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Abstract

This paper addresses the runtime management of spatial and
temporal heterogeneity in both, scientific applications and ge-
ographically distributed resources in Grid computing envi-
ronments. The targeted applications are large-scale dynamic
Grid applications which require large amount of computa-
tional resources typically spanning multiple sites and exhibit
very long execution times. An adaptive runtime management
framework with a hybrid space-time runtime management
strategy (HRMS) is proposed by combining adaptive applica-
tion partitioning and resource scheduling techniques. HRMS
defines a set of flexible mechanisms and policies to adapt to
the state of both applications and resources. As a proof-of-
concept, a simulator for key features of this framework is
being developed. Preliminary evaluation demonstrates that
HRMS scheme improves performance and provides better
speedup while using fewer resources on average.
Keywords: Runtime Management, Grid Computing, Hetero-
geneous Computing, Dynamic Load Balancing, Structured
Adaptive Mesh Refinement

1 Introduction

Grid computing is rapidly emerging as the dominant com-
puting paradigm for tackling grand challenges in disciplines
including science, engineering, medicine and business [8,9].
Its goal is to enable the coordinated selection, sharing and
aggregation of geographically distributed resources includ-
ing computers, networks, storage systems and specialized de-
vices.

Emerging large-scale Grid applications in science and en-
gineering require increasing amount of computing and stor-
age resources. Three distinct characteristics of these appli-
cations are: (1) They are inherently large and require large
amount of computational resources, typically spanning mul-
tiple sites on the Grid. Furthermore, the exact resource re-
quirements are often not known a priori and depend on the
application runtime behavior. (2) They may execute for days,
weeks or months and often the exact execution time is not

∗The research presented in this paper is supported in part by the National
Science Foundation via grants numbers ACI 9984357, EIA 0103674, EIA
0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS 0430826 and
by DOE ASCI/ASAP via grant numbers PC295251 and 82-1052856.

known a priori. For instance, it is not always known how
long a scientific and engineering simulation will have to run
before it provides meaningful insights into the phenomenon
being modelled. (3) They are highly dynamic and hetero-
geneous in space and time. In addition, their dynamics and
heterogeneity patterns are not known a priori.

Similarly, Grid environments are inherently large, hetero-
geneous and dynamic. Efficient scheduling and manage-
ment in these environments poses a challenging problem.
Current research efforts in resource management fall into
three categories. Resource-centric approaches, which are
based on the aggregated view of resources, schedule differ-
ent applications among resources to improve resource utiliza-
tion through spatial or temporal sharing. Examples include
FCFS, Gang Scheduling and Backfilling techniques [7, 10].
Application-centric approaches assume static resource alloca-
tion and focus on partitioning specific applications and map-
ping sub-tasks to resources to improve application perfor-
mance [3, 11, 18]. The third research efforts address the
parameter-sweep applications for high throughput, such as
AppLeS and Condor [2, 5].

This paper presents the design of an adaptive runtime man-
agement framework to manage the spatial and temporal het-
erogeneity and dynamics exhibited in both Grid applications
and resources. In particular, it targets applications based on
parallel Structured Adaptive Mesh Refinement (SAMR) tech-
niques [1]. SAMR provides means for concentrating com-
putational effort to small and localized regions in the com-
putational domain. These techniques can lead to more ef-
ficient and cost-effective solutions to time dependent prob-
lems exhibiting localized features. As a result, applications
based on these adaptive techniques are dynamic and hetero-
geneous in both space and time. Combined with dynam-
ics and heterogeneity exhibited by Grid resources, the ex-
isting resource-centric or application-centric approaches can-
not achieve efficient scheduling and management by them-
selves. A simple application-centric approach (referred to as
the baseline scheme hereafter) is to reserve maximum fea-
sible resources for maximum feasible execution time of the
application, which is not known a priori. This strategy is
clearly not practical because it results in low resource utiliza-
tion due to excessive resource allocation. A typical resource-
centric strategy would ignore individual application charac-
teristics and schedule all applications in the same manner.



