
Rule-based Visualization in a Computational
Steering Collaboratory

Lian Jiang, Hua Liu, Manish Parashar, Deborah Silver

Dept of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ 08854, USA

Email: {lianjian, marialiu, silver, parashar}@caip.rutgers.edu

Abstract. In this paper, we introduce the concept of rule-based visu-
alization for a computational steering collaboratory and show how these
rules can be used to steer the behaviors of visualization subsystems.
Feature-based visualization allows users to extract regions of interests,
and then visualize, track and quantify the evolution of these features.
Rules define high level user policies and are used to automatically select
and tune the appropriate visualization technique based on application
requirements and available computing/network resources. Such an auto-
mated management of the visualization subsystem can significantly im-
prove the effectiveness of computational steering collaboratories in wide
area Grid environments.

1 Introduction

A computational steering collaboratory is an environment in which geograph-
ically distributed scientists can collaboratively investigate complex and multi-
disciplinary simulations using online monitoring, remote visualization and com-
putational steering techniques. Computational steering in such an environment
not only shortens the period between changes to parameters and the viewing of
the results, but also enables a what-if analysis which makes cause-effect relation-
ships more evident [1].

The ability to flexibly manipulate the visualization subsystem in a com-
putational steering collaboratory is important for both computational steering
and multi-user collaboration as visualization is typically the basis for interac-
tive monitoring and steering. For example, scientists often tend to look at the
isosurface of a scalar field. These are specified using thresholds and are gener-
ally manipulated interactively using the visualization subsystem. However, for
large-scale long-running simulations it may not be feasible to download an entire
dataset or even one timestep of the dataset to a visualization platform. There-
fore, visualization routines are co-located at the simulation platform. However,
this can prevent them from being interactive and thresholds have to be selected
a priori, which may not be most effective. Using rule-based control, scientists can
enable the visualization subsystem to automatically pick the appropriate thresh-
old. In this paper we present such a rule based visualization system. Rules are
decoupled from the system and can be externally injected into a rule base. This

allows scientists to conveniently add, delete, modify, disable, and enable rules
that will control visualization behavior. Scientists can manipulate rules not only
before the simulation, but also during the simulation. For example, while the
simulation is running the scientist may specify a rule such as “if the number
of the extracted regions is greater than 100, then increase the threshold by 5”.
The visualization subsystem will automatically adjust the threshold when the
rule conditions evaluate to true. However, if the scientist knows from monitoring
the first 200 timesteps that the value of x in the second rule is not appropriate
and should be changed, she can modify the rule during the simulation and the
modified rule will be applied to the rest of the simulation.

Rules can also be used to support collaborative visualization in heteroge-
neous environments where the collaborators’ resources and display capabilities
may differ. Some visualization techniques are more computation intensive than
others, or may require more powerful graphic capabilities to display. For example,
rendering an isosurface with millions of polygons may be too compute/network
intensive for a thin client such as a PDA. Either the polygons can be reduced
using straightforward triangle decimation techniques, or a more abstract feature-
based representation can be displayed [2]. Such automated adaptations can be
simply achieved using a rule such as “if there are more than 10k triangles, then
display a higher level abstraction”.

The rule based visualization subsystem presented in this paper builds on
Discover, which is a computational collaboratory for interactive grid applications
and provides the infrastructure for enabling rules to be dynamically composed
and securely injected into the application, and executed at runtime so as to
enable it to autonomically adapt and optimize its behavior [3]. In this paper,
we integrate the rule mechanism into a feature-based visualization subsystem
and demonstrate how this can be used to improve monitoring, steering and
collaboration.

2 The Discover Computational Collaboratory

Discover is a virtual, interactive and collaborative PSE that enables geographi-
cally distributed scientists and engineers to collaboratively monitor, and control
high performance parallel/distributed applications using web-based portals [3].
As shown in Figure 1, Discover provides a 3-tier architecture composed of de-
tachable thin-clients at the front-end, a network of web servers in the middle,
and the Distributed Interactive Object Substrate (DIOS++) [4] at the back-end.

