
A Framework for Opportunistic Cluster Computing
using JavaSpaces1

Jyoti Batheja and Manish Parashar

Electrical and Computer Engineering, Rutgers University
94 Brett Road, Piscataway, NJ 08854
{jbatheja, parashar}@caip.rutgers.edu

Abstract. Heterogeneous networked clusters are being increasingly used as
platforms for resource-intensive parallel and distributed applications. The
fundamental underlying idea is to provide large amounts of processing
capacity over extended periods of time by harnessing the idle and available
resources on the network in an opportunistic manner. In this paper we present
the design, implementation and evaluation of a framework that uses
JavaSpaces to support this type of opportunistic adaptive parallel/distributed
computing over networked clusters in a non-intrusive manner. The framework
targets applications exhibiting coarse-grained parallelism and has three key
features: (1) portability across heterogeneous platforms, (2) minimal
configuration overheads for participating nodes, and (3) automated system
state monitoring (using SNMP) to ensure non-intrusive behavior.
Experimental results presented in this paper demonstrate that for applications
exhibiting coarse grained parallelism, the opportunistic parallel computing
framework can provide performance gains. Furthermore, the results indicate
that monitoring and reacting to current system state minimizes intrusiveness.

1 Introduction

This paper presents the design, implementation and evaluation of a framework that
uses JavaSpaces [1] to aggregate networked computing resources, and non-
intrusively exploits idle resources for parallel/distributed computing. Traditional
High Performance Computing (HPC) is based on massively parallel processors,
supercomputers or high-end workstation clusters connected by high-speed networks.
These resources are relatively expensive, and are dedicated to specialized parallel
and distributed applications. Exploiting available idle resources in a networked
system can provide a more cost effective alternative for certain applications.
However, there are a number of challenges that must be addressed before such
opportunistic adaptive cluster computing can be a truly viable option. These include:
1) Heterogeneity: Cluster environments are typically heterogeneous in the type of

1 The research presented in this paper is based upon work supported by the National Science
Foundation under Grant Number ACI 9984357 (CAREERS) awarded to Manish Parashar.



resources, the configurations and capabilities of these resources, and the available
software, services and tools on the systems. This heterogeneity must be hidden from
the application and addressed in the seamless manner, so that the application can
uniformly exploit available parallelism. 2) Intrusiveness: Inclusion of the
framework must minimize modifications to any existing legacy code or standard
practices. Furthermore, a local user should not be able to perceive that local
resources are being stolen for foreign computations. 3) System configuration and
management overhead: Incorporating a new resource into the cycle stealing
resource cluster may require system configuration and software installation. These
modifications and overheads must be minimized so that the cluster can be expanded
on the fly to utilize all available resources. 4) Adaptability to system and network
dynamics: The availability and state of system and network resources in a cluster
can be unpredictable and highly dynamic. These dynamics must be handled to ensure
reliable application execution. 5) Security and privacy: Secure and safe access to
resources in the cluster must be guaranteed so as to provide assurance to the users
making their systems available for external computations. Policies must be defined
and enforced to ensure that external application tasks adhere to the limits and
restrictions set on resource/data access and utilization.
Recent advances in opportunistic cluster computing have followed two approaches,
Job level parallelism and Adaptive parallelism2. In the job level parallelism
approach, entire application jobs are allocated to available idle resources for
computation, and are migrated across resources as resources become unavailable.
The Condor [10] system supports cluster-based job level parallelism. In the adaptive
parallelism approach, the available processors are treated as part of a dynamic
resource pool. Each processor in the pool aggressively competes for application
tasks. This approach targets applications that can be decomposed into independent
tasks. Adaptive computing techniques can be cluster based or web based. Cluster
based systems exploit available resources within a local networked cluster. Web
based approach extends this model to resources over the Internet. Systems
supporting adaptive parallelism include cluster-based systems such Piranha [11][12],
Atlas [6], and ObjectSpace/Anaconda [9], and web-based systems such as Charlotte
[4][5], Javelin [8], and ParaWeb [7].
This paper presents the design, implementation and evaluation of a framework for
adaptive and opportunistic cluster computing based on JavaSpaces that address the
issues outlined above. The framework has three key features: (1) portability across
heterogeneous platforms, (2) minimal configuration overheads and runtime class
loading at participating nodes, and (3) automated system state monitoring (using
SNMP [2][3]) to ensure non-intrusive behavior.
The rest of this paper is organized as follows. Section 2 describes the architecture
and operation of the proposed framework. Section 3 presents an experimental
evaluation of the framework. Section 4 presents our conclusions and outlines current
and future work.