Thus, it will result in large waiting times and long execution
times because the inherent heterogeneity of SAMR applica-
tions will cause significant load imbalance when using simple
partitioning schemes in a resource-centric strategy. Sophisti-
cated application partitioning strategies would take the spe-
cial characteristics of applications into account and dynami-
cally repartition the application to achieve better load balanc-
ing at runtime. Without considering the system dynamics and
availability, application partitioning strategies will also result
in undesirable performance. We believe an application-aware
and resource-sensitive adaptive runtime management strategy
is a better choice to tackle this challenging scheduling prob-
lem as it can take full advantage of both resource-centric and
application-centric approaches.

The objectives of this paper are as follows. A hybrid
space-time runtime management strategy (HRMS) is pro-
posed and preliminary simulation results are presented to
validate the intuition that adaptive resource allocation us-
ing HRMS potentially improves the overall performance of
distributed SAMR applications. HRMS leverages and com-
bines resource scheduling and application partitioning tech-
niques. Overall, HRMS defines a set of mechanisms and poli-
cies to adapt to the state of both applications and resources
and strives to minimize application completion time, reduce
waiting time and improve resource utilization. The HRMS
framework consists of partitioning, clustering, scheduling
and hybrid strategies. Conceptually, HRMS employs clus-
tering algorithms to create a hierarchy of clique regions. A
clique region in the context of SAMR applications is a quasi-
homogeneous computational sub-domain that is composed
of physically connected sub-regions. HRMS then maps this
clique hierarchy to resource groups. Criteria for adaptingto
the dynamics of resources and applications are also defined.

The rest of the paper is organized as follows. Section 2
presents the problem description. Section 3 presents the for-
mulation and operations of the proposed hybrid space-time
runtime management strategy. Section 4 presents some per-
formance evaluation metrics and preliminary evaluation re-
sults for SAMR applications. Section 5 concludes the paper.

2 Problem Description

SAMR techniques track regions in the domain that requires
additional resolution and dynamically overlay finer grids over
these regions. These methods start with a base coarse grid
with minimum acceptable resolution that covers the entire
computational domain. As the solution progresses, regions
in the domain requiring additional resolution are tagged and
finer grids are over laid on these tagged regions of the coarse
grid. Refinement proceeds recursively so that regions on the
finer grid requiring more resolution are similarly tagged and
even finer grids are overlaid on these regions. The resulting
grid structure for the Structured Berger-Oliger AMR is a dy-
namic adaptive grid hierarchy [1] as illustrated in Figure 1.

We use a representative SAMR application, the 3-D com-
pressible turbulence simulation kernel solving the Richtmyer-
Meshkov (RM3D) instability, for our case study. The RM3D
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Figure 1: Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR
scheme)

application is part of the virtual test facility (VTF) devel-
oped at the Caltech ASCI/ASAP Center [6]. The Richtmyer-
Meshkov instability is a fingering instability which occursat
a material interface accelerated by a shock wave. This insta-
bility plays an important role in studies of supernova and in-
ertial confinement fusion. A selection of snapshots and load
dynamics for the RM3D adaptive SAMR grid hierarchy are
shown in Figure 2. The load/workload in the figure is an ab-
straction of the computational requirement based on the num-
ber of numerical grid points on the grid, which is used to
discretize the computational domain. Application variables
are defined at each grid point and the numerical partial dif-
ferential equation (PDE) operator is applied at each point.
As a result, the total computational work (and storage) is
proportional to the number of grid points. The heterogene-
ity in space is demonstrated in that, at each regriding step,
the adaptively refined regions exhibit different computational,
communication and storage requirements than other regions.
The heterogeneity in time is demonstrated by the fact that the
regions of refinement dynamically change as the simulation
proceeds.

An inherent characteristic of the Grid is its heterogeneityin
both time and space. A typical scenario of resource dynam-
ics on two resource sites is illustrated in Figure 3. The tem-
poral heterogeneity is represented by the variation of avail-
able capacity (number of available processors) of a single re-
source or resource site over time. The spatial heterogene-
ity is represented by the variation in the available resources
across sites. In this paper, we consider the heterogeneity at
a coarse-granularity. Specifically, we focus on space-sharing
scenarios and leave the time-sharing cases for future work.
The resource usage patterns presented are derived from syn-
thesized traces based on the real traces from supercomputer
centers [13]. More details will be presented in the experimen-
tal evaluation section.