DIOS++ enables rule based autonomic adaptation and control of distributed
scientific applications. It is composed of 3 key components: (1) autonomic objects
that extend computational objects with sensors (to monitor the state of an ob-
ject), actuators (to modify the state of an object), access policies (to control ac-
cesses to sensors and actuators) and rule agents (to enable rule-based autonomic
self-management), (2) mechanisms for dynamically and securely composing, de-
ploying, modifying and deleting rules, and (3) a hierarchical control network
that is dynamically configured to enable runtime accesses to and management

of the autonomic objects and their sensors, actuators, access policies and rules.
The rule engine responds to the users’ actions (e.g. rule creation, deletion, mod-
ification, activation, deactivation) by decomposing and distributing the rules to
corresponding rule agents, collecting rule execution results from the rule agents
and reporting to users. The rule engine also controls and coordinates rule agents.
Rules are evaluated and executed in parallel by the distributed rule agents. Pri-
ority and dynamic locking mechanisms are used at each rule agent to solve
rule conflicts. The Discover collaboratory allows users to collaboratively interact

Collaboration

Group

Mobile Client

Application 2

Application 2

H
T

T
P

 /
 S

E
C

U
R

E
 H

T
T

P
 /

 S
ec

u
re

 S
o
ck

et
s

Chat,

Whiteboard,

Collaborative

Visualization�

Private Key,

MD5, SSL

Distributed DISCOVER Servers

C
O

R
B

A
 /

 R
M

I
/

II
O

P

Local & Remote

Databases

In
te

ra
ct

io
n

 &
 S

te
er

in
g

A
u

th
en

ti
ca

ti
o

n
 /

 S
ec

u
ri

ty

V
is

u
a

li
za

ti
o
n

Master Servlet

(RMI/sockets/HTTP)

Policy Rule-Base
S

es
si

o
n

 A
rc

h
iv

a
l

D
a
ta

b
a
se

 H
a
n

d
le

r

 A
p

p
li

ca
ti

o
n

 I
n

te
ra

ct
io

n
 S

er
v

le
t

INTERACTION SERVER

Servlets

DIOS

API

DIOS Interaction

Agents

Interaction

Enabled

Computational

Objects

Application 1

PDA

Collaboration

Group

Application 1

Viz Plot

In
te

ra
ct

io
n

 a
n

d
 C

o
ll

a
b

o
ra

ti
o

n
 P

o
rt

a
ls

Mobile Client

Fig. 1. Architectural Schematic of the DISCOVER Computational Collaboratory

with, interrogate, control, and steer remote simulations using web based perva-
sive portals, and has been used to enable remote feature extraction and tracking
for the 3D Ritchmyer Meshkof compressible turbulence kernel (RM3D) [5, 6].

3 Feature Extraction and Feature Tracking

Feature-based visualization allows scientists to extract regions of interests, and
then visualize, track and quantify the evolution of these features. The first step
in feature-based framework is defining the feature of interests. In [2], features
are defined as connected regions which satisfy some threshold since this is a
basic definition for most visualization routines (such as isosurfaces or volume
rendering).

Features are tracked from one timestep to the next to capture how the fea-
tures evolve [2]. Feature events can be classified into the following categories:
continuation (a feature continues from one timestep ti to the next ti+1), creation
(a new feature appears in ti+1), dissipation (a feature in ti does not appear in

ti+1), bifurcation (a feature in ti splits into one or more features in ti+1) and
amalgamation (two or more features from ti merge into one in ti+1). Feature
tracking allows events to be catalogued and enables complex queries to be per-
formed on the dataset. Queries include data-mining type exploration, such as
“how many new regions appear in timestep ti?”, “in which timesteps do large
regions merge?”, or “where does a large region break up?”. The framework of
feature based visualization is shown in Figure 2. First, the features (shown as
the isosurfaces in this figure) are extracted from the time-varying data. Then
the evolution of these features are tracked and the features are abstracted for
different levels, one example of which shown in this figure is ellipsoid. Finally,
the quantification, such as volume, mass, centroid, of the features is computed.
The tracking, abstraction and quantification results can be used for enhanced
visualization and event querying in a heterogeneous collaboratory.

