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Abstract 

Heterogeneous networked clusters are being increasingly used as platforms for resource-

intensive parallel and distributed applications. The fundamental underlying idea is to provide large 

amounts of processing capacity over extended periods of time by harnessing the idle and available 

resources on the network in an opportunistic manner. In this paper we present the design, 

implementation and evaluation of a framework that uses JavaSpaces to support this type of 

opportunistic adaptive parallel/distributed computing over networked clusters in a non-intrusive 

manner. The framework targets applications exhibiting coarse grained parallelism and has three key 

features: (1) portability across heterogeneous platforms, (2) minimal configuration overheads for 

participating nodes, and (3) automated system state monitoring (using SNMP) to ensure non-

intrusive behavior. Experimental results presented in this paper demonstrate that for applications 

that can be broken into coarse-grained, relatively independent tasks, the opportunistic adaptive 

parallel computing framework can provide performance gains. Furthermore, the results indicate that 

monitoring and reacting to the current system state minimizes the intrusiveness of the framework. 

Keywords: Adaptive cluster computing, Parallel/Distributed computing, JavaSpaces, Jini, SNMP. 

1. Introduction 

This paper presents the design, implementation and evaluation of a framework that uses 

JavaSpaces [1] to aggregate networked computing resources, and non-intrusively exploits idle 

resources for parallel/distributed computing.  

                                                      
1 The research presented in this paper is based upon work supported by the National Science Foundation under Grant 

Number ACI 9984357 (CAREERS) awarded to Manish Parashar. 



Traditional High Performance Computing (HPC) is based on massively parallel processors, 

supercomputers or high-end workstation clusters connected by high-speed networks. These 

resources are relatively expensive, and are dedicated to specialized parallel and distributed 

applications. Exploiting available idle resources in a networked system can provide a more cost 

effective alternative for certain applications. For example, a large percentage of the resources at an 

enterprise are idle after regular working hours and can be exploited by stealing their idle 

computational cycles for useful work. This option allows the enterprise to leverage its existing 

computational resources, rather than investing in dedicated parallel/distributed systems. However, 

there are a number of challenges that must be addressed before such opportunistic adaptive cluster 

computing can be a truly viable option. These include: 

• Heterogeneity: Cluster environments are typically heterogeneous in the type of resources, the 

configurations and capabilities of these resources, and the available software, services and tools 

on the systems. This heterogeneity must be hidden from the application and addressed in a 

seamless manner, so that the application can uniformly exploit available parallelism. 

• Intrusiveness: A key requirement for exploiting idle resources is that the effect of stealing 

computational cycles from resources on local applications should be minimized. That is, a local 

user should not be able to perceive that local resources are being stolen for foreign 

computations. Furthermore, inclusion into the framework should require minimal modifications 

to existing (legacy) code or standard practices.  

• System configuration and management overhead: Incorporating a new resource into the 

cycle stealing resource cluster may require system configuration and software installation. This 

includes installing and configuring system software to enable application execution, as well as 

installing the application software itself. These modifications and overheads must be minimized 

so that cluster can be expanded on the fly to utilize all available resources. 

• Adaptability to system and network dynamics: The availability and state of system and 

network resources in a cluster can be unpredictable and highly dynamic. These dynamics must 

be handled to ensure reliable application execution. This requires monitoring system/network 

state, and reacting to changes by adding or removing a resource from the available pool, 

modifying scheduling policies, changing task configurations, etc. 

• Security and privacy: Secure and safe access to resources in the cluster must be guaranteed so 

as to provide assurance to users making their systems available for external computations. 

Policies must be defined and enforced to ensure that external application tasks adhere to the 

limits and restrictions set on resource/data access and utilization.  



This paper presents the design, implementation and evaluation of a framework for adaptive and 

opportunistic cluster computing that address these issues. The framework builds on Java and 

JavaSpaces technologies. Java provides support for naturally managing the heterogeneity in the 

cluster. Furthermore, its �sandbox� execution model enables us to handle security and privacy 

concerns. JavaSpaces provides mechanisms for scheduling, global deployment, and execution of 

tasks on remote hosts. It also provides support for coordination and communication between 

processes and tasks. The application task deployment protocol is designed to minimize 

configuration and management costs. Cluster nodes are remotely configured and application code is 

dynamically loaded at runtime. Finally, the framework supports a sustained monitoring of the state 

of the cluster resources using SNMP (Simple Network Management Protocol) [2][3], and provides 

policies and mechanisms to automatically handle system/network dynamics so as to minimize 

intrusiveness at the cluster nodes. The framework is evaluated using 3 real-world applications, viz. 

ray tracing, stock option pricing, and web page pre-fetching. The evaluation demonstrates that for 

this class of coarse-grained applications, adaptive cluster computing can provide significant 

performance advantages. Furthermore, the evaluation shows that monitoring and reacting to the 

state of the cluster resources enables the framework to non-intrusively maximize its utilization of 

the cluster resources. 

The rest of this paper is organized as follows. Section 2 presents background material and 

discusses related work in adaptive cluster computing. Section 3 provides an overview of the 

Jini/JavaSpaces infrastructure and describes its use for adaptive computing. Section 4 describes the 

architecture and operation of the proposed framework. Section 5 presents an experimental 

evaluation of the framework. Section 6 presents our conclusions and outlines current and future 

work. 