3 Hybrid Space-Time Runtime Man-
agement Strategy

In this section, we develop a hybrid space-time runtime
management strategy (HRMS). HRMS combines resource
scheduling with application partitioning to address the appli-
cation and system dynamics. Its overall operation flowchart
is illustrated in Figure 4. From the flowchart, we can iden-
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Figure 2: Spatial and Temporal Heterogeneity and Load Dynamics of a 3D Richtmyer-Meshkov Simulation using SAMR
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Resource Usage Pattern on Site 2
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Figure 3: Spatial and Temporal Heterogeneity of Resources
on Two Sites

tify four modes: “static” resource and application, “static” re-
source and dynamic application, dynamic resource and static
application, dynamic resource and application. There are
three major steps during the whole process, namely, initial-
ization, repartitioning and rescheduling among existing re-
sources, and repartitioning and rescheduling among more or
less resources. HRMS primarily consists of the following
components: partitioning, clustering, scheduling and hybrid
strategies. Using these strategies, HRMS works in the fol-
lowing way. (1) It characterizes the application requirements
hierarchically using the clustering algorithms to create ahi-
erarchy of clique regions. (2) It schedules and maps the
application hierarchy to the available resource group hierar-
chy. (3) Inside each resource group, it recursively applies
the scheduling and partitioning algorithms. It may apply
different partitioners for different cliques. (4) When appli-
cation states change significantly, incremental repartitioning
and rescheduling is performed in local resource groups. (5)
When the available resource capacity changes significantly,
HRMS performs rescheduling over all available resources.
(6) When the resource capacity is sufficiently large and under-
utilized, we apply the application-level pipelining scheme by
exploiting excessive resources. Alternatively, when the re-
source capacity is scarce, we adopt the application-level out-
of-core scheme to enhance the survivability and performance
of applications.

To ease the description, we define the following notations.
LΣ denotes the total amount of load/workload of the appli-
cation;Li denotes the workload assigned to the processorpi;

Start

Stop

Initialize the partition and schedule

Resources  change
a lot ?

Repartition & reschedule
among more/less resources

Applications  change
a lot ?

Applications execute in parallel

Repartition & reschedule
among exisitng resources

Finish?

Yes

No

Yes

No

Yes

No

Figure 4: Flowchart of Hybrid Space-Time Runtime Manage-
ment Strategy

Ei denotes the time taken to process a unit load by the pro-
cessorpi. Thus, using these notations, we see that the com-
putation time for processingLi on the processorpi is LiEi.
Note that the processorpi can denote a physical processor or
a resource group. In the context of SAMR applications, the
workload represents the computational and communication
requirements for the physical domains. Due to the refine-
ment on space and time, the workload at refinement levell is
a function of number of grid points at the coarse levelL(0),
refinement levell, refinement factorr, and the dimensiond
of the physical domain,L(l) = (rd+1)l

× L(0). Thus the to-
tal load on a fully refined subdomain isLall =

∑nlev

l=0 L(l),
wherenlev denotes the number of refinement levels.

3.1 Load scheduling on heterogeneous systems

On heterogeneous systems, such as Grids, the load parti-
tions shall be scheduled/mapped to processors in proportion
to their computing power. Assume that we have a total work-



load ofLΣ to be scheduled ontonp processors. The schedul-
ing objective is to distribute load partitions such that allpro-
cessors will stop processing at about the same time. Thus, we
have the following (np − 1) equations for processing time.

Li+1Ei+1 = Ei × Li, i = 1, ..., np − 1 (1)

Since we haveLΣ =
∑np

i=1 Li, we totally havenp equa-
tions to solvenp unknowns (Li). Thus, we can obtain the
load partitions assigned to each processor as follows.

L1 =
LΣ

1 +
∑np

i=2
E1

Ei

(2)

Li = L1 ×
E1

Ei

, i = 2, ..., np (3)

Note that the above derivations are also applicable to ho-
mogeneous systems. These equations are used in the initial-
ization and rescheduling phases as basic criteria for schedul-
ing load portions to individual processors or resource groups
with aggregated computing capacity. Communication cost is
not taken into consideration in this simplified model. Since
our clustering and partitioning schemes are based on space-
filling curve (SFC) technique which possesses the desired
locality-preserving property [15], the communication cost is
potentially minimized.

