
Hierarchical Partitioning Techniques for Structured Adaptive Mesh Refinement
(SAMR) Applications

�

Xiaolin Li, Sivapriya Ramanathan, and Manish Parashar
The Applied Software Systems Laboratory

Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08854, USA

Email:
�
xlli, sivapriy, parashar � @caip.rutgers.edu

Abstract

This paper presents the design and preliminary evalua-
tion of hierarchical partitioning and load-balancing tech-
niques for distributed Structured Adaptive Mesh Refine-
ment (SAMR) applications. The overall goal of these tech-
niques is to enable the load distribution to reflect the state
of the adaptive grid hierarchy and exploit it to reduce syn-
chronization requirements, improve load-balance, and en-
able concurrent communications and incremental redistri-
bution. The hierarchical partitioning algorithm (HPA) par-
titions the computational domain into subdomains and as-
signs them to hierarchical processor groups. Two variants
of HPA are presented in this paper. The Static Hierarchical
Partitioning Algorithm (SHPA) assigns portions of overall
load to processor groups. In SHPA, the group size and the
number of processors in each group is setup during initial-
ization and remains unchanged during application execu-
tion. It is experimentally shown that SHPA reduces com-
munication costs as compared to the Non-HPA scheme, and
reduces overall application execution time by up to ����� .
The Adaptive Hierarchical Partitioning Algorithm (AHPA)
dynamically partitions the processor pool into hierarchical
groups that match the structure of the adaptive grid hier-
archy. Initial evaluations of AHPA show that it can reduce
communication costs by up to ��	
� .

Keywords: Dynamic Load Balancing, Hierarchical Par-
titioning Algorithm, Distributed Computing, Structured
Adaptive Mesh Refinement

�
The work presented here was supported in part by the Na-

tional Science Foundation via grants numbers ACI 9984357 (CA-
REERS), EIA 0103674 (NGS) and EIA-0120934 (ITR), and by
DOE ASCI/ASAP (Caltech) via grant number PC295251.

1 Introduction

With the rapid growth in computing and communication
technology, the past decade has witnessed a proliferation
of powerful parallel and distributed systems and an ever-
increasing demand for and practice of high performance
computing [3, 6]. A key issue in parallel and distributed
computing is the partitioning, balancing and scheduling of
computational loads among processors to efficiently utilize
the available computing, communication and storage re-
sources, and to maximize overall performance and scala-
bility. This is especially true in the case of dynamically
adaptive applications such as those based on the adaptive
mesh refinement methods, where the computational load of
these applications changes as the application evolves.

In this paper, we present the design and preliminary eval-
uation of hierarchical partitioning and load-balancing tech-
niques for distributed Structured Adaptive Mesh Refine-
ment (SAMR) applications. Dynamically adaptive mesh
refinement (AMR) [2] methods for the numerical solution
of partial differential equations employ locally optimal ap-
proximations, and can yield highly advantageous ratios for
cost/accuracy when compared to methods based upon static
uniform approximations. These techniques seek to improve
the accuracy of the solution by dynamically refining the
computational grid in regions of high local solution error.
Distributed implementations of these methods offer the po-
tential for accurate solutions of physically realistic mod-
els of complex physical phenomena. These implementa-
tions also lead to interesting challenges in dynamic resource
allocation, data-distribution, and load balancing. Critical
among these is the dynamic partitioning of the adaptive grid
hierarchy at runtime to balance load, optimize communi-
cation and synchronization, minimize data migration costs,
and maximize available parallelism.

Traditional distributed implementation of SAMR appli-

cations [1, 8, 9, 11] have used dynamic partitioning/load-
balancing algorithms that view the system as a flat pool
of (usually homogeneous) processors. These approaches
are typically based on a global knowledge of the state of
the adaptive grid hierarchy, and partition the grid hierarchy
across the set of processors. Global synchronizations and
communications is required to maintain this global knowl-
edge and can lead to significant overheads on large systems.
Furthermore, these approaches do not exploit the hierarchi-
cal nature of the grid structure and the distribution of com-
munications and synchronizations in this structure.