2. Background and Related Work 

Heterogeneous networked clusters are being increasingly used as platforms for resource-

intensive parallel and distributed applications. The fundamental idea is to provide large amounts of 

processing capacity over extended periods of time by harnessing the idle and available resources on 

the network in an opportunistic manner. Recent advances in cluster computing have followed two 

approaches:   

Job level parallelism: In this approach, entire application jobs are allocated to available idle 

resources for computation. The state of the resources are monitored, and if a resource becomes 

unavailable (e.g. an interactive user logs in), the job(s) executing on it are migrated to a different 

resource that is available. Systems supporting job level parallelism are required to support 



mechanisms for check-pointing the state of an application job on one machine and restoring the 

state on a different machine, to enable job migration. The Condor system [4][5] supports cluster-

based job level parallelism.  

Adaptive Parallelism2: In the adaptive parallelism approach, an application job is broken into 

smaller tasks, and scheduling and load balancing schemes are used to distribute these tasks across 

idle resources in the cluster. This approach targets applications that can be easily decomposed into 

independent tasks. In this case, the available processors are treated as part of a resource pool. Each 

processor in the pool aggressively competes for application tasks. Under adaptive parallelism, the 

pool of processors executing a parallel program may grow or shrink during the program execution 

based upon the processor availability.  Adaptive computing techniques for parallel/distributed 

processing can be divided into cluster based and web based approaches. Cluster based systems 

revolve around deploying computational tasks across loosely coupled networked resources. These 

architectures exploit available resources within a networked cluster, such as a LAN, for 

parallel/distributed computing. Web based approach extends this model to resources over the 

Internet. The collection of machines connected over the Internet; if aggregated, can potentially 

provide unparalleled processing capacity. Web based approaches attempt to exploit this potential. 

Adaptive Parallelism Job Level ParallelismAdaptive Parallelism Job Level ParallelismAdaptive Parallelism Job Level Parallelism
Figure 1 � Frameworks for Opportunistic Cluster Computing  

                                                      
2 To best of our knowledge, the term �adaptive parallelism� was coined by the Piranha project [7]. 
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Systems supporting Adaptive parallelism include cluster-based systems such as Piranha [6][7], 

Atlas [8], and ObjectSpace/Anaconda [9], and web-based systems such as Charlotte [10][11], 

Javelin [12], and ParaWeb [13]. Systems such as Entropia [14] and SETI@home [15] have been 

widely successful in effectively solving real world problems by aggregating vast unused processing 

cycles from resources spread across the Internet. 

2.1. Related Work in Opportunistic Cluster Computing 

Frameworks supporting opportunistic cluster computing are presented in Figure 1. These 

frameworks are summarized in Table 1. Note that most of these systems (including the framework 

presented in this paper) implement the master worker paradigm in one form or the other � the 

master is responsible for generating �work� and managing its execution, while workers consume 

the work and perform the computations. A key shortcoming of existing systems is that they require 

manual management � for example they present the user with a graphical interface for stopping 

background tasks at a worker when the machine is no longer available. Such event driven interfaces 

at the application layer are easy to implement on the worker machines, but require knowledge and 

explicit effort on the user's part. The framework presented in this paper makes three key 

contributions: 

• It uses Java as the core programming language to ensure portability across heterogeneous 

systems. 

• It uses remote worker configuration and dynamic loading of application code to minimize setup 

and configuration overheads. 

• It provides a dedicated network management module that uses SNMP to identify idle resources, 

monitors system state, and enables the system to automatically adapt to the current system state 

to minimize intrusiveness.  

Table 1 Comparison of Opportunistic Cluster Computing Frameworks 

Architecture Category Approach Key Contributions Sample Applications 
Condor [4][5] Cluster 

based 
Job level parallelism, 
Asynchronous offloading 
of work to idle resources 
on a request basis 
 

Queuing mechanism, 
Check pointing and 
process migration, Remote 
procedure call and 
matchmaking 

High Throughput Monte 
Carlo Simulations 

Piranha [6][7] Cluster 
based 

Adaptive parallelism, 
Centralized work 
distribution using the 
master worker paradigm 

Implementation of Linda 
Model using tuple spaces, 
survives partial failure, 
efficient cycle stealing 

Monte Carlo simulations, 
LU Decomposition, Ray 
Shade 

ATLAS [8] Cluster 
based 

Adaptive Parallelism, 
Hierarchical work 
stealing  

Fault Tolerance, improved 
scalability due to 
hierarchical model, safe 
heterogeneous execution, 

Double recursion to 
compute Fibonacci 
numbers, (POV-Ray) Ray 
Tracing 

mailto:SETI@home


no administration effort 
ObjectSpace/
Anaconda [9] 

Cluster 
based 

Job level parallelism at 
brokers 

Eager scheduling, 
automated/manual job 
replication 

Traveling Salesman 
Problem 

Charlotte 
[10][11] 

Web based Adaptive parallelism, 
Centralized work 
distribution using 
downloadable applets 

Abstraction of Distributed 
Shared Memory, directory 
look up service for idle 
resource identification, 
embedded lightweight 
class server on local hosts, 
direct inter-applet 
communication, fault 
tolerance 

Matrix multiplication, 
statistical physics 
application for computing 
the 3D Ising model 