2 To best of our knowledge, the term “adaptive parallelism” was coined by the Piranha project
[12].



2 A Framework for Opportunistic Parallel Computing on Clusters

The framework presented in this paper employs JavaSpaces to facilitate master-
worker parallel computing on networked clusters. JavaSpaces is a Java
implementation of a tuple-space system [13], and is provided as a Jini service [18].
JavaSpaces technology provides a programming model that views applications as a
collection of processes cooperating via the flow of objects into and out of one or more
spaces. A space is a shared, network accessible repository for objects [14]. In the
presented framework, parallel workload is distributed across the worker nodes using
the bag of task model with the master producing independent application tasks into
the space, and the worker consuming these tasks and computing on them. Results are
returned to the space. This model offers two key advantages. (1) The model is
naturally load-balanced. Load distribution in this model is worker driver. As longs as
there work to be done, and the worker is available to do work, it can keep busy. (2)
The model is naturally scalable. Since the tasks are relatively independent, as longs
as there are a sufficient number of task, adding workers improves performance.

The framework and underlying parallel computing model supports applications that
are sufficiently complex and require parallel computing, that are divisible into
relatively coarse-grained subtasks that can be solved independently, and where the
subtasks have small input/output sizes.

2.2 Framework Architecture

Fig. 1. Framework architecture

A schematic overview of the framework architecture is shown in Fig. 1. It consists of
3 key components: the Client-side (Master) components, the Server-side (Worker)
components and the Network Management Module.



Master Module: The Master component defines the problem domain for a given
application. The application domain is broken down into sub tasks that are
JavaSpace enabled.3 The master also contains the JavaSpace and registers it as a Jini
service. It relies on Jini for remote lookup during the discovery phase. The JavaSpace
is used to handles all communication issues.
Worker Module: The worker component provides the solution content for the
application domain. In an effort to minimize the overheads of deploying worker
code, we have implemented a remote node configuration mechanism that facilitates
remote loading of the worker implementation classes at runtime.
Network Management Module: In order to exploit idle resources while
maintaining non-intrusiveness at the remote nodes, it is critical that the framework
monitors the state of the worker nodes, and uses this state information to drive the
scheduling of tasks on workers. The Network Management Module performs this
task. It monitors the state of registered workers and uses defined policies to decide on
the workers availability. The policies are maintained by the Inference Engine
component and enforced using the Rule Base Protocol.

2.2 Implementation and Operation

The framework implements the master-worker pattern with JavaSpaces as the
backbone. The overall operation of the framework consists of three potentially
overlapping phases, viz. task-planning, compute, and result-aggregation. During the
task-planning phase, the master process first decomposes the application problem
into sub tasks. It then iterates through the application tasks, creates a task entry for
each task, and writes the tasks entry into the JavaSpace. During the compute phase,
the worker process collects these tasks from the JavaSpace. Matchmaking in
JavaSpaces is achieved by identifying each task object by a unique ID and the space
where it resides. If a matching task object is not available immediately, the worker
process waits until one arrives. The worker classes are downloaded at runtime using
the Remote Node Configuration Engine. Remote node configuration is explained in
section 2.2.1. Results obtained from executing the computations are put back into the
space. During the compute-phase, if the resource utilization on the worker nodes
becomes intolerable the rule base protocol sends a stop/pause signal to the worker
process. On receiving the signal, the worker process completes the execution of the
current task and returns its results into space. It then enters the stop/pause state and
does not accept tasks until it receives a start/resume signal. During the result
aggregation phase, the master process removes results written into the space by the
workers, and aggregates them into the final solution.

3 JavaSpace required the Objects being passed across the Space to be in a Serializable format.
In order to transfer an entry to or from a remote space, the proxy to the remote space
implementation first serializes the fields and then transmits it into the space.



2.2.1 Remote Node Configuration

The required classes for remote configuration of the worker nodes are easily
downloadable from the web server residing at the master in the form of executable
jar files. The application implementation classes are loaded at runtime from within
the configuration classes, and the appropriate method to start the worker application
thread is invoked. Our modification of the network launcher [15] provides
mechanisms to intercept calls from the inference engine (the network management
module) and interpret them as signals to the executing worker code. This interaction
is used to enable the worker to react to system state as explained below.

