A Message Passing Interface for Parallel and Distributed

Computing

Salim Hariri, JongBaek Park, Fang-Kuo Yu, Manish Parashar and Geoffrey C. Fox
Northeast Parallel Architectures Center
Syracuse University

Syracuse, NY 13244

Abstract

The proliferation of high performance worksta-
tions and the emergence of high speed networks have
attracted a lot of interest in parallel and distributed
computing (PDC). We envision that PDC environ-
ments with supercomputing capabilities will be avail-
able in the near future. However, a number of hard-
ware and software issues have to be resolved before
the full potential of these PDC environments can be
exploited. The presented research has the following
objectives: (1) to characterize the message-passing
primitives used in parallel and distributed comput-
ing; (2) to develop a communication protocol that
supports PDC; and (3) to develop an architectural
support for PDC over gigabit networks.

1 Introduction

The proliferation of high performance worksta-
tions and the emergence of high speed networks
have attracted a lot of interest in parallel and dis-
tributed computing (PDC). We envision that PDC
environment with supercomputing capability will
be available in the near future. Current worksta-
tions are capable of delivering tens and hundreds
of Megaflops of computing power. A recent report
from the IBM European Center for Scientific and
Engineering Computing [2] stated that a cluster of
8 RX/6000 Model 560 workstations connected with
IBM serial optical channel converter achieved a per-
formance of 0.52 Gigaflops for the Dongarra bench-
marks for massively parallel systems. The obtained
result outperforms a number of existing parallel
computers like a 24 node Intel iPSC/860, 16 node
Intel Delta, 256 node nCube2 or a 24 node Alliant
CAMPUS/800. Further, workstations are general-
purpose, flexible and much more cost-effective, and
it has been shown that the average utilization of
a cluster of workstations is only around 10% [11];
this unutilized or wasted fraction of the comput-
ing power is sizable and, if harnessed, can provide
a cost-effective alternative to expensive supercom-
puting platforms.

_ Current trend in local area networks is toward
higher communication bandwidth as we progress

from Ethernet networks that operate at 10 Mbit/sec
to higher speed networks such as Fiber Distributed
Data Interface (FDDI) networks. Furthermore, it
is expected that soon these networks will operate in
Gigabit/sec range. However, the application-level
transfer rates on existing local area networks re-
main much lower and it is doubtful that they can
keep pace with medium speed. For example, out of
the 10 Mbit/sec available at the medium of an Eth-
ernet network, only around 1.2 Mbit/sec bandwidth
is available for applications [10].

Consequently, it has been established that cur-
rent clusters of workstations have the aggregate
computing power to provide an environment for
high performance distributed computing, while high
speed networks, capable of supporting these com-
puting rates, are becoming a standard (e.g., ATM,
SONET, HUB-based LAN) [9]. It has also been es-
tablished that it is not cost-effective to introduce
new parallel architectures to deliver the increased
computing power. Consequently, we envision that
future computing environments need to capitalize
on and effectively utilize the existing computing re-
sources. The objective of the presented research
is to develop an environment that can harness the
computing potential of existing, cost-effective het-
erogeneous computers and high speed networks.

The organization of the paper is as follows: Sec-
tion 2 describes an environment for parallel and dis-
tributed computing based on hardware and software
support that utilizes efficiently the existing hetero-
geneous computers and the emerging high speed
networks. Section 3 analyzes the performance of
the communication protocol described in section 2.
Section 4 summarizes the paper and provides some
concluding remarks.

2 An Environment for Parallel and
Distributed Computing

The main objective of the PDC environment
is to provide parallel and distributed applications
with message passing primitives as well as the host-
network interface required to achieve efficient envi-



Figure 2: A configuration of protocol stack with
HCP

of protocol stacks as shown in Figure 2. In this
subsection, we present briefly an architecture of a
host interface that provides the hardware support
needed for efficient PDC.