Javelin [12] Web based Adaptive parallelism, 
Centralized work 
distribution using 
downloadable applets 

Heterogeneous, secure 
execution environment, 
portability to include 
Linda and SPMD 
programming models 

The Mersenne Prime 
Application: a primality 
test 

ParaWeb [13] Web based Adaptive parallelism, 
Centralized work 
distribution using 
scheduling servers 

Implementation of Java 
Parallel Runtime System 
and Java Parallel Class 
Library to facilitate upload 
and download of execution 
code across the web 

Parallel matrix 
multiplication 

3. Jini & JavaSpaces: An Overview 

Jini [16] technology, developed by Sun Microsystems, is a runtime infrastructure that assists in 

building and deploying truly distributed systems that are organized as a federation of services [17]. 

It provides a set of APIs, mechanisms and network protocols that enable addition, discovery, access 

and removal of services. Jini presents a service-based model of distributed computing; a Jini service 

joins a federation to share its services with clients while a Jini client joins a federation to gain 

access to services. Discovery of services by clients is facilitated by a lookup service. The lookup 

service primarily maintains a mapping between each Jini service and its attributes. Whenever a Jini 

enabled device advertises its service, the lookup server adds its information to the map. A Jini client 

can request the lookup service for a list of Jini servers that match its desired attributes.  

A typical interaction in a Jini based distributed system is as follows. Jini service providers first 

locate the Jini lookup service. This is done using the Jini discovery protocol. The protocol consists 

of broadcasting a presence announcement by dropping a multicast packet on a well-known port. 

This packet contains the host�s IP address and port number so that the lookup server can contact it.  

When the lookup server receives this broadcast request, it returns its address to the host. Once it has 

located the lookup service, the service provider uses the join protocol to become a part of the 

federation and register itself with the lookup service. When a Jini client connects to the system, it 

first locates the lookup service using the Jini discovery protocol. The client then requests a service 



by sending the desired list of attributes to the lookup server. The lookup server does an associative 

lookup and returns a list of services matching these attributes. It is then up to the Jini client to select 

a specific Jini server from the returned list and directly request service. 

JavaSpaces is a Java implementation of a tuple-space [6][7] system, and is provided as a Jini 

service. A JavaSpaces is a shared, network accessible repository for Java objects [18], and provides 

a programming model that views applications as a collection of processes cooperating via the flow 

of objects into and out of one or more spaces. The JavaSpace API leverages the Java type semantics 

and provides operations to store, retrieve and lookup Java objects in the space.  

Several aspects of distributed computing are inherently handled by JavaSpaces. It provides 

associative lookup of persistent objects. It also addresses fault-tolerance and data integrity through 

transactions. All access operations to objects in the space such as read/write/take can be executed 

within a transaction. In event of a partial failure, the transaction either completes successfully or 

does not execute at all. Using a JavaSpaces-based implementation allows transacting executable 

content across the network. The local instances of the Java objects retrieved from the space are 

active � i.e. their methods can be invoked and attributes modified. JavaSpaces provides 

mechanisms for decoupling the semantics of distributed computing from the semantics of the 

problem domain. This separation of concerns allows the two elements to be managed and 

developed independently [19]. For example, the application designer does not have to worry about 

issues such as multithreaded server implementation, low level synchronization, or network 

communication protocols. 
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Figure 2 � Master-Worker Parallel Computing using JavaSpaces 

3.1. JavaSpaces and Parallel Computation 

JavaSpaces naturally supports the master-worker parallel/distributed-computing paradigm. In this 

paradigm (see Figure 2), the application is distributed across available worker nodes using the bag-

of-tasks model. The master produces independent application tasks and puts them into the space. 

The worker consumes the tasks from the space, computes on these tasks, and places results back 

into the space. This approach supports coarse-grained applications that can be partitioned into 

relatively independent tasks. It offers two key advantages. (1) The model is naturally load-balanced. 

Load distribution in this model is worker driven. As longs as there is work to be done, and the 

worker is available to do work, it can keep busy. (2) The model is naturally scalable. Since the tasks 

are relatively independent, as long as there are a sufficient number of task, adding workers 

improves performance. 

4. A Framework for Opportunistic Adaptive Parallel Computing on Clusters 

The framework presented in this paper employs JavaSpaces to facilitate adaptive (opportunistic) 

master-worker parallel computing on networked clusters. It targets applications that are sufficiently 

complex and require parallel computing, that are divisible into relatively coarse-grained subtasks 

that can be solved independently, and where the subtasks have small input/output sizes. Real world 

applications having these characteristics span many disciplines including those evaluated in this 

paper, viz. financial modeling (stock-option pricing), visualization (ray-tracing) and web-serving 

(page-rank based prefetching). 

4.1. Framework Architecture 

A schematic overview of the framework architecture is shown in Figure 3. The framework 

consists of 3 key components: the Master Module, the Worker Module, and the Network 

Management Module.  

Master Module: The master module runs as an application level process on the master processor. 

It hosts the JavaSpaces service and registers it with the Jini substrate. The master module defines 

the problem domain for a given application. It decomposes the application into independent tasks 

that are JavaSpaces enabled3, and places these tasks into the space.   