2.2.2 Rule Base Protocol

Fig. 2. Sequence diagram for the rule base protocol

The rule base protocol defines the interaction between the network management
module and the worker module (see Fig. 2) to enable the worker to react to changes
in its system state. It operation is as follows:
The SNMP client, which is part of the worker module, initiates the workers
participation in the parallel computation by registering with the SNMP server at the
network management module. The inference engine, also at the network
management module, maintains a list of registered workers. It assigns a unique ID to
the new worker and adds its IP address to the list. The SNMP server then continues
to monitor the state of workers in its list.
The SNMP parameter monitored is the average worker CPU utilization. As these
values are returned they are added to the respective entry in the server list. Based on
this return value and programmed threshold ranges, the inference engine makes a
decision on the workers current availability status and passes an appropriate signal
back to the worker. Threshold values are based on heuristics. The rule base currently



defines 4 types of signals in response to the varying load conditions at a worker; viz.
start, stop, pause and resume.
Start: This signal is sent to the worker nodes to signify that the worker node is now
idle and can start the parallel processing job. The threshold average CPU load
values for this state are in the range of 0% - 25%. On receiving this signal, the
worker initiates a new runtime process that loads the application worker classes and
starts work execution.
Stop: This signal is sent to the worker nodes to indicate that the worker node can no
longer be used for computations. This may be due to a sustained increase in CPU
load caused by a higher priority (possibly interactive) job being executed. The cutoff
threshold value for the stop state is an average CPU utilization greater than 50%. On
receiving the stop signal, the executing worker thread is interrupted and
shutdown/cleanup mechanisms are initiated. The shutdown mechanism ensures that
the currently executing task completes and its results are written into the space. After
cleanup the worker thread is killed and control returns to the parent process.
Pause: This signal is sent to the worker nodes to indicate that the worker node is
experiencing increased average CPU loads. However, the load increase might be
transient and node could be reused for computation in the near future. Hence it
should temporarily not be used for computation. Threshold values for the pause state
are in the range of 25% - 50%. Upon receiving this signal, the worker backs off, but
unlike the stop state the back off is temporary, i.e. until it get the resume signal. This
minimizes worker initialization and class loading overheads for transient load
fluctuations. As in the stop state, the pause goes into effect only after the worker
writes the results of the currently executing task into the space.
Resume: This signal is sent to the worker nodes, while paused, to indicate that the
worker node is once again available for computation. This signal is triggered when
the average CPU load falls below 25%. Upon receiving this signal the worker
process once again retrieves tasks from the space and computes them.

3 Framework Evaluation

We evaluated the JavaSpaces-based opportunistic cluster-computing framework with
a real world financial application that uses Monte Carlo (MC) simulation for Option
Pricing. An option is a derivative, that is, its pricing value is derived from something
else. Complications such as varying interest rates and complex contingencies can
prohibit analytical computation of options and other derivative prices. Monte Carlo
(MC) simulation [17] using statistical properties of assumed random sequences is an
established tool for pricing derivative securities. An option is defined by the
underlying security, the option type (call or put), the strike price, interest rate,
volatality and the expiration date. These financial terms are explained in greater
depth in [16]. The main MC simulation based on the input parameters is the core
parallel computation in our experiments. Input parameters may be defined using a
GUI as provided in our implementation. The simulation domain is divided into tasks



of size 100 each and MC simulations are performed in parallel on these tasks. High
and low pricing estimates are obtained over a wide range of simulations.

3.1 Scalability Analysis

Fig. 3. Application scalability

This experiment measures the overall scalability of the application and the
framework. Results for this experiment are plotted in Fig. 3. As shown in the figure
an initial speedup is obtained as the number of workers is increased. During this part
of the curve the total parallel time closely follows the maximum worker time. As the
number of workers increases the model spreads the total tasks more evenly across the
available workers. Hence the maximum (Max) worker time evens out as the number
of workers increases. However, after a point we notice that the total parallel time is
dominated by the Task Planning time. That is the workers are able to complete the
assigned task and return it to the space much before the master gets a chance to plan
a new task and put it into the space. Hence the workers remain starved until the task
is made available. As a result the scalability deteriorates. This indicates that the
framework favors coarse-grained tasks that are compute intensive. As expected the
task aggregation curve closely follows the maximum worker time.

3.2 Adaptation Protocol Analysis

In this experiment, we provide a time analysis to illustrate the overhead involved in
signaling worker nodes and adapting to their current CPU load. As a part of the
experimental setup, we built two sets of load simulators: load simulator 1 was
designed to raise the CPU usage level on the worker to 30% to 50% utilization. The
second load simulator (load simulator 2) raised the CPU utilization of the worker
machines to 100%. Fig. 4(a) and Fig. 4(b) depict the worker behavior under the



simulation conditions. Fig. 4(a) captures the CPU usage history on the worker host
throughout the run. We identify the peaks where the worker reacts to the signals
sent. The first peak at 80% CPU usage occurs when the worker is started. This
sudden load increase is attributed to the remote loading of application classes at the
worker. Next, load simulator 2 is started which sends the CPU usage to 100%. This
causes a Stop signal to be sent to the worker node. The load simulator 2 is then
stopped and load simulator 1 is started which raises the CPU load to 46%. As seen in
Fig. 4(b) the worker reaction times to the signal is minimal in all cases.
Furthermore, the large overhead associated with remote class loading is avoided in
the case of transient load increase at the node using the pause/resume states.