HIP is a communication processor capable of op-
erating in two modes of operation such that either
or both of these modes can be active at a given time.
In HSM, HIP provides applications with data rate
close to that offered by the communication medium.
This high speed transfer rate is achieved by (1) us-
ing simple communication protocol, HCP, to be dis-
cussed in the next subsection (2) decomposing the
transmit/receive tasks into several subtasks that
can run concurrently on a separate engine and (3)
using point-to-point channels that allow all nodes to
transmit and receive data concurrently when con-
flicts are not exist. In NSM, the standard trans-
port protocols can run efficiently on HIP and thus
off-load the host from running these protocols. Fig-



Figure 3: Blockdiagram of HIP

of five major subsystems: a Master Processing Unit
(MPU), a Transfer Engine Unit (TEU), a crossbar
switch, and two Receive/ Transmit units (RTU-1,
RTU- 2) The architecture of HIP is highly parallel
and uses hardware multiplicity and pipeline tech-
niques to achieve high-performance transfer rates.
For example, the two RTUs can be configured to
transmit and/or receive data over high-speed chan-
nels while the TEU is transferring data to/from the

hosti.llli/[ore details of HIP architecture can be found
in .

2.2 Software Support for Parallel and
Distributed Computing

In this subsection we develop a communication
protocol that exploits the support of HIP and pro-
vides services needed in PDC. Most existing pro-
tocols were designed in the 1970’s, when the avail-
able communication bandwidths were in the Kb/s
range and the existing computing nodes had lim-
ited computing power. Since these protocols re-
garded the communication bandwidth as a scarce
resource and the communication medium as inher-
ently unreliable, they were designed to be very gen-
eral to handle complex failure scenarios, which re-
sulted in complicated protocols implemented as a
stack of software layers. The last decade, how-
ever, has seen tremendous advances in computing
and networking technology. Current networks are
highly reliable and can supports high transmission

speeds. Further, the computing power of proces-
sors has increased while their cost decreased signif-
icantly. Consequently, special purpose communica-
tion processors like HIP proposed in the previous
section can be built to offload hosts from running
communication protocols. Furthermore, many ser-
vices required in parallel and distributed computing
can be handled more efficiently by this special in-
terface processor.

We present the design and the implementation of
a high speed communication protocol (HCP) that
could run on a communication processor such as the
HIP. The approach followed in developing HCP is
carried out in two steps: 1) analyze the message-
passing primitives provided by existing software
tools on current parallel and distributed systems;
and 2) identify a maximal subset of message passing
primitives that can be efficiently implemented by
a communication protocol for parallel/distributed
computing.

2.2.1 Characterization of Message Passing
Primitives for PDC

In oder to identify the HCP services for PDC, we
first study the primitives provided by some current
parallel/distributed programming tools. The soft-
ware tools studied include EXPRESS [5], PICL [3],
PVM [6], ISIS [1], the iPSC communication li-
brary [4] and the CM5 communication library
(CMMD) [7]. These tools were selected because of
their availability at the Northeast Parallel Archi-
tecture Center at Syracuse University and also the
following two reasons: (1) they support most poten-
tial computing environments, i.e., parallel, homoge-
neous and heterogeneous distributed systems; and
(2) they are either portable tools (EXPRESS, PICL
and PVM) or hardware dependent tools (CMMD
and the iPSC communication library). There is an
increased interest in the standardization of message-
passing primitives supported by software tools for
parallel /distributed computing [8]. The character-
ization provided in this section can be viewed as
step in this direction. The communication primi-
tives supported by existing libraries can be charac-
terized into five classes, viz., point-to-point commu-
nication, group communication, synchronization,
configuration/control/management, and exception

handling.

Point-to-Point Communication The point-to-
point communication is the basic message passing
primitive for any parallel/distributed programming
tools. To provide efficient point-to-point communi-
cation, most systems provide a set of function calls
rather than the simplest send and receive primitives.

e Synchronous and Asynchronous Send /
Receive: The choice between synchronous
and asynchronous primitives depends on the na-
ture and requirements of the application. As a re-
sult, most tools support both, asynchronous and
synchronous send/receive primitives. To provide
asynchronous message processing, additional sup-
porting functionality must be provided in the tools.