                                                      
3 JavaSpace required the Objects being passed across the Space to be in a Serializable format. In order to transfer an entry 

to or from a remote space, the proxy to the remote space implementation first serializes the fields and then transmits it 

into the space. 



Worker Module: The worker module runs as an application level process on the workers nodes. It 

is a thin module and is configured at runtime using the Remote Node Configuration Engine � i.e. 

worker classes, providing the solution content for the application, are loaded at runtime. This 

minimized the overheads of deploying application code. Note that the workers need not be Jini 

aware in order to interact with the master module.  Interaction between the master and the worker 

processes is via virtual, shared JavaSpaces. The worker module operation is controlled by the 

network management module using the Rule-Base Protocol as described in the following section. 

Network Management Module: The network management module serves two functions, viz. 

monitoring the state of worker machines, and providing a decision-making mechanism to facilitate 

the utilization of idle resources and ensure non-intrusive code execution. In order to exploit idle 

resources while maintaining non-intrusiveness at the remote nodes, it is critical that the framework 

monitors the state of the worker nodes, and uses this state information to drive the scheduling of 

tasks on workers. The Monitoring Agent component of the network management module performs 

this task. It monitors the state of registered workers and uses defined policies to decide on the 

worker's availability. The policies are maintained by the Inference Engine component and enforced 

using the Rule-Base Protocol.  

The monitoring agent uses SNMP [2][3] to monitor remote worker nodes. The SNMP layer 

consists of two components: the manager component that runs on the SNMP server and the worker-

agent component that runs on the worker nodes to be monitored. The monitoring agent uses JNI 

(Java Native Interface) to access the SNMP layer and query the worker-agents to get relevant 

system parameters such as CPU load and available memory.  
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Figure 3 � Framework Architecture 

4.2. Framework Operation  

The framework implements the master-worker pattern with JavaSpaces as the backbone. The 

overall operation of the framework consists of three potentially overlapping phases, viz. task-

planning, compute, and result-aggregation. During the task-planning phase, the master process first 

decomposes the application problem into sub tasks. It then iterates through the application tasks, 

creates a task entry for each task, and writes the tasks entry into the JavaSpaces. During the 

compute phase, the worker process retrieves these tasks from the space using a simple value-based 

look up. Each task object is identified by a unique ID and the space in which it resides. If a 

matching task object is not available immediately, the worker process waits until one arrives.  The 

worker classes are downloaded at runtime using the Remote Node Configuration Engine. Results 

obtained from executing the computations are returned to the space.  Worker operation during the 

compute phase is monitored and managed by the network management module using the rule-base 

protocol as described in section 4.4. During the result aggregation phase, the master module 

removes results written into the space by the workers, and aggregates them into the final solution.  

If the resource utilization on a worker node becomes intolerable, the network management 

module sends a stop/pause signal to the worker process. On receiving the signal, the worker 

completes the execution of the current task and returns its results into the space. It then enters the 

stop/pause state and does not accept tasks until it receives a start/resume signal. 

4.3.  Remote Node Configuration 

Remote node configuration uses the dynamic class loading mechanism provided by the Java 

Virtual Machine, which supports locating and fetching the required class files, consulting the 

security policy, and defining the class object with the appropriate permissions. The implementation 

of the remote configuration engine consists of a simple Java application starter program that can 

load jar and class files from URL at runtime.  Required worker classes are downloaded from a web 

server residing at the master in the form of executable jar files.  

Our modification of the network launcher [20] provides mechanisms to intercept calls from the 

inference engine component of the network management module and use them to signal the 

executing worker code. This enables the network management module to manage workers using the 

rule-base protocol. The signals are handled by remote node configuration engine. As preempting 

worker execution to process the signal may result in the current task being lost, the node 

configuration engine waits for the worker to complete its current task, and forwards the signal 

before the worker fetches the next task. 



4.4. Dynamic Worker Management for Adaptive Cluster Computing 
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The rule-base protocol manages worker execution, and defines the interaction between the 

work management module and the worker module (see Figure 4) to enable the worker to react to 

nges in its system state. It operates as follows:  

The SNMP client, which is part of the worker module, initiates the workers participation in the 

allel computation by registering with the SNMP server at the network management module. The 

rence engine, also at the network management module, maintains a list of registered workers. It 

igns a unique ID to the new worker and adds its IP address to the list. The SNMP server then 

tinues to monitor the state of workers in its list.  

The primary SNMP parameter monitored is the average worker CPU utilization. As these values 

 returned they are added to the respective entry in the worker list. Based on this return value and 

grammed threshold ranges, the inference engine makes a decision on the worker�s current 

ilability status and passes an appropriate signal back to the worker. Threshold values are based 

heuristics. The rule-base currently defines 4 types of signals in response to the varying load 

ditions at a worker, viz. Start, Stop, Pause and Resume. Based on the signal it receives, the 
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worker can be in 3 possible states: Running, Paused, or Stopped. The worker state transitions are 

shown in Figure 5 and are described below. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5  - Worker State Transition Diagram 

Running: The worker enters the running state in response to a Start or Resume signal. Start or 

Resume signals are sent when the CPU load at the worker is in the range of 0% - 25%. While in this 

state, worker is considered idle and can start participating in the parallel application. On receiving a 

Start signal, the worker initiates a new runtime process. The new thread first goes through the 

remote class loading phase and then starts off a worker thread for task execution. If the worker 

receives a Resume signal, however, it does not require loading of the worker classes since they are 

already loaded into the worker�s memory. It simply removes the lock on the interrupted execution 

thread and resumes computations. 