The overall goal of the hierarchical partitioning algo-
rithms (HPA) presented in this paper is to allow the distri-
bution to reflect the state of the adaptive grid hierarchy and
exploit it to reduce synchronization requirements, improve
load-balance, and enable concurrent communications and
incremental redistribution. These techniques partition the
computational domain into subdomains and assigns these
subdomains to dynamically configured hierarchical proces-
sor groups. Processor hierarchies and groups are formed
to match natural hierarchies in the grid structure. In addi-
tion to providing good load-balance, this approach allows a
large fraction of the communications required by the adap-
tive algorithms to be localized within a group. Furthermore,
communications with different groups can proceed concur-
rently. Hierarchical partitioning also reduces the dynamic
partitioning and data migration overheads by allowing these
operations to be performed concurrently within different
groups and incrementally across the domain.

Two variants of HPA are presented in this paper. The
Static Hierarchical Partitioning Algorithm (SHPA) assigns
portions of overall load to processor groups. In SHPA, the
group size and the number of processors in each group is
set in advance and remains unchanged during the execu-
tion. While SHPA is static in the sense that its group topol-
ogy is unchanged during the execution, it does perform dy-
namic load balancing. To overcome the static nature of
SHPA, we propose an Adaptive Hierarchical Partitioning
Algorithm (AHPA) that dynamically partitions the proces-
sor pool into hierarchical groups that match the structure
of the adaptive grid hierarchy. AHPA naturally adapts to
the runtime behavior of SAMR applications. A preliminary
evaluation of these two algorithms is presented. It is experi-
mentally shown that SHPA reduces communication costs as
compared to the Non-HPA scheme and results in a reduc-
tion in overall application execution time up to ����� . Fur-
thermore, initial evaluations shows that AHPA reduces the
communication cost up to � 	
� .

1.1 Related work

There exist a number of infrastructures that support par-
allel and distributed implementations of SAMR applica-

tions. Each such system represents a combination of design
decisions in terms of algorithms, data structures, user inter-
faces, decomposition, mapping, and distribution and com-
munication mechanisms. Table 1 summarizes a selection
of the existing SAMR infrastructures and the partitioning
approach used by them. Related work in hierarchical load-
balancing is described below.

Table 1. Distributed SAMR Infrastructures
Infrastructure Description
PARAMESH [9] Extends serial code to parallel code

based on partitioning tree represen-
tation of adaptive grid structure

SAMRAI [8] Object oriented framework (based
on LPARX) with patches mapped
across processors at a level

BATSRUS [1] Block-based approach with adapta-
tion distributed over processors in
computational pool in phases

Pollack [12] proposed a scalable hierarchical approach
for dynamic load balancing in parallel and distributed sys-
tems and implemented a system, named PaLaBer (Parallel
Load Balancer), on the Intel Paragon XP/S. It uses multi-
level control for dynamic load balancing and for the com-
munication manager. This hierarchical load balancer uses
non-preemptive as well as preemptive process migration to
balance load between the processors. However, the load
balancing hierarchy is static in that once created the con-
figuration remains fixed for the entire run. PaLaBer targets
overall scheduling and load-balancing of tasks from mul-
tiple applications rather than dynamic load-balancing for
adaptive applications such as SAMR. Compared to PalaBer,
HPA strategy is more flexible and can be static or adaptive.
Furthermore, HPA strategy addresses SAMR applications
by taking into account the features of the computational do-
main and the adaptive nature of SAMR applications. An-
other related approach by Furuchi et al. [7] addressed load
balancing for parallel OR-search programs. This load bal-
ancing system consists of a subtask generator that partitions
a program into independent subtasks, and distributes them
to the processing elements so as to balance workload. In
this scheme, each subtask generator is in charge of a certain
fixed number of processors, which form a processor group.

The rest of the paper is organized as follows. Section
2 provides a short introduction to SAMR and distributed
SAMR implementations. Section 3 describes the hierarchi-
cal partitioning algorithm. The general HPA scheme is first
presented and is followed by two variant, viz. Static HPA
and Adaptive HPA. Experimental and simulation results are
also presented and discussed. Conclusions are presented in
Section 4.