For example, 1) poll/probe the arrival and/or infor-
mation of incoming messages e.g., extest, probe, or
CMMD_msg_pending used in EXPRESS, PVM, or
CMMD, respectlvely, 2) install a user-specified han-
dler for incoming messages e.g., ezhandle or hrecv
used in EXPRESS or iPSC, respectively; and 3) in-
stall a user-specified handler for outgoing messages

e.g., hsend used in iPSC.

e Synchronous/Asynchronous Data
Exchange: There are at least two advantages for
providing such primitives. First, user is freed from
having to decide which node should read first and
which node should write first. Second, it allows
optimizations to be made for both speed and relia-
bility.

e Non-contiguous or Vector Data: One
example of transferring a non-contiguous mes-
sage is sending a row (or column) of a ma-
trix that is stored in column-major (or row-
major) order. For example, ezvsend/ezvreceive
and CMMD_send_v/CMMD_receive_v used in EX-
PRESS and CMMD, respectively.

Group Communication Group communication
for parallel or distributed computing can be further
classified into three categories, I-to-many, many-
to-1, and many-to-many, based on the number of
senders and receivers.

e 1-to-Many Communication: Broadcasting
and multicasting are the most important examples
of this category. Some systems do not explicitly
use a separate broadcast or multicast function call.
Instead, a wild card character used in the desti-
nation address field of point-to-point communica-
tion primitives, provides multicasting functions. It
is important to note that in ISIS broadcast prim-
itives with different types and order are available
to users. Users can choose the proper broadcast
primitives according to the applications.

e Many-to-1 Communication: In many-to-1
communication, one process collects the data dis-
tributed across several processes. Usually, such
function is referred to as reduction operation and
must be an associative, commutative function, such
as, addition, multlphcatlon maximum, minimuim,
loglcal AND logical OR, or logical XOR. For ex-
ample, g[op]O and g[type][op] in PICL and iPSC,
where op denotes a function and type denotes its
data type.

e Many-to-Many Communication: There
are several different types of many-to-many com-
munications. The simplest example is the case
where every process needs to receive the re-
sult produced by a reduction operation. The
communication patterns of many-to-many opera-
tions could be regular or irregular. The regu-
lar cases are scan (e.g., CMMD’s CMMD_scan),
concatenation (e.g., EXPRESS’s ezconcat), circu-
lar shift, and all-to-all broadcasting, while the ir-
regular cases are gather and scatter (e.g., CMMD’s
CMMD_gather_from_nodes) operation.

Synchronization A parallel / distributed pro-
gram can be divided into several different compu-
tational phases. To prevent asynchronous message
from different phases interfering with one another,
it is important to synchronize all processes or a
group of processes. Usually, a simple command
without any parameters, such as, ezsync, sync0,
gsync in EXPRESS, PICL, and iPSC, can provide a
transparent mechanism to synchronize all the pro-
cesses. But, there are several options that can be
adopted to synchronize a group of processes. In
PVM, barrier, which requires two parameters bar-
rier_name and num, blocks caller until a certain
number of calls with the same barrier name made.
In PICL, barrier0 synchronizes the node processors
currently in use. In iPSC, waitall and waitone allow
the caller to wait for speciﬁed processes to complete.

Another type of synchronization is that one pro-
cess is blocked until a specified event occurred. In
PVM, ready and waituntil provide event synchro-
nization by passing the signal. In ISIS, the order of
events 1s used to define virtual synchrony and a set
of token tools (e.g., t_sig, t_wait, t_holder, {_pass,
t_request, etc.) are available to handle it. Actually,
event detection is a very powerful mechanism for ex-

ception handling, debugging, as well as performance
measurement.

Configuration, Control, and Management
The tasks of configuration, control, and manage-
ment is quite different from system to system. A
subset of the configuration, control and manage-
ment primitives supported by the studied software
tools are such as to allocate and deallocate one pro-
cessor or a group of processors, to load, start, ter-
minate, or abort programs, and for dynamic recon-
figuration, process concurrent or asynchronous file
I/0, nad query the status of environment.