Stopped:  The worker enters this state in response to a Stop signal. This may be due to a sustained 

increase in CPU load caused by a higher priority (possibly interactive) job being executed. The 

cutoff threshold value for the Stopped state is in the range of 50% to 100%. While in this state the 

node can no longer be used for computations. On receiving the Stop signal, the executing worker 

thread is interrupted and shutdown/cleanup mechanisms are initiated. The shutdown mechanism 

ensures that the currently executing task completes and its results are written into the space. After 

cleanup the worker thread is killed and control returns to the parent process.  The next time this 

worker becomes available, a transition to the Running state will require the worker classes to be 

reloaded. 
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Paused: The worker enters this state in response to the Pause signal. This state indicates that the 

worker node is experiencing increased CPU loads and is not currently idle, and hence it should 

temporarily not be used for computation. However, the load increase might be transient and the 

node could be reused for computation in the near future. Threshold values for the Paused state are 

in the range of 25% - 50%.  Upon receiving this signal, the worker backs off, but unlike the stop 

state the back off is temporary, i.e. until it gets the resume signal. This minimizes worker 

initialization and class loading overheads for transient load fluctuations. As in the stop state, the 

pause goes into effect only after the worker writes the results of the currently executing task into the 

space. However the worker process is not destroyed in this state but only interrupts the execution 

until the resume signal is received hence bypassing the overhead associated with remote node 

configuration. 

5. Experimental Evaluation of the Framework 

The JavaSpaces-based opportunistic cluster-computing framework is experimentally evaluated 

using three �real-world� applications: (1) a financial application that uses Monte Carlo (MC) 

simulation for option pricing, (2) a scientific ray tracing application, and (3) a web page pre-

fetching technique for server optimization. The evaluation consists of three experiments. The 

objective of the first experiment is to study the scalability of the application and our framework, 

and to demonstrate the potential advantage of using clusters for parallel computing. The second 

experiment measures the costs of adapting to system state. It measured the overheads of monitoring 

the workers, signaling, and state-transitions at the workers. We used a set of synthetic load 

generators to simulate dynamic load conditions at different worker nodes. Finally, the third 

experiment demonstrates the ability of our framework to adapt to the cluster dynamics. 

The experiments are conducted on PC clusters running Windows NT (version 4.0). The web 

page pre-fetching and parallel ray tracing applications are evaluated on a five PC cluster, with an 

800MHz. Intel Pentium III processors and 256 MB RAM. The option-pricing scheme is evaluated 

on a larger cluster with thirteen PCs. The PCs in this cluster had 300 MHz. processors and 64MB 

RAM. Due to the high memory requirements of the Jini infrastructure, the master module in both 

cases runs on an 800 MHz. Intel Pentium III processor PC with 256 MB RAM.  

5.1 Application Description 

The characteristics of the three applications are summarized in Table 2. The applications and 

their implementations within the framework are briefly described below. 

 



Table 2 Classification of the Evaluated Applications 

Metrics Option Pricing Scheme Ray Tracing Scheme Pre-fetching Scheme 
Scalability Medium High 

 
Low 

CPU Memory 
Requirements 

Adaptable depending on 
number of simulations 

High Low 

Task 
Dependency 

No No Yes 

 

5.1.1 Parallel Monte Carlo Simulation for Stock Option Pricing 

A stock option is a derivative, that is, its pricing value is derived from something else. 

Parameters such as varying interest rates and complex contingencies can prohibit analytical 

computation of options and other derivative prices. Monte Carlo simulation, using statistical 

properties of assumed random sequences is an established tool for pricing of derivative securities. A 

stock option is defined by the underlying security, the option type (call or put), the strike price, and 

an expiration date. Furthermore, factors such as interest rate and volatility, affect the pricing of an 

option. These financial terms are explained in greater depth in [21]. In our implementation we use 

Monte Carlo (MC) simulations, based on the Broadie and Glasserman MC algorithm [22], to model 

the behavior of options and account for the various factors affecting its price. 

Implementation Overview: In our implementation, the main MC simulation is the core parallel 

computation that is distributed. Input parameters are fed in using a simple GUI provided in the 

implementation. The simulation domain is divided into independent tasks and the MC simulations 

are performed in parallel on these tasks. The total number of simulations is defined by an external 

input. Each MC task consist of two iterations, the first one obtains a high estimate and the second 

one obtains a low estimate. For the experimental evaluation presented below, the number of 

simulations was set to 5000. The problem domain is divided into 50 tasks, each comprising of 100 

simulations. As each MC simulation consists of two independent iterations, a total of 100 sub-tasks 

were created and put into the JavaSpaces. The workers took the task from the space and performed 

the MC simulations. 