Fig. 4(a). Worker CPU usage Fig. 4(b). Worker reaction times

Simulation signal triggers: Start - Stop - Restart - Pause - Resume

3.3 Dynamic behavior patterns under varying load conditions

This experiment consists of three runs: In the first run none of the workers were
loaded. In the second and third runs, the load simulator 2 was run to simulate high
CPU loads on 3 and 6 workers respectively. As seen in Fig. 5(a), as the number of
worker hosts being loaded increases, the total parallel computation time increases.
The computational tasks that would have been executed normally at a worker are
now off loaded and picked up by other executing workers. The task planning and
aggregation times also increase since the master has to wait for the worker with the
maximum number of tasks to return its results back into the space. The maximum
master overhead and the maximum worker time remains the same across all three
runs as expected. Fig. 5(b) illustrates how task scheduling adapts to load current load
conditions. It shows that the number of task executed by each worker depends on its
current load. Loaded workers execute fewer tasks causing the available workers to
execute larger number of tasks.



Fig. 5(a). Execution time measurements for 12 workers

Fig. 5(b). Number of tasks executed per worker for 12 workers

4 Conclusions

This paper presented the design, implementation and evaluation of a framework for
opportunistic parallel computing on networked clusters using JavaSpace. It provides
support for global deployment of application code and remote configuration
management of worker nodes, and uses an SNMP system state monitor to ensure
non-intrusiveness. The experimental evaluation, using an option pricing application,
shows that the framework provides good scalability for coarse-grained tasks.
Furthermore, using the system state monitor and triggering heuristics the framework
can support adaptive parallelism and minimize intrusiveness. The results also show
that the signaling times between the worker and network management modules and
the overheads for adaptation to cluster dynamics is insignificant. We are currently
investigating ways to reduce the overheads during task planning and allocation
phases. As future work, we envision incorporating a distributed JavaSpaces model to



avoid a single point of resource contention or failure. The Jini community is also
investigating this area.

References

1.Sun Microsystems. Javaspaces, www.javasoft.com/products/javaspaces/specs/ (1998)
2. SNMP Documentation, http://www.snmpinfo.com
3. James Murray, Windows NT SNMP, O'Reilly Publications (January 1998)
4. A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing on the Web.

In Proceedings of the 9th ISCA International Conference on Parallel and Distributed
Computing Systems (PDCS), (September 1996) 181-188

5. A. Baratloo, M. Karaul, H. Karl, Zvi M. Kedem. An Infrastructure for Network Computing
with Java Applets. Concurrency: Practice and Experience, Vol. 10, (September 1998)
1029-1041

6. J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastructure for Global
Computing. In Proceedings of the 7th ACM SIGOPS European Workshop: Systems support
for Worldwide Applications (September 1996) 165-172

7. T. Brecht, H. Sandhu, J. Talbott, and M. Shan. ParaWeb: Towards world-wide
supercomputing. In Proceedings of the 7th ACM SIGOPS European Workshop (September
1996) 181-188

8. B. Christiansen, P. Cappello, M. Ionescu, M. Neary, K. Schauser, and D. Wu. Javelin:
Internet-based parallel computing using Java. Concurrency: Practice and Experience, Vol.
9 (November 1997) 1139-1160

9. P. Ledru. Adaptive Parallelism: An Early Experiment with JavaTM Remote Method
Invocation. Technical Report, CS Department, University of Alabama (1997)

10.M. Lizkow, M. Livny, and M. Mukta. Condor: A hunter of idle workstations. In
Proceedings of the 8th International conference on Distributed Computing Systems
(June1998) 104-111

11. N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive parallelism and
Piranha. IEEE Computer, Vol. 28, No. 1 (January 1995) 40-49

12. D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary
Experience with Piranha. In Proceedings of the 6th ACM International Conference on
Supercomputing (July 1992) 417-427

13.The Linda Group. http://www.cs.yale.edu/HTML/YALE/CS/Linda/linda.html
14. E. Freeman, S. Hupfer, K. Arnold. JavaSpaces Principles, Patterns, and Practice. Addison

Wesley (June 1999)
15.M. Noble. Tonic: A Java TupleSpaces Benchmark Project. http://hea-

www.harvard.edu/~mnoble/tonic/doc/
16. Glossary of Financial terms http://www.centrex.com/terms.html
17.Broadie and Glasserman MC algorithm for Option Pricing http://www.puc-

rio.br/marco.ind/monte-carlo.html
18. W. Keith Edwards. Core Jini, Addison Wesley (October 2000).


