that is divided into pixels. Rendering an image involves
iterating through all the pixels in the plane and computing a color value for each pixel. This
computation involves tracing the rays of light that pass from a viewpoint (such as an eye or the
virtual camera) to the model, through the pixel in the image plane. The computation is identical for
all pixels - only the parameters describing the pixel’s position differ. In our experiments the
600X600 image plane was divided into rectangular slices of 25X600 thus creating 24 independent
tasks. The input for each task consisted of the four coordinates describing the region of
computation. The output produced by each task was relatively large, consisting of an array of pixel
values. In our implementation, the master generated the tasks and put them into the JavaSpaces.
Each worker took a task, computed the scan lines for the pixel and returned the resultant array of
pixel points to the JavaSpaces. The master then collected the results and combined them to
compose the image.
5.1.3 Web Page Pre-fetching based on Page Rank

The overall objective of this application is to optimize access time experienced by the web user
by pre-fetching web pages that are likely to be requested by the user. The page rank-based pre-
fetching approach [24], [25] uses the link structure of pages requested to determine the “most
important” pages they link to, and to identify the page(s) to be pre-fetched. This scheme targets
access to web page cluster, i.e. groups of closely related pages such as pages of a single company.
The underlying premise of the approach is that the next page requested by the user is typically
based on the current and previous pages requested. Furthermore, if the requested pages link to an
“important” page, that page has a higher probability of being the next one requested. The relative
importance of the linked pages is calculated using the Page Rank technique [25]. The important
pages are then pre-fetched into the cache for faster access.
Implementation Overview: For each web page requested, the Page Rank algorithm performs the
following operations. First the page’s URL is scanned to see if it belongs to a web page cluster. If it
does, the link contained in the page to other pages on the local server are parsed out and used to

populate a stochastic matrix constructed as follows:

1. Each page i corresponds to row i and column i of the matrix.

2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those n
successors of page j, 0 otherwise.

The stochastic matrix is then used to compute the ranks of the linked pages. The core of the
Page Rank algorithm consists of matrix operations and iterative eigenvector computations [26].
Parallelism is achieved by distributing the matrix and performing the computation on local portions
in parallel. Inter-iteration dependencies in these computations have to be resolved as it limits the
overall speedup. Note that Page Rank computations for different web page clusters are independent
and can also be performed in parallel. In our experiments, the two matrices used are of sizes 500 x
500 and 500 x 1. Tasks are created by dividing the matrices into strips of size 20, leading to 25

tasks. The workers take these tasks from the JavaSpace and perform the iterations in parallel.

5.2 Experimental Results
5.2.1 Scalability Analysis

This experiment measures the overall scalability of the application and the framework. In this
experiment, we measure the maximum worker time (Max Worker Time), total task planning time
(Task Planning Time), total task aggregation time (Task Aggregation Time), and overall parallel
execution time (Parallel Time) for the different applications as the number of worker nodes is
increased. The computation time at a worker is measured from the time it first accesses a task from
the space to the time it puts its final result back into the space. Max Worker Time is the maximum
of the worker computation times among all workers participating in the application. Task Planning
Time is measured at the master process and is the time required for the task-planning phase. This
involves dividing the application into tasks and placing these tasks into the space. Task Aggregation
Time is also measured at the master process and is the time required for collecting the results
returned by the workers from the space, and aggregating them into a meaningful solution. The task
aggregation time is expected to follow the maximum worker time, since the master needs to wait
for the last task to complete before it finishes aggregating the results. Finally, Parallel Time is
measured at the master process and is the time required for the entire application computation from

start to finish. It includes the times listed above.

5.2.1.1 Parallel Monte Carlo Simulation for Stock Option Pricing

The results of the scalability experiment for the option pricing application are plotted in Figure
6. As seen in the figure, there is an initial speedup as the number of workers is increased to 4. The
speedup deteriorates after that. Initially, as the number of workers increase, the total tasks are more

evenly distributed across the available workers causing the maximum worker time to decrease. As

expected, the initial part of the Parallel Time curve (up to 4 processors) closely follows the
Maximum Worker Time curve. As the number of worker increase beyond 4, the amount of work is
no longer sufficient to keep the workers busy, and the Task Planning Time now dominates Parallel
Time. Here, the workers are able to complete their tasks and return the results to the space much
faster than the master is able to create new tasks and put them into the space. As a result, the
workers remain idle waiting for a task to become available, causing the scalability to deteriorate.