2

2 Problem Description

Dynamically adaptive numerical techniques for solving
differential equations provide a means for concentrating
computational effort to appropriate regions in the computa-
tional domain. These techniques lead to more efficient and
cost-effective solutions to time dependent problems exhibit-
ing localized features. In the case of SAMR methods, this is
achieved by tracking regions in the domain that require ad-
ditional resolution and dynamically overlaying finer grids
over these regions. These methods start with a base coarse
grid with minimum acceptable resolution that covers the
entire computational domain. As the solution progresses,
regions in the domain requiring additional resolution are
tagged and finer grids are overlaid on the tagged regions
of the coarse grid. Refinement proceeds recursively so that
regions on the finer grid requiring more resolution are sim-
ilarly tagged and even finer grids are overlaid on these re-
gions. The resulting grid structure is a dynamic adaptive
grid hierarchy. The adaptive grid hierarchy of the AMR
formulation by Berger and Oliger [2] is shown in Figure 1.

G
0

1

G G

G GGG1

G

1

2

1

n

2 2

2

2 2

i j

3

k

G1

1

G1

1

G
0

1

G

G

1

1

G
2

G k

3

j

2

n

Figure 1. Adaptive Grid Hierarchy - 2D
(Berger-Oliger AMR scheme)

Distributed implementations of SAMR applications par-
tition the adaptive grid hierarchy across available proces-
sors, and operate on the local portions of this domain in par-
allel. The overall performance of these applications is thus
limited by the ability to partition the underlying grid hier-
archies at runtime to expose all inherent parallelism, min-
imize communication and synchronization overheads, and
balance load. A critical requirement of the load partitioner
is to maintain logical locality across partitions at different
levels of the hierarchy and at the same level when they are
decomposed and mapped across processors. The mainte-
nance of locality minimizes the total communication and
synchronization overheads. Distributed SAMR applications
primarily require two types of communications:

Inter-level Communications: These communications
are defined between component grids at different levels

of the grid hierarchy and consist of prolongations (coarse
to fine transfers) and restrictions (fine to coarse transfers).
Inter-level communications require a gather/scatter type
operation based on an interpolation or averaging stencil.
These communications can lead to serialization bottlenecks
for a naive decomposition of the grid hierarchy.

Intra-level Communication: Intra-level communica-
tions (also called ghost communications) are required to
update the grid-elements along the boundaries of local por-
tions of a distributed grid. These communications consist
of near-neighbor exchanges based on the stencil defined by
the difference operator. The communications are regular,
and can be scheduled to overlap with computations on the
interior region of the local portion of distributed grids.

The HPA strategy is based on the composite decompo-
sition of the adaptive grid hierarchy that maintains domain
locality [11]. This decomposition technique partitions the
grid hierarchy such that all inter-level communication is lo-
cal to a processor. This scheme uses space filling curves
(SFC) [13], which are a class of locality preserving recur-
sive mappings from � -dimensional space to � -dimensional
space. In HPA, after obtaining the composite representa-
tion of the adaptive grid hierarchy using SFC, we partition
it and assign spans of the curve to processor groups in a hi-
erarchical manner. This strategy takes advantages of the
composite decomposition which reduces intra-level com-
munications and localizes inter-level communication. Fur-
thermore, it enables communications in different groups to
proceed concurrently, localizes data-movement operations
and can enable incremental redistribution.

3 Hierarchical Partitioning Algorithm

This section first presents the general HPA scheme and
describes its operation. Two variants of the scheme, viz.
Static and Adaptive HPA, are presented.

3.1 General HPA

The overall efficiency of parallel and distributed SAMR
applications is limited by the ability to partition the underly-
ing grid hierarchies at runtime to expose all inherent paral-
lelism, minimize communication and synchronization over-
heads, and balance load. In most distributed implementa-
tions of SAMR [9, 10, 15], load scheduling and balancing
is collectively done by all processors in the system and all
processors maintain a global knowledge of the total work-
load. These schemes have the advantage of a better load
balance. However these approaches require the collection
and maintenance of global load information which makes
them expensive, specially on large system. Partitioning in

3

these Non-HPA schemes 1 consists of the following steps:

� Global load information exchange and synchronization
phase: All processors are engaged in this information
exchange phase. After this phase, all the processors
have a global view of the grid hierarchy.