3.2 Repartitioning and rescheduling among
existing resources

In large parallel/distributed systems, the global information
exchange and synchronization phase becomes a performance
bottleneck. We have developed a hierarchical partitioningal-
gorithm (HPA). The overall goal of HPA is to allow the dis-
tribution to reflect the state of the adaptive grid hierarchy
and exploit it to reduce synchronization requirements, im-
prove load-balance, and enable concurrent communications
and incremental repartitioning and rescheduling. HPA parti-
tions the computational domain into subdomains and assign
these subdomains to dynamically configured hierarchical pro-
cessor groups [12]. Furthermore, as mentioned in the intro-
duction section, to exploit application characteristics,HRMS
strives to cluster subregions with similar properties together
to formulate a clique hierarchy. These clique regions are then
further characterized and appropriate partitioning algorithms
are applied to them [4, 17]. Two preliminary schemes have
been proposed for clique generation, level-based clustering
algorithm and segmentation-based clustering algorithm. The
paper that describes these clique formulation schemes in de-
tail is under preparation.

When resources remain relatively stable, we consider only
the application dynamics. To specify when we need to repar-
tition and reschedule the application subregions in a resource
group A, we define the load imbalance factor (LIF) as fol-
lows:

LIFA =
maxAn

i=1 LiEi − minAn

i=1 LiEi
∑An

i=1 LiEi

(4)

whereAn denotes the total number of processors in the re-
source group A.

We set γA as the local imbalance threshold. When
LIFA > γA, the repartitioning will be conducted inside the
local group.

3.3 Repartitioning and rescheduling among
more or less resources

We measure the dynamics of resources by a simple parameter
∆R which is defined by the changing percentage of entire
resource capability:

∆R(t) =

∣

∣

∣

∣

RCΣ(t) − RCΣ(t − ∆t)

RCΣ(t − ∆t)

∣

∣

∣

∣

(5)

whereRCΣ(t) denotes the total available resource capacity
at timet. If ∆R(t) is greater than a reschedule thresholdβ,
HRMS repartitions and reschedules load among all resources
(more or less).

When we have more resources, we trade in space (re-
sources) for time (minimizing overall execution time) by ap-
plying the application-level pipelining scheme (ALP). In ALP
scheme, multiple application patches with different refine-
ment levels are processed in an overlapped manner. When the
efficiency and benefits using ALP is below a certain thresh-
old and the resource utilization is low, HRMS chooses to
release unnecessary resources in order to improve the over-
all resource utilization. Alternatively, when there are insuffi-
cient resources available, we trade in time for space by apply-
ing the application-level out-of-core scheme (ALOC). ALOC
scheme attempts to enhance the application survivability by
explicitly managing application-levelpages. The work on the
details and analytical models of these two schemes are ongo-
ing.

4 Experimental Evaluation

In this section, we present a preliminary simulation results to
partially validate the HRMS framework. The simulation is fo-
cused on demonstrating the benefits of the adaptive resource
allocation using HRMS over the static resource allocation us-
ing the baseline scheme. For that purpose, we have developed
a Grid simulator, called GridMate1. In GridMate, the Grid
system is composed of several computer sites. Totally, we set
up 4 resource sites. On each site, there are 128 homogeneous
processors. On different sites, computers are heterogeneous
in computing speed, communication bandwidth and memory
capacity. Each site has its local scheduler and its local jobar-
rivals (as illustrated in Figure 3) which are synthesized from
traces on several supercomputer centers [13]. Their work-
load model is based on workload logs from three sites, San
Diego Supercomputer Center (SDSC), Los Alamos National
Lab (LANL) and Swedish Royal Institute of Technology. In
this model, the job sizes follow a two-stage uniform distri-
bution, job execution times follow the hyper-Gamma distri-
bution, and job arrivals follow two Gamma distributions [13].

1More details about GridMate can be found athttp://www.caip.
rutgers.edu/∼xlli/gridmate.htm
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Figure 6: Processor Efficiency Factor and Mean Number of Processors Used: HRMS and Baseline Schemes

This system configuration resembles a scenario where a large-
scale scientific application is submitted to a super-scheduler
for execution on 4 geographically distributed supercomputer
centers simultaneously. Furthermore, on each supercomputer
center, there are local parallel/serial job arrivals. Thisis a
representative scenario of the emerging Grid usage paradigms
for solving grand challenge problems. While there exist sev-
eral popular simulators for Grid computing, such as SimGrid,
GridSim and MicroGrid [19], they cannot handle large-scale
co-allocation, synchronized rescheduling and repartitioning
scenarios as required in distributed SAMR applications.