This indicates that the framework favors computationally intensive coarse-grained tasks.

8000
7000 A\
6000 % A

5000 -
4000 -
3000 -
2000 -
1000 -

Time (ms)

0 +HO—0—0——0—0—0——0——0——0—0—0——0—¢
1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Workers

—&—# of machines —#— Max worker time —A— Parallel Time
—>»— Task Planning —¥— Task aggregation

Figure 6 - Scalability Analysis - Option Pricing Application

5.2.1.2 Parallel Ray Tracing

25000
20000 -
£ 15000
[}]
£ 10000
=
5000 -8
0 & % % % %
1 2 3 4 5
Number of Workers

—&—# of machines —— Max Worker Time —A— Parallel Time
—>— Task Planning —¥— Task Aggregation

Figure 7 — Scalability Analysis — Ray Tracing Application

The results of the scalability experiment for the parallel ray tracing application are plotted in
Figure 7. As seen in the figure, Max Worker Time scales reasonably well for this application. This
is because worker computations in this application are computationally intensive. The Parallel Time
is dominated by the maximum worker time and results in good overall application scalability. Note
that the Task Planning Time curve is constant at 500 ms. in this case. The Task Aggregation Time
curve follows the Max Worker Time curve as expected. Embarrassingly parallel applications with
coarse grained computationally intensive task, such as the parallel ray tracing application, scale

well and are suited to the JavaSpaces-based cluster computing framework presented.

5.2.1.3 Web Page Pre-fetching based on Page Rank

The results of the scalability experiment for the web page pre-fetching application are plotted in
Figure 8. As seen in the figure, the application scales up to 4 processors. This application has a low
task planning overhead. This is primarily due to the small amount of data that needs to be
communicated between the master and the workers. Task Aggregation Time dominates the Parallel
Time in this case. This involves assimilating the results returned by the workers and creating the
resultant matrix. The increased task aggregation times as shown in the plot illustrate this fact. The

segment size of the strips, and hence the task size can be further optimized to improve scalability.

3000

2500 -

2 2000
E

< 1500 -
£

= 1000

500 - —

0 . : - : .

2 3

Number of Workers

K |

>~ N

i
5

N

—&—# of machines —l— Max Worker Time —&— Parallel Time
—«— Task Planning —¥— Task Aggregation

Figure 8 - Scalability Analysis —-Web Page Pre-fetching Application

5.2.2 Adaptation Protocol Analysis

In this experiment, we analyze the overheads involved in signaling worker nodes and adapting
to their current CPU load. In order to enable repeatable loading sequences for the experiments, we
implemented two load simulators as part of the experimental setup. Load simulator 1 simulates
different types of data transfers, such as RTP packets for voice traffic, HTTP traffic, and

multimedia traffic over HTTP via Java sockets, originating at the workers. This load simulator was

designed to raise the CPU usage level on the worker from 30% to 50%. The second load simulator
(load simulator 2) raised the CPU utilization of the worker machines to 100%. The results of this
experiment for the three applications are presented below. Each result consists of two parts: Part (a)
plots the CPU usage history on the worker machine throughout the experiment. Part (b) provides an
analysis of the signaling times, and lists the Client Signal and Worker Signal times. Client Signal
time is the time at which the SNMP client on the worker machine receives the signal. Worker
Signal time is the time taken for the signal to be interpreted by the worker and the required action
completed. The key observation in this experiment is that the adaptation overhead is minimal in all
cases. Furthermore, the large remote class loading overhead at the workers is avoided in the case of

transient load increases using the pause/resume states.

5.2.2.1 Parallel Monte Carlo Simulation for Stock Option Pricing

Simulation Run (STOP)
20 S
Class Loadin, ' LCERE } §8%;
100 | sosssansng 2o Run (PAUSE) Paus] 170763
f@ 1
g 901
2 A stop i 00738
S 061
§1 60 Start 6
g 40 | Start Stop Restart | Pause | Restart
8 O Worker Signall 1061 | 60256 | 92182 | 120723 | 150777
20 B Client Signal | 0 60246 | 90440 | 120603 | 150777
! ! Time (ms)
0 ‘ B Client Signal ® Worker Signal I
Figure 9(a) - Worker CPU Usage Figure 9(b) - Worker Reaction Times