After the features are extracted,

Fig. 2. Feature based visualization

the feature attributes, such as
isosurface, mass and volume, can
be computed. The features can
also be abstracted using a sim-
pler shape. One such reduced rep-
resentation is an ellipsoid that
provides an iconic abstraction to
blob-like regions. An ellipsoid can
capture the essential shape and
orientation of the region with
a limited number of parameters
(center + axes) as opposed to
an isosurface which may contain
thousands of triangles. For huge
datasets which may contain hun-
dreds or thousands of evolving

regions, and ellipsoid may provide a suitable first abstraction. Other types of
abstractions include more line-like regions like skeletons [7] and vortex cores [8],
or for vector fields, critical points and critical curves [9]. For scalar fields, con-
tour trees [10] can also provide an abstraction. A contour tree is a graph which
describes the topological changes of the isosurface with respect to the threshold.

An example of ellipsoid abstraction is shown in Figure 2. The scientist can
choose between displaying ellipsoids or isosurfaces depending on the require-
ments and computing/network resources.

In addition to the standard feature extraction and tracking implemented
within AVS, in [5], a distributed AMR version of feature extraction and tracking
is described. AMR (Adaptive Mesh Refinement) is a technique used in computa-
tional simulations to concentrate grid points in areas where the errors are large.
This results in a set of nested grids with varying resolutions. In distributed
AMR grids, features can span multiple refinement levels and multiple proces-
sors; therefore, tracking must be performed across time, across levels, and across

processors. The distributed algorithm [5], called Ftrack, is implemented within
Discover and run in-situ, i.e., together with the simulation so that the data does
not have to be copied or stored for visualization processing.

4 Rule Definitions

Ftrack, the feature-based visualization system integrated with Discover [3], is
capable of self-management based on runtime user-defined rules.

The rules are categorized

Fig. 3. Two color schemes used in AMR tracking for
RM3D: (a) a level-highlighting color scheme is used.
(b) a time-highlighting color scheme is used.

into: (1) Steering rules ap-
ply intra-function manage-
ment (e.g. changing the
runtime behaviors of the
visualization functions by
dynamically altering their
parameters). (2) Config-
uration rules apply inter-
function management (e.g.
organizing the visualiza-
tion functions by select-
ing the appropriate func-
tions to be executed). Ex-
amples of rules and the
related sensors, actuators
applicable to Ftrack are
presented below:

Steering Rule : The rule for choosing an appropriate threshold mentioned
in Section 1 is an example of steering rule. Another example given here is a rule
for changing the color schemes. The level-highlighting color scheme gives each
level a different hue and assign different saturation to each feature, as shown
in figure 3(a). On the other hand, the time-highlighting color scheme assigns a
different hue to the feature in different timestep. If a feature spans several levels,
then each part of the feature falling in a different level is assigned a different
saturation of the feature’s hue, as shown in figure 3(b).