5.1.2 Parallel Ray Tracing 

Ray tracing is an image generation technique that simulates light behavior in a scene by 

following light rays from an observer as they interact with the scene and the light sources. Ray 

tracing algorithms estimate the intensity and wavelengths of light entering the lens of a virtual 

camera in a simulated environment. The quantities are estimated at discreet points in the image 

plane that correspond to pixels. These estimates are taken by sending rays out of the camera and 

into the scene to approximate the light reflected back to the camera. This process requires 



identifying points of intersection among rays and objects in the environment, a technique known as 

ray casting. The cost for computing individual pixels can vary dramatically, and depends on the 

complexity of the model being rendered and the algorithm employed. Parallel implementations of 

ray casting algorithms typically distribute the calculations for a set of pixels in an image in order to 

minimize the overall rendering time. These applications are ideal candidates for the replicated-

worker pattern as they are made up of a number of independent and computationally identical tasks. 

Implementation Overview: The ray tracing [23] application begins with a model of the scene, and 

an image plane in front of the model that is divided into pixels. Rendering an image involves 

iterating through all the pixels in the plane and computing a color value for each pixel. This 

computation involves tracing the rays of light that pass from a viewpoint (such as an eye or the 

virtual camera) to the model, through the pixel in the image plane. The computation is identical for 

all pixels - only the parameters describing the pixel�s position differ. In our experiments the 

600X600 image plane was divided into rectangular slices of 25X600 thus creating 24 independent 

tasks. The input for each task consisted of the four coordinates describing the region of 

computation. The output produced by each task was relatively large, consisting of an array of pixel 

values. In our implementation, the master generated the tasks and put them into the JavaSpaces. 

Each worker took a task, computed the scan lines for the pixel and returned the resultant array of 

pixel points to the JavaSpaces. The master then collected the results and combined them to 

compose the image. 

5.1.3 Web Page Pre-fetching based on Page Rank 

The overall objective of this application is to optimize access time experienced by the web user 

by pre-fetching web pages that are likely to be requested by the user. The page rank-based pre-

fetching approach [24], [25] uses the link structure of pages requested to determine the �most 

important� pages they link to, and to identify the page(s) to be pre-fetched. This scheme targets 

access to web page cluster, i.e. groups of closely related pages such as pages of a single company. 

The underlying premise of the approach is that the next page requested by the user is typically 

based on the current and previous pages requested. Furthermore, if the requested pages link to an 

�important� page, that page has a higher probability of being the next one requested. The relative 

importance of the linked pages is calculated using the Page Rank technique [25]. The important 

pages are then pre-fetched into the cache for faster access.  

Implementation Overview: For each web page requested, the Page Rank algorithm performs the 

following operations. First the page�s URL is scanned to see if it belongs to a web page cluster. If it 

does, the link contained in the page to other pages on the local server are parsed out and used to 

populate a stochastic matrix constructed as follows: 



1. Each page i corresponds to row i and column i of the matrix. 

2. If page j has n successors (links), then the ijth entry is 1/n if page i is one of those n 

successors of page j, 0 otherwise. 

The stochastic matrix is then used to compute the ranks of the linked pages. The core of the 

Page Rank algorithm consists of matrix operations and iterative eigenvector computations [26]. 

Parallelism is achieved by distributing the matrix and performing the computation on local portions 

in parallel. Inter-iteration dependencies in these computations have to be resolved as it limits the 

overall speedup.  Note that Page Rank computations for different web page clusters are independent 

and can also be performed in parallel. In our experiments, the two matrices used are of sizes 500 x 

500 and 500 x 1. Tasks are created by dividing the matrices into strips of size 20, leading to 25 

tasks. The workers take these tasks from the JavaSpace and perform the iterations in parallel. 

5.2 Experimental Results 

5.2.1  Scalability Analysis 

This experiment measures the overall scalability of the application and the framework. In this 

experiment, we measure the maximum worker time (Max Worker Time), total task planning time 

(Task Planning Time), total task aggregation time (Task Aggregation Time), and overall parallel 

execution time (Parallel Time) for the different applications as the number of worker nodes is 

increased. The computation time at a worker is measured from the time it first accesses a task from 

the space to the time it puts its final result back into the space. Max Worker Time is the maximum 

of the worker computation times among all workers participating in the application. Task Planning 

Time is measured at the master process and is the time required for the task-planning phase. This 

involves dividing the application into tasks and placing these tasks into the space. Task Aggregation 

Time is also measured at the master process and is the time required for collecting the results 

returned by the workers from the space, and aggregating them into a meaningful solution. The task 

aggregation time is expected to follow the maximum worker time, since the master needs to wait 

for the last task to complete before it finishes aggregating the results. Finally, Parallel Time is 

measured at the master process and is the time required for the entire application computation from 

start to finish. It includes the times listed above.  

5.2.1.1 Parallel Monte Carlo Simulation for Stock Option Pricing 

The results of the scalability experiment for the option pricing application are plotted in Figure 

6. As seen in the figure, there is an initial speedup as the number of workers is increased to 4. The 

speedup deteriorates after that. Initially, as the number of workers increase, the total tasks are more 

evenly distributed across the available workers causing the maximum worker time to decrease. As 



expected, the initial part of the Parallel Time curve (up to 4 processors) closely follows the 

Maximum Worker Time curve. As the number of worker increase beyond 4, the amount of work is 

no longer sufficient to keep the workers busy, and the Task Planning Time now dominates Parallel 

Time. Here, the workers are able to complete their tasks and return the results to the space much 

faster than the master is able to create new tasks and put them into the space. As a result, the 

workers remain idle waiting for a task to become available, causing the scalability to deteriorate. 