Figure 9 — Adaptation Protocol Analysis - Option Pricing Application

The results of this experiment for the stock option pricing application are plotted in Figures 9(a)
and 9(b). These plots show the worker behavior under simulated load conditions. In Figure 9(a), the
peaks represent the times when the worker receives and reacts to the signals. The first peak is at
80% CPU usage and occurs when the worker is started (i.e. a Start signal). This sudden load
increase is due to the remote loading of the worker implementation. The next peak at 100% CPU
usage occurs when load simulator 2 is started on the worker. This causes a Stop signal to be sent to
the worker and directs the worker to back off. Load simulator 2 is then stopped allowing the
worker to once again become available and to do work. Load simulator 1 is now started causing the
next peak at 46% CPU usage. A Pause signal is now sent to the worker temporarily suspending

work execution. Finally, the simulator 1 is stopped causing a Resume signal to be sent to the

worker. As seen in Figure 9(b) the worker reaction times to the signal received is minimal in each
case.
5.2.2.2 Parallel Ray Tracing

The results of this experiment for the ray tracing application are plotted in Figures 10(a) and
10(b). As seen in Figure 10(a), the first peak is at 42% CPU usage and occurs when the worker is
started (i.e. a Start signal). This sudden load increase is once again due to the remote loading of the
worker implementation. The next peak at 100% CPU usage occurs when load simulator 2 is started
on the worker. This causes a Stop signal to be sent to the worker and directs the worker to back off.
Load simulator 2 is then stopped allowing the worker to once again become available and to do
work. Load simulator 1 is now started raising the CPU load to 50% to 55%. A Pause signal is now
sent to the worker temporarily suspending work execution. Finally, the simulator 1 is stopped
causing a Resume signal to be sent to the worker. As seen in Figure 10(b) the worker reaction times
to the signal received is once again minimal in each case. The Ray Tracing application is resource
intensive as illustrated by the various intermittent peaks at 78 to 100% CPU usage. These spikes

occur when the task is being computed at the worker node.

120) Resume

Pause

100 S

* lL
Start 1072
L 2 p 0
Start Stop Restart Pause Restart

Restart

; ; 1
Simulation Run (ST sigsnulatlon Run (PAUSE

Signal

[e]
o

Stop

CPU Usage (%)
[2]
o

40
I IlWorker Signal | 1072 | 151238 | 182363 | 347320 | 391533
20 { Client Signal 0 151238 | 181271 | 331467 | 391533
Time (ms)
0 : ‘Client Signal B Worker Signal I
Figure 10(a) —- Worker CPU Usage Figure 10(b) - Worker Reaction Times

Figure 10 - Adaptation Protocol Analysis - Ray Tracing Application

5.2.2.3 Web Page Pre-fetching based on Page Rank

The results of this experiment for the pre-fetching application are plotted in Figures 11(a) and
11(b). As seen in Figure 11(a), the first peak is at 75% CPU usage and occurs when the worker is
started (i.e. a Start signal). This sudden load increase is once again due to the remote loading of the

worker implementation. The next peak at 100% CPU usage occurs when load simulator 2 is started

on the worker. This causes a Stop signal to be sent to the worker and the worker backs off. Load
simulator 2 is then stopped allowing the worker to once again become available and to do work.
Load simulator 1 is now started raising the CPU load to 50%. A Pause signal is now sent to the
worker temporarily suspending work execution. Finally, the simulator 1 is stopped causing a
Resume signal to be sent to the worker. As seen in Figure 11(b) the worker reaction times to the

signal received is once again minimal in each case.

120

Simulation Run (STOP) Resumd,,,—ptu
——

Class Loadng _ 8dd
T 4
801 & Restart S/
R . . Stop
° f Simulation Run (PAUSE -15] 164
S 60 l\ Stargy 1162
3
E_ 40 ' b R Po N Start Stop | Restart| Pause | Restart
© '\ I \1 W Worker Signal 1162 | 121164 152449 | 424130| 427054
20 lmClientSignal | 0 | 121164] 151187 395889 427044
d Time (ms)
<
0 Mt v ‘! Client Signall Worker SignaI
Figure 11(a) - Worker CPU usage Figure 11(b) - Worker Reaction Times