Rules can be used to select the color schemes. For example, when the number
of features is very small (below 3), there is no need to highlight time-tracking.
A scientist may prefer to see the tracking in refinement levels. For this purpose,
Ftrack exposes one sensor getAverageNumberofFeatures() and two actuators use-
LevelHighlightingScheme() and useTimeHighlightingScheme(). A corresponding
rule could be:

IF getAverageNumberofFeatures()<3 THEN useLevelHighlightingScheme()

ELSE useTimeHighlightingScheme()

Configuration Rule : Scientists may choose to vary the visualization tech-
niques based upon the computing/network resources available at the time of
visualization. For example, when the number of grid cells in the dataset exceeds

a threshold, a scientist at a thin client may want to display ellipsoids instead of
isosurfaces. Thus, Ftrack should expose a sensor getNumCells() (to get the num-
ber of the cells in the input volume) and four actuators: enableEllipsoidFitting(),
disableEllipsoidFitting(), enableIsosurface(), disableIsosurface(). Corresponding
rules could be:

Rule 1: IF getNumCells()>10K

THEN {enableEllipsoidFitting(); disableIsosurface()}

ELSE {disableEllipsoidFitting(); enableIsosurface()}

The scientist can modify this rule with operations like “change 10K to 50K”
or “switch THEN and ELSE statements”. If a scientist is working on a PDA,
which typically has poor graphics resolution as well as limited memory capacity,
the rule specified could be:

Rule 2: IF isPDA()=TRUE THEN {enableEllipsoidFitting();

disableIsosurface()}

5 Rule-based Visualization using Discover

The visualization subsystem, Ftrack, which performs the distributed feature ex-
traction and tracking algorithms, is designed as a DIOS++ object. As shown in
Figure 4, the Ftrack object consists of three actors, each managing a part of the
visualization task:

Feature extractor : this actor extracts in-
Feature extractor

Feature tracker

Visualizer

Control aspect

Access aspect

Rule aspect

Rule agent

Ftrack object

Fig. 4. Ftrack Object Structure

teresting features, and computes the geom-
etry attributes(e.g. isosurface) and quantifi-
cation attributes (e.g. volume, mass, tensor,
etc.) for each feature. Furthermore, it can cal-
culate global statistics such as the average
number of features, the variation of feature

numbers, etc.
Feature tracker : this actor tracks the extracted features. The input is the

feature information coming from feature extractor and the user steering com-
mands from portals or rule operations from the rule engine. The output is the
tracking information which can be represented as a set of graphs. A graph can
be a feature tree [5] describing the feature correlation tracked on different levels,
or a direct acyclic graph (DAG) [2] describing the feature correlation tracked on
different timesteps.

Visualizer : this actor includes various visualization modules supported by
the feature extractor and feature tracker. It utilizes the results coming from
the other two actors to create visualizations of the features (for example, an
isosurface rendering displaying quantification) and sends the image or data to
the Discover portals.

The rule agent (RA), which is dynamically generated by the rule engine, is
shared by the three actors. The rule engine and the RA form the interface be-
tween the actors and rules. Control aspects in the rule handler define sensors and

actuators for the three actors and allow the state of the visualization subsystem
to be externally monitored and controlled. The access aspect controls access to
these sensors/actuators based on user privileges and capabilities. The rule as-
pect contains the rules that are used to automatically monitor, adapt and control
the object. The rule-based visualization process is summarized below. Detail of
the operation and evaluation of rule-based control in DIOS++/Discover can be
found in [4].

Initialization and Interaction: During initialization, the application uses
the DIOS++ APIs to register its objects, export their aspects, interfaces and
access policies to the local computational nodes, which will further export the
information to the Gateway. The Gateway then updates its registry. Since the
rule engine is co-located with Gateway, it has access to the Gateway’s registry.
The Gateway interacts with the external access environment and coordinates
accesses to the application’s sensor/actuators, policies and rules.

At runtime the Gateway may receive incoming interaction or rule requests
from users. The Gateway first checks the user’s privileges based on the user’s
role, and refuses any invalid access. It then forwards valid interaction requests
to Ftrack and forwards valid rule requests to the rule engine. Finally, the re-
sponses to the user’s requests or from rules executions are combined, collated
and forwarded to the user.