Exception Handling In a parallel or distributed
environments, it is important that the network,
hardware and software failures must be reported to
the user’s application or system kernel in order to
start a special procedure to handle the failures. In
traditional operating systems such as UNIX, excep-
tion handling is processed by event-based approach,
where a signal is used to notify a process that an
event has occurred and after that a signal handler
is invoked to take care of the event. Basically, an
event could be a hardware condition (e.g., bus er-
ror) or software condition (e.g., arithmetic excep-
tion). For example, in the iPSC library, a user can
attach a user-specified routine to respond to a hard-
ware exception by the handler primitive. In ISIS,
a set of monitor and watch tools are available to
users. EXPRESS supports tools for debugging and

performance evaluation. PICL supports tools for
event tracing.

2.2.2 HCP Message-Passing Primitives

Based on the characterization of message-passing
techniques used in parallel/distributed computing



Figure 4: Steps of long message transfer

¢ Error and Flow Control: Sender
transmits a frame and then waits for ACK signal
from the receiver. When the sender receives a pos-
itive ACK (PACK), it sends the next frame; other-
wise it retransmits the same frame. Retransmission
is repeated a predefined number of times and after
that an error signal is raised to the higher layers.
The acknowledgment frame serves as a mechanism
to achieve flow control between the transmitter and
receiver nodes. When the receiver does not have
enough buffer space for next frame, it responds with
a not-ready indication by setting a flag in ACK
frame. If the source receives the not-ready indi-
cation from the destination, it stops transmitting
frame until it receives ready indication. This sim-
ple scheme is attractive because it does not impose



Figure 6: Application-to-application latency

(MPU) selects one of the Receive-Transmit Proces-
sor (RTP) to handle the transfer (A). After the
Transfer Engine Unit (TEU) is initialized (I) and
has started transferring data from the host mem-
ory to the buffer (77), the RTP sends the Connec-
tion Request to the destination node (Scgr). On
receiving the Connection Confirm, the RTP sends
the message data (Sgqiq) stored in HNM. The host
is notified when the data transfer is complete (N3).
The host then notifies the application (N3).

At the receiver side, while frames are being re-
ceived and stored in the (NHM) buffer (Rgq14), the
TEU transfers data NHM buffer to the host mem-
ory (T2). When the last frame is received, the
RTP sends the disconnect (CC) frame to the sender
(Spc). The process Ry then notifies the host of the
message arrival by writing in Common Memory and
interrupting the host processor (Nz), which in turns
notifies the application (N3).

The application-to-application latency is indicated
in Figure 6 as the time elapsed between the events C'
and N3 at the sender and the receiver, respectively.
Due to the concurrent operations of the TEU and
RTP in the sender such that data transfer from host
memory to HIP buffer (77) is overlapped with that
from the HIP buffer to the network (Sgatq), the la-
tency is minimized. Similarly, the receiving time
is also minimized due to the parallel operations of
Rgaiq and 15 at the receiver side.

Having analyzed the latency, we consider the trans-
fer rates of long messages. We assume the D-net is
lightly-loaded so that no waiting time is consumed
at the intermediate nodes when the connection is
being established between the source and the des-
tination nodes. The connection establishment will
be successful most of the time and the CR frame
will not be blocked at intermediate nodes because
the CR frame will not be issued unless the required
path is available.

We define the application-level data transfer rate
R as the ratio of the data length to be transmitted
(Iar) to the total application-to-application trans-
mission time (tpp ).

R= M (1)
tapp

Based on the discussion in [11], R can be computed



as follows.

l
R = ~ (2)
tC + tNl + tA+ tsetup+ tdata+ tNZ + tNa

where t;¢¢yp denotes the connection setup time, t4q414
represents the time for data transmission and other
terms are for the events described earlier.