� Load partitioning phase: All processors calculate the
average load per processor and partition the grid hier-
archy. This operation is done by each processor in the
system.

The sequence of steps taking place in the Non-HPA
scheme for partitioning and scheduling ghost communica-
tions is illustrated in the sequence diagram in Figure 2.
Initially, all processors have the initial computational do-

Processor 1 Processor 2 Processor 3

Initial domain known.
Initial partition and
schedule ghost
communication

Ghost communications
Ghost communications

Computation Computation

Global
synchronization

Global synchronization and
exchange of local information to get
global view

Patitioning the
global domain

Partitioning the
global domain

Data migration based on
the new partition

Schedule ghost
communication.
Computation.

Initial domain known.
Initial partition and
schedule ghost
communication

Schedule ghost
communication.
Computation.

Figure 2. Sequence diagram of the Non-HPA
scheme

main. Each processor partitions the domain into subdo-
mains and assigns a subdomain to itself. During the load
balancing phase, all processors synchronize and exchange
their local domain information. At the end of this phase,
every processor has a consistent global view of the do-
main. The partitioning algorithm then partitions the domain
among the processors. After partitioning is complete, the
processors migrate data that no longer belongs to their local

1Note that a Non-HPA scheme can be viewed as a special case of HPA
where there is only one group composed of all processors

subdomains. Each processor then schedules ghost commu-
nications based on its new local subdomain.

In large parallel/distributed systems, the global informa-
tion exchange and synchronization phase becomes a per-
formance bottleneck. The HPA scheme presented in this
paper does not propose a new partitioner, but a hierar-
chical partitioning strategy. The underlying partitioning
scheme adopted is the composite decomposition method us-
ing space filling curve (SFC) technique [11, 13] as men-
tioned in Section 2. In this scheme, partitioning at differ-
ent level is performed in parallel based on load information
local to that level. Load is periodically propagated up the
processor group hierarchy in an incremental manner. Fur-
thermore communications are conducted in stages among
the processors in a group hierarchically, rather than requir-
ing communication and synchronization among all proces-
sors. This is achieved by dividing the processors into pro-
cessor/compute groups as shown in Figure 3.

G0

G1 G2

G2,1 G2,2

G2,2,1
G2,2,2

G2,2,2

G2,2

G0

Gi Gn… …

Gi,1 Gi,2 Gi,3

…

P10 P14 P15 P16

P0 P1

G2,2

P5

G2

…

Figure 3. A general hierarchical structure of
processor groups

Figure 3 illustrates a general hierarchical tree structure of
processor groups, where,

���
is the root level group (group

level=0) and consists of all the processors.
���

is the ���
	��
group at the group level 1. Note that the processors form
the leaves of the tree. The communication between pro-
cessors is conducted through their closest common ances-
tor group which is their coordinater or master. For exam-
ple, processors
�� � and
���� have common ancestor groups� �

,
���

and
����� �

. However their closest common ancestor
group is

����� �
. Consequently their communication is via the

group
����� �

which is their coordinator or master. Similarly,
communications between processors
 � and
�� � are via the
group

� �
.

In HPA, the partitioning phase is divided into sub-phases
as follows.

4

� Local partitioning phase: The processors belonging to
a processor group partition the group load based on a
local load threshold and assign a portion to each pro-
cessor within the group . Parent groups perform the
partitioning among their children groups in a hierar-
chical manner.

� Global partitioning phase: The root group coordinator
(group level 0) decides if a global repartitioning has to
be performed among its children groups at the group
level 1 according to the group threshold.

The pseudo-code for the new load balancing phase is
given in Table 2.

The HPA scheme attempts to exploit the fact that given a
group with adequate number of processors, and a carefully
defined number of groups, the number of global partitioning
phases can be minimized. The working step of the general
HPA is illustrated by the sequence diagram in Figure 4.