Rule Deployment and Execution: The Gateway transfers valid rules to
the rule engine. The rule engine dynamically creates rule agents for Ftrack and
other objects if they do not already exist. It then composes a script for each
agent that defines the rule agent’s lifetime and rule execution sequence based on
rule priorities. For example, the script for the rule agent of Ftrack may specify
that this agent will terminate itself when it has no rules, or that Rule 1 of the
Configuration Rules (see Section 4) has higher priority than Rule 2.

While typical rule execution is straightforward (actions are issued when their
required conditions are fulfilled), the application dynamics and user interactions
make things unpredictable. As a result, rule conflicts must be detected at run-
time. In DIOS++, rule conflicts are detected at runtime and are handled by
simply disabling the conflicting rules with lower priorities. This is done by lock-
ing the required sensors/actuators. For example, configuration rules Rule 1 and
Rule 2 conflict if getNumCells() is less than 10K (disableEllipsoidFitting() and
enableIsosurface() should be used) while isPDA() is TRUE (enableEllipsoid-
Fitting() and disableIsosurface() should be used). Assuming Rule 1 has higher
priority, the script will inform the rule agent to fire Rule 1 first. After Rule 1 is
executed, interfaces enableEllipsoidFitting() and disableIsosurface() are locked
during the period when getNumCells() is less than 10K. When Rule 2 is issued,
it cannot be executed as its required interfaces are locked. The two interfaces
will be unlocked when getNumCells() becomes greater than 10K. By modifying
the rules in the rule base through the Discover portal, the scientist can promote
the priority of Rule 2 to be higher than that of Rule 1 so that the visualization
subsystem always displays ellipsoids if isPDA() is TRUE.

The rule agent at Ftrack will continue to exist according to the lifetime
specified in its script. If the scientist modifies the rules, for example, promoting
the priority of Rule 2, the rule engine can dynamically modify the script to
change the behavior of the rule agent.

6 Conclusion

This paper presented a rule based visualization system that improves the flexibil-
ity of visualization in a WAN-based computational steering collaboratory. Rules
can be used to steer in-situ visualization and aid in data mining. In a heteroge-
neous environment, rules can help the scientists specify the type of interaction
and visualization desired based on system capabilities.

This work was done at the Vizlab and TASSL, Rutgers University. This ma-
terial is based upon work supported by the National Science Foundation under
Grant Nos. 0082634, 9984357, 0103674, and 0120934. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foun-
dation.

References

1. Mulder, J.D., Wijk, J.J.v., Liere, R.v.: A survey of computional steering environ-
ments. Future Generation Computer Systems (1999)

2. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans.
on Visualizatin and Computer Graphics (1997)

3. Mann, V., Matossian, V., Muralidhar, R., Parashar, M.: Discover: An enviroment
for web-based interaction and steering of high-performance scientific applications.
Concurrency-Practice and experience (2000)

4. Liu, H., Parashar, M.: Dios++: A framework for rule-based autonomic manage-
ment of distributed scientific applications. In: Proc. of the 9th International Euro-
Par Conference (Euro-Par 2003). (2003)

5. Chen, J., Silver, D., Jiang, L.: The feature tree: Visualizing feature tracking in
distributed amr datasets. In: IEEE Symposium on Parallel and Large-Data Visu-
alization and Graphics. (2003)

6. Chen, J., Silver, D., Parashar, M.: Real-time feature extraction and tracking in a
computational steering environment. In: Proc. of Advanced Simulations Technolo-
gies Conference (ASTC). (2003)

7. Reinders, F., Jacobson, M.E.D., Post, F.H.: Skeleton graph generation for feature
shape description. Data Visualization (2000)

8. Banks, D., Singer, B.: A predictor-corrector technique for visualizing unsteady
flow. IEEE Trans. Visualization and Computer Graphics (1995)

9. Helman, J., Hesselink, L.: Representation and display of vector field topology in
fluid flow data sets. IEEE Computer (1989)

10. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using
the hsv color space for image retrieval. In: Int. Conf. on Image Processing. (2002)