Figure 11 - Adaptation Protocol Analysis — Web Page Pre-fetching Application

5.2.3 Analysis of Dynamic Worker Behavior Patterns under Varying Load Conditions

This experiment studies the dynamic behavior patterns at the workers under varying load
conditions. It consists of three runs: In the first run none of the workers were loaded. In the second
and third runs, the load simulator used to simulate high CPU loads are run on 25% and 50% of
available workers respectively. Two plots are presented for each application run in this experiment.
The first plot presents an analysis of the application behavior under the different load conditions.
The four parameters measured are Maximum Worker Time, Maximum Master Overhead, Task
Planning and Aggregation Time, and Total Parallel Time. Maximum Worker Time is the maximum
value for worker computation time across all workers participating in the application. Maximum
Master Overhead is the maximum instantaneous time taken by the master for task planning and
aggregation for a particular task. Both the maximum worker time and the maximum master
overhead are expected to remain constant for all three runs of the experiment. Task Planning and
Aggregation Time is total time taken by the master during the task planning and aggregation
phases. Finally Total Parallel Time is the time taken for the execution of the entire application and

is measured at the master processor. Both the Task Planning and Aggregation Time and the Total

Parallel Time are expected to increase with increased load on the worker machines. The second plot

shows the work distribution among all the workers for the three cases.

5.2.3.1 Parallel Monte Carlo Simulation for Stock Option Pricing

I \ \
. — 1423039
Total Parallel time 272272
by 241467
& 1 \
) i 1422948
8 Task Plannlr?g and 279132
= Aggregation 241397
[0]
g Maximum Master 33553?
é Overhead 29953
[0]
2 Maximum Worker []8103
. 8352
Time 580
0 100000 200000 300000 400000 500000
Time (ms)
‘UWithout Loading Bl oading 3 Workers OlLoading 6 Workers ‘

Figure 12(a) — Execution Time Analysis (12 Workers) - Option Pricing Application

The results of this experiment for the option pricing application are plotted in Figures 12(a) and
12(b). As seen in Figure 12(a), as the number of workers being loaded increases, the total parallel
computation time increases. This is because the computational tasks that would have been normally
executed by the loaded workers are now offloaded and picked up by the available workers. The task
planning and aggregation times also increase, as the master now has to wait for the worker with the
maximum number of tasks to return all its results into the space. The maximum master overhead

and the maximum worker time remains the same across all three runs as expected.

®
‘é 16
o 14 1
aoo12 1 -
2 10 A
5 6
o 4 i
3 2
E o- |
z ~ q a v < 1 A q a2
N N < 'S ' N S N < " » N
o&o o&o o&o o&o o&o o&o o&o o&o o&o NI
RO T R N R Q\O‘ Q\O‘ @0‘
Worker Nodes
‘UWithout Loading BLoading 3 Workers OLoading 6 Workers ‘

Figure 12 (b) — Tasks Executed per Worker (12 Workers) - Option Pricing Application

Figure 12(b) illustrates how task scheduling adapts to the varying load conditions. It shows that
the number of task executed by a worker depends on its current load. Loaded workers execute

fewer tasks causing the available workers to execute larger number of tasks.

5.2.3.2 Parallel Ray Tracing

1360909
Total Parallel Time ” Pa47627

1 \
Task Planning and 13604068

Aggregation ”‘-45/30

Maximum Master 79164
Overhead 29162

317626
MaxWorker Time H’

0 50000 100000 150000 200000 250000 300000 350000 400000

Time (ms)

Measurement Category

‘ @ WithoutLoading @ Loading 1Worker [JLoading 2 Workers

Figure 13(a) - Execution Time Analysis (4 Workers) — Ray Tracing Application

N
N

Worker 1 Worker 2 Worker 3 Worker 4
Worker Nodes

Number of Tasks Executed
o N H» O o] 8

‘ @ WithoutLoading m Loading 1Worker Loading 2 Workers ‘

Figure 13(b) - Tasks Executed per Worker (4 Workers) — Ray Tracing Application

The results of this experiment for the ray tracing application are plotted in Figures 13(a) and
13(b). As expected (see Figure 13(a)), the total parallel computation time increases as the number
of workers loaded increases. The task planning and aggregation times also increase as before. In
this application, the Max Worker Time and the Maximum Master Overhead also increase. This is
increase was due to an increased latency experienced by the worker while returning tasks to the

space. A possible cause for this latency is the system or network conditions at that instant. Note that

Jini being a network-based protocol does not offer any real-time guarantees. Figure 13(b) illustrates

the task distribution across the workers for the three cases.