 Processor 1
 (Group 1 Master)

Processor 2
 (Group 1)

Processor 3
 (Group 2 Master)

Processor 4
 (Group 2)

Computation

Computation

Synchronzation in group
to get global view in
group

Synchronization among masters to exchange
local domains to get global domain

Parti tion among masters to get
local domain

Broadcast local domain to group
Broadcast local domain to group

Parti tion in group
Parti tion in group

Computation Computation

Figure 4. Sequence diagram of the HPA
scheme

In this figure, we show a two level group hierarchy in-
cluding the root group

� �
. The hierarchical scheme first

creates processor groups. After these groups are created
and the initial grid hierarchy is setup, the group coordina-
tors/masters partition the initial domain in the global parti-
tioning phase. At the end of this phase the coordinators have
a portion of the domain that is then partitioned among the
processors in the group subtrees. Recursively, portions of
the computational domain are partitioned further and finally
assigned to individual processors at the leaves of the proces-
sor group hierarchy. This is the local partitioning phase.

3.2 Static HPA

In the Static HPA strategy, the group size and the group
topology is defined at startup based on the available proces-
sors and the size of the problem domain. The static pro-
cessor group hierarchy consists of two levels. It is static in
the sense that once the group configuration is setup it will
be fixed for the entire execution of the application. Even
though it is static, SHPA does possess the basic advantages
of the general HPA strategy. It localizes the load redistri-
bution and balancing within processor groups and enables
concurrent communication among processor groups. Note
that, SHPA is still a dynamic load balancing algorithm [14],
as load is dynamically redistributed within and across pro-
cessor groups – only the processor group hierarchy remains
static.

The load partitioning and assignment procedure is shown
in Table 3. As described in the table, the number of groups,�����������
	�����
����

, is defined at application startup. The load bal-
ancing phase in SHPA is similar to the steps in Table 2 with
two group levels.

The Static HPA is implemented as part of the GrACE
library [10]. The groups are created using communicators
provided by the MPI library. Communication within groups
is through intracommunicators while communication be-
tween processors belonging to different groups is through
intercommunicators.

The Static HPA scheme is evaluated on the IBM SP2
cluster at University of California, San Diego. The appli-
cation used in these experiments is a numerical relativity
kernel (Wave3D) and belongs to the general class of SAMR
applications. Wave3D solves a coupled set of partial differ-
ential equations. This kernel is a part of the Cactus numeri-
cal relativity toolkit [4].

The experiments measure the total execution time of the
simulations using Static HPA and Non-HPA schemes. In
Figure 5, we observe that, the maximum performance gain
is obtained for 128 processors with 8 groups, a � � � over-
all execution time reduction as compared to the Non-HPA
scheme. As shown by the evaluation, the benefits of SHPA
depends on the appropriate selection of the number of pro-
cessor groups, which in turn depends on the system and the
application. The adaptive HPA scheme attempts to address
the limitation by dynamically managing processor groups.

3.3 Adaptive HPA

In this section, we propose an Adaptive HPA strategy.
In the Static HPA strategy, the total number of groups is
predefined and keep unchanged throughout the execution
of the application. In order to account for the application’s
runtime dynamics, the AHPA proposes an adaptive strat-
egy. AHPA dynamically partitions the computational do-

5

Table 2. Load balancing phase in the general HPA

/* in the highest group composed of individual processors */
if(my_load > threshold) {

do a local partition in a group;
}
grouplevel = highest level;
while(grouplevel > 0){

if(group_load > group_threshold) {
do a partition among children groups at grouplevel;
broadcast new composite list through parent group;

}
grouplevel --;

}
begin computation; ...

Table 3. Load partitioning and assignment in Static HPA

Step 1. Use SFC to obtain the composite grid unit (CGU) list.

Step 2. Partition the CGU list into ����������� 	�
���
���� subdomains.

Step 3. Assign the load ��� on subdomain ��� to a group of processors ��� such that the num-
ber of processors ����� in the group ��� is proportional to the load ��� , i.e., �������
� ��� � �
"!$# ��� �
"! , where � �
%! is the total size of load and ��� �
"! is the total number
of processors.