GridMate adopts a two-level hierarchical partitioning and
scheduling scheme. Initially, the super-scheduler coarsely
partitions the physical domain into 4 subregions (cliques)
with workload proportional to the available resources on 4
resource sites. These subregions are then submitted to local
schedulers and further partitioned and assigned to the indi-
vidual processor on each site. Repartitioning and reschedul-
ing will be triggered when states of the SAMR application
and resources change significantly. The targeted application
is RM3D simulation kernel. Using GridMate simulator, its
execution trace is submitted to the super-scheduler and exe-
cuted across sites. The simulator is built on top of the primi-
tive discrete-event simulation engine SimJava [16]. Addition-
ally, using Java native interface (JNI), GridMate calls under-
lying partitioning routines implemented in GrACE, which is
an object-oriented infrastructure in C++ for enabling parallel
SAMR applications [14]. The performance evaluation met-
rics used are waiting time, execution time and response time
for the RM3D job. Furthermore, to compare with the base-
line scheme, we define a processor efficiency factorη and
processor-time factorς as follows.

ς =
n

∑

i=1

s
∑

j=1

(NCj × Ni,j × τi,j) (6)

where,n is the total number of application iterations,s is the
total number of sites,NCj is the normalized capacity of one
processor on sitej, Ni,j is the number of allocated proces-
sors,τi,j is the length of thei-th time interval and the sub-
script (i, j) denotes in thei-th time interval on the sitej. ςh is
the processor-time factor for the HRMS scheme andςb is for
the baseline scheme. The processor-time factor representsthe
normalized total computational resource consumption. Using
the above equation, we define the mean number of processors
used as,

N =
ς

Texe

(7)

where,Texe is the total execution time.
Using the processor-time factorς, we define the processor

efficiency factorη by the following equation.

η =
ςb

ςh
=

N
b
× T b

exe

N
h
× Th

exe

(8)

Figure 5 shows the waiting time and response time of
the RM3D job with respect to the resource utilization using
HRMS and baseline schemes respectively. The average re-
source utilization is measured for all resource sites with lo-
cal job arrivals only. The simulation results show that the
simple baseline scheme results in large waiting time due to
its high requirement for large number of processors. The
waiting time increases significantly as the resource utiliza-
tion increases. However, using HRMS scheme, we observe
a significant performance boost for the RM3D job due to its
adaptive policies taking advantages of resource-centric and
application-centric approaches. Compared to the baseline
scheme, HRMS scheme achieves significant speedups.

To demonstrate the resource usage of HRMS and baseline
schemes, Figure 6 shows the processor efficiency factor and
mean number of processors used, which are defined in equa-
tions (7) and (8) respectively. For the baseline scheme, the



mean number of processors used is constant, 256 processors,
due to its static resource allocation. Compared to the base-
line scheme, the mean number of processors used for HRMS
scheme is in the range from 70 to 190. One interesting obser-
vation is that the mean number of processors used for HRMS
does not monotonically increase or decrease with respect to
the resource utilization. This is because of the definition of N

in the equation (7). Compared to the baseline scheme, HRMS
scheme results in reduction on both the numerator and the de-
nominator of the equation (7). As a comparison of these two
schemes, the processor efficiency factor ranges from 6 to 17.

These preliminary simulation results demonstrate the fea-
sibility and efficiency of HRMS strategy. Further simulation
is ongoing, such as to perform sensitivity analysis of various
rescheduling thresholds to gain more insights on the impact
of these parameters. More realistic applications with various
problem sizes are to be included to further evaluate its effi-
ciency and scalability.

5 Conclusion

This paper presented an adaptive runtime management strat-
egy HRMS to manage a new class of large-scale dynamic
scientific applications with long execution times in Grid en-
vironments. The proposed strategy combines the resource
scheduling and application partitioning techniques. Criteria
for adapting to resource dynamics and application dynamics
are defined. Preliminary simulation results demonstrate that
HRMS outperforms the baseline scheme. Further simulations
and experiments are ongoing to measure the performance of
our strategies in various situations.
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