5.2.3.3 Web Page Pre-fetching Scheme based on Page Rank

The results of this experiment for the web page pre-fetching application are plotted in Figures
14(a) and 14(b). As expected (see Figure 14(a)), the total parallel computation time increases as the
number of workers loaded increases. The task planning and aggregation times also increase as
before. The maximum master overhead and the maximum worker time remains the same across all

three runs. Figure 14(b) illustrates how tasks are scheduled with changing load conditions.

271700

Parallel Time H&Tﬁﬁl—l
. . 271660

Task Planning and Aggregation ”‘T@ﬁ
Maximum Master Overhead E %géég

Max Worker Time gié

Measurement Category

0 50000 100000 150000 200000 250000 300000

Time (ms)

‘ @ Without Loading @ Loading 1 Worker 0 Loading 2 Workers

Figure 14(a) - Execution Time Analysis (4 Workers) — Web Page Pre-fetching Application

Number of Tasks Executed
»

Worker 1 Worker 2 Worker3 Worker 4
Worker Nodes

@ Without Loading @ Loading 1 Worker O Loading 2 Workers

Figure 14(b) - Tasks Executed per Worker (4 Workers) — Web Page Pre-fetching Application

5.2.4 Discussion

The experiments presented in this section show that the JavaSpaces-based cluster-computing
framework could support to fit a family of applications from varied domains. The experiments also
demonstrate the ability of the framework to dynamically react to the varying system state with

minimal overheads and reaction times.

Conclusions

This paper presented the design, implementation and evaluation of a framework for
opportunistic parallel computing on networked clusters using JavaSpaces. This framework enables
coarse-grained applications to be distributed across and exploit existing heterogeneous clusters. The
framework builds on Jini and JavaSpaces technologies. It provides support for global deployment
of application code and remote configuration management of worker nodes, and uses an SNMP
system state monitor to ensure non-intrusiveness. The experimental evaluation, using 3 “real-
world” applications, shows that the framework v provides good scalability for coarse-grained tasks.
Furthermore, using the system state monitor and triggering heuristics the framework can support
adaptive parallelism and minimize intrusiveness. The results also show that the signaling times
between the worker and network management modules and the overheads for adaptation to cluster
dynamics is insignificant.

We are currently investigating ways to reduce the overheads during task planning and allocation
phases. Furthermore, several application-specific optimizations can be introduced to improve
performance. As future work, we envision incorporating a distributed JavaSpaces model to avoid a
single point of resource contention or failure. The Jini community is also investigating this area.
Finally, the current implementation of the framework does not provide fault tolerance. We are

investigating the transaction management service provided by Jini to address this issue.

References

[1] Sun Microsystems. Javaspaces specification,

http://www.javasoft.com/products/javaspaces/specs/index.html|

[2] SNMP Documentation, http://www.snmpinfo.com|

[3] J. Murray, Windows NT SNMP, O'Reilly Publications, January 1998.

[4] M. Lizkow, M. Livny, and M. Mukta. Condor: A hunter of idle workstations. /n Proceedings of
the 8" International conference on Distributed Computing Systems, pp. 104-111, June1998.

http://www.javasoft.com/products/javaspaces/specs/index.html
http://www.snmpinfo.com/

[5] M. Lizkow, M. Livny, and T. Tannenbaum. Checkpoint and Migration of UNIX Processes in
the condor Distributed Environment. Technical Report 1346, University of Wisconsin-Madison,

April 1997.

[6] The Linda Group, http:/www.cs.vale.edu/HTML/YALE/CS/Linda/linda.html|

[7] D. Gelemter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary
Experience with Piranha. In Proceedings of the 6" ACM International Conference on

Supercomputing, pp. 417-427, July 1992.
[8] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An Infrastructure for Global

Computing. In Proceedings of the 7" ACM SIGOPS European Workshop: Systems support for
Worldwide Applications, pp. 165-172, September 1996.

[9] P. Ledru. Adaptive Parallelism: An Early Experiment with Java™ Remote Method Invocation.
Operating system Review, Vol. 3, No. 4, October 1997.

[10]A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing on the Web. In
Proceedings of the 9" ISCA International Conference on Parallel and Distributed Computing
Systems (PDCS), pp. 181-188 September 1996.