In Figure 7 and 8, we plot the effective appli-
cation transmission rate with respect to different
message and frame sizes. We consider two chan-
nel speeds: 100 Mbit/sec and 1 Gbit/sec. In this
analysis we assume the following values for frame
fields: 25 byte CR frame, 15 byte length of over-
head fields in a data frame, and 15 byte of the ACK
frame. Also, we assume that the number of inter-
mediate nodes is 5, the probability of a bit error is
2.5 x 10710, the propagation delay between source
and destination is = 0.5 psec for average distance
of 100 m. Furthermore, we assume each of the fol-
lowing events: tc,tn,,tn,,tN,,ta needs around 10
instructions to be processed; i.e. each event can be

processed in lusec when the performance of HIP
processor is 10 MIPS.

50

5 Kbyteiframe

49 3 Kbyte: f};ne
— 48 ——————
8 /k”‘fﬂ?%‘?rame
=
S w
T
B
L 4
8 ;
T Channel speed : 100 Mbit/sec

" Z"}

43

0 5 10 15 20 25 30 35 40 45 50

Message size (Kbytes)

Figure 7: Application-level transfer rate with 100
Mbit/sec channel

4 Conclusion

In this paper, we analyzed the current advances
in computing technology, network technology, and
software tools for developing parallel and distributed
computing applications. We analyzed the primi-
tives, supported by existing parallel and distributed
software tools and characterize them into five cat-
egories; Vviz., powni-to-pownt communication, group
communication, synchronization, configuration / con-
trol / management, and exception handling. We
proposed an environment that capitalizes on the
current advances in processing and networking tech-
nology and software tools to provide cost-effective
parallel and distributed computing. We also pre-
sented the design of a communication processor (HIP)
that alleviates the host-interface bottleneck and a
high speed communication protocol (HCP) that pro-
vides the needed bandwidth and services for PDC
applications.

500
5 Kbyte frame
450
g 400 3 Kbyte frame
=
=}
<
g 350 e
‘i) —" 1 Kbyte frame
2 /
o S00p
250 / ‘Channel: speed : 1 Gbit/sec
200
0 5 10 15 20 25 30 35 40 45 50

Message size (Kbytes)

Figure 8: Application-level transfer rate with 1
Gbit/sec channel

References

[1] K. Birman, R. Cooper, T. Joseph, K. Kane, and
F. Schmuck. The ISIS System Manual

[2] IBM European Center for Scientific and Engi-
neering Computing. Usenet news item, 1992.

[3] G. A. Geist, M. T. Heath, B. W. Peyton, and
P. H. Worley. A user’s guide to picl, a portable
intrumented communication library. Techni-
cal Report Tech. Rep. ORNL/TM-11616, Oak
Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831, Oct 1991.

[4] Oregon Intel Supercomputer System Devision,
Beaverton. ipsc/2 and ipsc/860 user’s guide.

1991.
[6] Parasoft Corporation. Ezpress Reference Man-

ual, 1988.
[6] V.S. Sunderam. Pvm: A framework for parallel
distributed computing. Technical report, Oak

Ridge National Laboratory, Oak Ridge, Ten-
nessee 37831, 1991.

[7] Massachusetts Thinking Machines Corporation,
Cambridge. Cmmd reference manual, version

1.1. 1992.
[8] David W. Walker. Standards for message-

passing in a distributed memory environment.
ORNL/TM-12147, Aug 1992.

[9] H. T. Kung, “ Gigabit Local Area Networks:
A Systems Perspective,” IEEE Communications
Magazine, pp. 79-89, April 1992.

[10] G. Chesson, “ The Protocol Engine Project,”
Proceedings of the Summer 1987 USENIX Con-
ference, pp. 209-215, June 1987.

[11] J.B. Park and S. Hariri, ” Architectural Sup-
port for a High-Performance Distributed Sys-
tem,” Proceedings of the 12th Annual IEEFE In-
ternational Phoeniz Conference on Computers
and Communications’93 (IPCCC-93), pp. 319
—325, March 1993.