This indicates that the framework favors computationally intensive coarse-grained tasks. 

Figure 6  - Scalability Analysis - Option Pricing Application 

5.2.1.2 Parallel Ray Tracing 

Figure 7 � Scalability Analysis � Ray Tracing Application 
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The results of the scalability experiment for the parallel ray tracing application are plotted in 

Figure 7. As seen in the figure, Max Worker Time scales reasonably well for this application. This 

is because worker computations in this application are computationally intensive. The Parallel Time 

is dominated by the maximum worker time and results in good overall application scalability. Note 

that the Task Planning Time curve is constant at 500 ms. in this case.  The Task Aggregation Time 

curve follows the Max Worker Time curve as expected. Embarrassingly parallel applications with 

coarse grained computationally intensive task, such as the parallel ray tracing application, scale 

well and are suited to the JavaSpaces-based cluster computing framework presented. 

5.2.1.3 Web Page Pre-fetching based on Page Rank 

The results of the scalability experiment for the web page pre-fetching application are plotted in 

Figure 8. As seen in the figure, the application scales up to 4 processors. This application has a low 

task planning overhead.  This is primarily due to the small amount of data that needs to be 

communicated between the master and the workers. Task Aggregation Time dominates the Parallel 

Time in this case. This involves assimilating the results returned by the workers and creating the 

resultant matrix. The increased task aggregation times as shown in the plot illustrate this fact. The 

segment size of the strips, and hence the task size can be further optimized to improve scalability. 

Figure 8 - Scalability Analysis �Web Page Pre-fetching Application 
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designed to raise the CPU usage level on the worker from 30% to 50%. The second load simulator 

(load simulator 2) raised the CPU utilization of the worker machines to 100%. The results of this 

experiment for the three applications are presented below. Each result consists of two parts: Part (a) 

plots the CPU usage history on the worker machine throughout the experiment. Part (b) provides an 

analysis of the signaling times, and lists the Client Signal and Worker Signal times. Client Signal 

time is the time at which the SNMP client on the worker machine receives the signal. Worker 

Signal time is the time taken for the signal to be interpreted by the worker and the required action 

completed. The key observation in this experiment is that the adaptation overhead is minimal in all 

cases. Furthermore, the large remote class loading overhead at the workers is avoided in the case of 

transient load increases using the pause/resume states. 

5.2.2.1 Parallel Monte Carlo Simulation for Stock Option Pricing 

 

 

 

 

 

 

 

 

 

Figure 9 � Adaptation Protocol Analysis - Option Pricing Application  

The results of this experiment for the stock option pricing application are plotted in Figures 9(a) 

and 9(b). These plots show the worker behavior under simulated load conditions. In Figure 9(a), the 

peaks represent the times when the worker receives and reacts to the signals. The first peak is at 

80% CPU usage and occurs when the worker is started (i.e. a Start signal). This sudden load 

increase is due to the remote loading of the worker implementation. The next peak at 100% CPU 

usage occurs when load simulator 2 is started on the worker. This causes a Stop signal to be sent to 

the worker and directs the worker to back off.  Load simulator 2 is then stopped allowing the 

worker to once again become available and to do work. Load simulator 1 is now started causing the 

next peak at 46% CPU usage. A Pause signal is now sent to the worker temporarily suspending 

work execution. Finally, the simulator 1 is stopped causing a Resume signal to be sent to the 

               Figure 9(a) - Worker CPU Usage                    Figure 9(b)  - Worker Reaction Times 
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worker. As seen in Figure 9(b) the worker reaction times to the signal received is minimal in each 

case. 

5.2.2.2 Parallel Ray Tracing 

The results of this experiment for the ray tracing application are plotted in Figures 10(a) and 

10(b). As seen in Figure 10(a), the first peak is at 42% CPU usage and occurs when the worker is 

started (i.e. a Start signal). This sudden load increase is once again due to the remote loading of the 

worker implementation. The next peak at 100% CPU usage occurs when load simulator 2 is started 

on the worker. This causes a Stop signal to be sent to the worker and directs the worker to back off.  

Load simulator 2 is then stopped allowing the worker to once again become available and to do 

work. Load simulator 1 is now started raising the CPU load to 50% to 55%. A Pause signal is now 

sent to the worker temporarily suspending work execution. Finally, the simulator 1 is stopped 

causing a Resume signal to be sent to the worker. As seen in Figure 10(b) the worker reaction times 

to the signal received is once again minimal in each case. The Ray Tracing application is resource 

intensive as illustrated by the various intermittent peaks at 78 to 100% CPU usage. These spikes 

occur when the task is being computed at the worker node. 

 

 

 

 

 

 

 

 

 

 

Figure 10 - Adaptation Protocol Analysis - Ray Tracing Application 

5.2.2.3 Web Page Pre-fetching based on Page Rank 

The results of this experiment for the pre-fetching application are plotted in Figures 11(a) and 

11(b). As seen in Figure 11(a), the first peak is at 75% CPU usage and occurs when the worker is 

started (i.e. a Start signal). This sudden load increase is once again due to the remote loading of the 

worker implementation. The next peak at 100% CPU usage occurs when load simulator 2 is started 
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on the worker. This causes a Stop signal to be sent to the worker and the worker backs off.  Load 

simulator 2 is then stopped allowing the worker to once again become available and to do work. 