Step 4. Partition the load portion � � and assign the appropriate portion to the individual processor
in the group ��� , for &'�)(+*�,"*�-.-/-.*������0���0��� 	1
���
����324, .

main into subdomains to match its current adaptations. The
subdomains created may have unequal loads. The algorithm
then assigns the subdomains to corresponding nonuniform
hierarchical processor groups. The detailed steps are pre-
sented in Table 4. Note that the definition of processor
groups may take into consideration the system architecture
- for example, group size can be chosen to match the size of
a SMP node in a SMP cluster.

As shown in Table 4, the AHPA scheme partitions the
computational domain according to its refinement level.
This partitioning scheme naturally matches the state of the
grid hierarchy. The partitioning and assignment proce-
dure presented in the table is repeated at each regrid as the
SAMR applications progress. Note that, when the number
of processors assigned to one group is too large, SHPA can
be applied in this group. Load balancing phase in AHPA is
similar to the steps in Table 2 with dynamic group sizes and
a dynamic number of group levels.

The AHPA scheme is evaluated using trace-driven sim-
ulations. The simulations are conducted as follows. First,
we obtain the refinement trace for an SAMR application by

running the application for a single processor. We then feed
the trace file to the HPA partitioners to partition and pro-
duce a new trace file for multiple processors. Finally, we
input the new trace file into our SAMR simulator to obtain
the runtime performance measurements on multiple proces-
sors. The simulation results for the 2D Transport Equation
and the Wave3D applications are shown in Figure 6.

In Figure 6, we observe that the communication cost
(measured as the total message size for intra-level and
inter-level communication) is greatly reduced using HPA
schemes as compared to the Non-HPA scheme. This is
primarily due to reduced global communication and con-
current communications in hierarchical processor groups.
Compared to the SHPA scheme, AHPA scheme further re-
duces communication cost. In the figure, the communica-
tion cost increases as the number of processors increases
due to an increase inter-processor communication traffic.
An important observation is that, the rate of increase for the
Non-HPA and SHPA schemes are greater than that for the
AHPA scheme. This indicates that the AHPA scheme has
a better scalability. The reduction in communication cost is

6

0

20

40

60

80

100

120

140

T
o

ta
l

E
x

ec
u

ti
o

n
 t

im
e

(s

e
c

s
.)

96 128 256

Num. of processors

Wave3D application
(Size=129x129x129; RefineEvery=32)

Non-HPA

Static HPA (#groups=4)

Static HPA(#groups=8)

0

100

200

300

400

500

T
o

ta
l E

xe
cu

ti
o

n

ti
m

e
(s

ec
s.

)

96 128 256

Num. of processors

Wave3D application
 (Size = 257x257x257; RefineEvery=32)

Non-HPA

Static HPA (#groups = 4)

Static HPA (#groups = 8)

Figure 5. Execution time: Static HPA versus Non-HPA scheme

Table 4. Load partitioning and assignment in Adaptive HPA

Step 1. Use SFC to obtain the composite grid unit (CGU) list.

Step 2. Partition the CGU list into subdomains such that subdomains ��� (i is odd) consists of
subdomains whose refinement level is not greater than i/2 and ��� (j is even) consists of
subdomains whose refinement level is not less than j/2. ��� consists of whole domain.

Step 3. Assign the load ��� on subdomain ��� to a group of processors ��� such that the num-
ber of processors ��� � in the group � � is proportional to the load � � , i.e., ��� � �
� ��� � �
"!$# ��� �
"! , where � �
%! is the total size of load and ��� �
"! is the total number
of processors.

Step 4. Partition the load portion ��� and assign the appropriate portion to the individual processor
in the group ��� , for &'�)(+*�,"*�-.-/-.*������0���0��� 	1
���
����324, .

significant, up to � 	
� , for the AHPA scheme as compared
to the Non-HPA scheme. These simulations validate that
the Adaptive HPA scheme is an efficient solution to gain
better system performance. The experimental evaluation of
AHPA scheme is in progress and will be released soon.