[11]A. Baratloo, M. Karaul, H. Karl, Zvi M. Kedem. An Infrastructure for Network Computing
with Java Applets. Concurrency: Practice and Experience, Vol. 10, No.11-13, pp 1029-1041,
September 1998.

[12]B. Christiansen, P. Cappello, M.F. Tonescu, M. O. Neary, K. Schauser, and D. Wu. Javelin:
Internet-based parallel computing using Java. Concurrency: Practice and Experience, Vol. 9,

No. 11, pp. 1139-1160, November 1997.

[13]T. Brecht, H. Sandhu, J. Talbott, and M. Shan. ParaWeb: Towards world-wide supercomputing.
In Proceedings of the 7" ACM SIGOPS European Workshop, pp. 181-188, September 1996.

[14] Entropia: Harnessing your PC Network, www.entropia.com|

[15]8BETI@home: The Search for Extraterrestrial Intelligence, http://setiathome.ssl.berkeley.edu/|

[16]M. Stang and S. Whinston. Enterprise Computing with Jini Technology. In issue of IT
Professional, IEEE Computer Society, Vol. 3, No. 1, pp. 33-38, Jan/Feb 2001.

[17]Objects, the Network, and Jini, lhttp://www.artima.com/jini/jiniology/intro.html|

[18]E. Freeman, S. Hupfer, K. Arnold. JavaSpaces Principles, Patterns, and Practice. Addison-
Wesley, June 1999.

http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html
http://www.entropia.com/
mailto:SETI@home:
http://setiathome.ssl.berkeley.edu/
http://www.artima.com/jini/jiniology/intro.html

[19]JavaSpaces: Making Distributed Computing Easier,
http://www.byte.com/feature/BYT19990915S0001|

[20] Tonic: A Java TupleSpaces Benchmark Project,

http://hea-www.harvard.edu/~mnoble/tonic/doc/|

[21]Glossary of Financial terms, jttp://www.centrex.com/terms.html|

[22]1MC algorithm for Option Pricing, |http://www.puc-rio.br/marco.ind/monte-carlo.html}

[23]A. Heirich and J. Arvo. A Competitve analysis of Load Balancing Strategies for Parallel Ray
Tracing. In Journal of Supercomputing, Vol. 12, No. 1-2, pp. 57-58,1998.

[24]S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine. In
Proceedingsof the 7" International World Wide Web Conference, pp. 107-117, April 1998.

[25]S. Brin and L. Page. The PageRank Citation Ranking: Bringing Order to the Web. In Technical

Report available at http://www-db.stanford.edu/~backrub/pageranksub.ps| January 1998.

[26]S.D. Conte and C. de Boor. Elementary Numerical Analysis: An Algorithmic Approach.
McGraw-Hill, March 1980.

http://www.byte.com/feature/BYT19990915S0001
http://hea-www.harvard.edu/~mnoble/tonic/doc/
http://www.centrex.com/terms.html
http://www.puc-rio.br/marco.ind/monte-carlo.html
http://www-db.stanford.edu/~backrub/pageranksub.ps

	Abstract
	Keywords: Adaptive cluster computing, Parallel/Distributed computing, JavaSpaces, Jini, SNMP.

	Introduction
	Background and Related Work
	Related Work in Opportunistic Cluster Computing

	Jini & JavaSpaces: An Overview
	JavaSpaces and Parallel Computation

	A Framework for Opportunistic Adaptive Parallel Computing on Clusters
	Framework Architecture
	Framework Operation
	Remote Node Configuration
	Dynamic Worker Management for Adaptive Cluster Computing

	Experimental Evaluation of the Framework
	Application Description
	Parallel Monte Carlo Simulation for Stock Option Pricing
	Parallel Ray Tracing
	Web Page Pre-fetching based on Page Rank

	Experimental Results
	Scalability Analysis
	Parallel Monte Carlo Simulation for Stock Option Pricing
	Parallel Ray Tracing
	Web Page Pre-fetching based on Page Rank

	Adaptation Protocol Analysis
	Parallel Monte Carlo Simulation for Stock Option Pricing
	5.2.2.3	Web Page Pre-fetching based on Page Rank

	Analysis of Dynamic Worker Behavior Patterns under Varying Load Conditions
	Parallel Monte Carlo Simulation for Stock Option Pricing
	Parallel Ray Tracing
	Web Page Pre-fetching Scheme based on Page Rank

	Discussion

	Conclusions
	References