Load simulator 1 is now started raising the CPU load to 50%. A Pause signal is now sent to the 

worker temporarily suspending work execution. Finally, the simulator 1 is stopped causing a 

Resume signal to be sent to the worker. As seen in Figure 11(b) the worker reaction times to the 

signal received is once again minimal in each case.  
 

 

 

 

 

 

 

 

 

Figure 11 - Adaptation Protocol Analysis � Web Page Pre-fetching Application 

5.2.3 Analysis of Dynamic Worker Behavior Patterns under Varying Load Conditions 

This experiment studies the dynamic behavior patterns at the workers under varying load 

conditions. It consists of three runs: In the first run none of the workers were loaded. In the second 

and third runs, the load simulator used to simulate high CPU loads are run on 25% and 50% of 

available workers respectively. Two plots are presented for each application run in this experiment. 

The first plot presents an analysis of the application behavior under the different load conditions. 

The four parameters measured are Maximum Worker Time, Maximum Master Overhead, Task 

Planning and Aggregation Time, and Total Parallel Time. Maximum Worker Time is the maximum 

value for worker computation time across all workers participating in the application. Maximum 

Master Overhead is the maximum instantaneous time taken by the master for task planning and 

aggregation for a particular task. Both the maximum worker time and the maximum master 

overhead are expected to remain constant for all three runs of the experiment. Task Planning and 

Aggregation Time is total time taken by the master during the task planning and aggregation 

phases. Finally Total Parallel Time is the time taken for the execution of the entire application and 

is measured at the master processor. Both the Task Planning and Aggregation Time and the Total 
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Parallel Time are expected to increase with increased load on the worker machines. The second plot 

shows the work distribution among all the workers for the three cases. 

5.2.3.1 Parallel Monte Carlo Simulation for Stock Option Pricing 

Figure 12(a) � Execution Time Analysis (12 Workers) - Option Pricing Application  
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Figure 12 (b) � Tasks Executed per Worker (12 Workers) - Option Pricing Application 
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Figure 12(b) illustrates how task scheduling adapts to the varying load conditions. It shows that 

the number of task executed by a worker depends on its current load. Loaded workers execute 

fewer tasks causing the available workers to execute larger number of tasks. 

5.2.3.2 Parallel Ray Tracing 
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Figure 13(a) - Execution Time Analysis (4 Workers) � Ray Tracing Application  
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Figure 13(b)  - Tasks Executed per Worker (4 Workers) � Ray Tracing Application 

The results of this experiment for the ray tracing application are plotted in Figures 13(a) and 

13(b). As expected (see Figure 13(a)), the total parallel computation time increases as the number 

of workers loaded increases. The task planning and aggregation times also increase as before.  In 

this application, the Max Worker Time and the Maximum Master Overhead also increase. This is 

increase was due to an increased latency experienced by the worker while returning tasks to the 

space. A possible cause for this latency is the system or network conditions at that instant. Note that 



Jini being a network-based protocol does not offer any real-time guarantees. Figure 13(b) illustrates 

the task distribution across the workers for the three cases. 

5.2.3.3 Web Page Pre-fetching Scheme based on Page Rank 

The results of this experiment for the web page pre-fetching application are plotted in Figures 

14(a) and 14(b). As expected (see Figure 14(a)), the total parallel computation time increases as the 

number of workers loaded increases. The task planning and aggregation times also increase as 

before. The maximum master overhead and the maximum worker time remains the same across all 

three runs. Figure 14(b) illustrates how tasks are scheduled with changing load conditions.  

Figure 14(a)  - Execution Time Analysis (4 Workers) � Web Page Pre-fetching Application  

Figure 14(b) - Tasks Executed per Worker (4 Workers) � Web Page Pre-fetching Application  
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5.2.4 Discussion 

The experiments presented in this section show that the JavaSpaces-based cluster-computing 

framework could support to fit a family of applications from varied domains. The experiments also 

demonstrate the ability of the framework to dynamically react to the varying system state with 

minimal overheads and reaction times. 

6. Conclusions 

This paper presented the design, implementation and evaluation of a framework for 

opportunistic parallel computing on networked clusters using JavaSpaces. This framework enables 

coarse-grained applications to be distributed across and exploit existing heterogeneous clusters. The 

framework builds on Jini and JavaSpaces technologies. It provides support for global deployment 

of application code and remote configuration management of worker nodes, and uses an SNMP 

system state monitor to ensure non-intrusiveness. The experimental evaluation, using 3 �real-

world� applications, shows that the framework v provides good scalability for coarse-grained tasks. 

Furthermore, using the system state monitor and triggering heuristics the framework can support 

adaptive parallelism and minimize intrusiveness.  The results also show that the signaling times 

between the worker and network management modules and the overheads for adaptation to cluster 

dynamics is insignificant.  

We are currently investigating ways to reduce the overheads during task planning and allocation 

phases. Furthermore, several application-specific optimizations can be introduced to improve 

performance. As future work, we envision incorporating a distributed JavaSpaces model to avoid a 

single point of resource contention or failure. The Jini community is also investigating this area. 

Finally, the current implementation of the framework does not provide fault tolerance. We are 

investigating the transaction management service provided by Jini to address this issue. 
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