4 Conclusions

In this paper we proposed a hierarchical partitioning and
balancing strategy for the distributed implementations of
SAMR applications. The HPA scheme takes advantage
of hierarchical organization of the processor groups to re-
strict communications to smaller groups, thereby reducing
the global communication and synchronization cost and ex-
ploiting concurrent communication. We presented two vari-
ant HPA scheme,viz. the Static HPA (SHPA) and the Adap-
tive HPA (AHPA). In the SHPA scheme, the total number
of groups is defined a priori and the group topology is fixed
or static during the execution of SAMR applications. In the
AHPA scheme, the processor pool is adaptively partitioned
into hierarchical groups at runtime to match the adaptive

behavior of the SAMR applications. The HPA schemes are
validated using experiments and simulations. It is experi-
mentally shown that SHPA reduces communication costs as
compared to the Non-HPA scheme, and reduces overall ap-
plication execution time by up to ����� . AHPA dynamically
partitions the processor pool into hierarchical groups that
match the structure of the adaptive grid hierarchy. Initial
evaluations of AHPA show that it can reduce communica-
tion costs by up to ��	 � . An experimental evaluation of the
AHPA scheme is ongoing.

Other variants of HPA are also quite promising - for ex-
ample an Adaptive HPA taking into consideration the run-
time system state. The meta-partitioner method as proposed
in [5] can be incorporated into the HPA scheme framework
to apply different HPA schemes for different system and ap-
plication runtime characteristics.

References

[1] BATSRUS. http://hpcc.engin.umich.edu/HPCC/codes
/2/BATSRUSv2.html.

7

0

1000
2000

3000

4000
5000

6000

7000
8000

M
e

s
s

a
g

e
 s

iz
e

 (
k

b
y

te
s

)

8 16 24 32 48 64

Number of Processors

Wave3D Application
(size = 32x32x32, 100 iterations)

Non-HPA

Static HPA
(groupsize=4)

Adaptive HPA

0

1000

2000

3000

4000

5000

6000

7000

8000

M
es

sa
g

e
si

ze
 (

kb
yt

es
)

8 16 24 32 48 64

Number of Processors

2D Transport Equation
(size = 128x128, 100 iterations)

Non-HPA

Static HPA (groupsize=4)

Adaptive HPA

Figure 6. Communication cost: comparison of Non-HPA, Static HPA and Adaptive HPA schemes

[2] M. Berger and J. Oliger. Adaptive mesh refinement for hy-
perbolic partial differential equations. Journal of Computa-
tional Physics, 53:484–512, 1984.

[3] R. Buyya, editor. High Performance Cluster Computing,
volume 1. Prentice Hall, 1999.

[4] CACTUS. Cactus computation toolkit,
http://www.cactuscode.org/.

[5] S. Chandra, J. Steensland, M. Parashar, and J. Cummings.
An experimental study of adaptive application sensitive par-
titioning strategies for samr applications. In 2nd Los Alamos
Computer Science Institute Symposium, Oct. 2001.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Inter-
national Journal of High Performance Computing Applica-
tions, 15:200–222, 2001.

[7] M. Furuchi, K. Taki, and N. Ichiyoshi. A multi-level load
balancing scheme for OR-parallel exhaustive search pro-
grams on the Multi-PSI. In The Second ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, pages 100–106, 1996.

[8] S. Kohn. SAMRAI: Structured adaptive mesh refinement
applications infrastructure. Technical report, Lawrence Liv-
ermore National Laboratory, 1999.

[9] P. MacNeice. Paramesh, http://sdcd.gsfc.nasa.gov/rib
/repositories/inhouse gsfc/Users manual/amr.html, 1999.

[10] M. Parashar. GrACE, http://www.caip.rutgers.edu
/˜parashar/TASSL/Projects/GrACE, 2001.

[11] M. Parashar and J. Browne. On partitioning dynamic adap-
tive grid hierarchies. In 29th Annual Hawaii International
Conference on System Sciences, pages 604–613, Jan.1996.

[12] R. Pollak. A hierarchical load balancing environment for
parallel and distributed supercomputer. In International
Symposium on Parallel and Distributed Supercomputing,
Fukuoka, Japan, Sep. 1995.

[13] H. Sagan. Space Filling Curves. Springer-Verlag, 1994.
[14] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and

load balancing in parallel and distributed systems. IEEE
Computer Society Press, Los Alamitos, 1995.

[15] J. Steensland. http://www.tdb.uu.se/˜johans/research
/vampire/vampire1.html, 2000.

8

