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SUMMARY

The growth of the Internet and the advent of the computational Grid have made it possible to develop
and deploy advanced services and computational collaboratories on the Grid. These systems build on
high-end computational resour ces and communication technologies, and enable seamless and collabor ative
access to resources, applications and data. In this chapter we present an overview of the DISCOVER
computational collaboratory for enabling interactive applications on the Grid. Itsprimary goal isto bring
largedistributed Grid applicationsto the scientists /engineers' desktop and enable collabor ative application
monitoring, interaction and control. DISCOVER is composed of 3 key components. (1) a middleware
substratethat integrates DI SCOVER server sand enablesinteroper ability with external Grid services, (2) an
application control network consisting of sensors, actuators, and inter action agents that enable monitoring,
interaction and steering of distributed applications, and (3) detachable portals for collaborative access to
grid applications and services. The design, implementation, operation and evaluation of these components
ispresented.
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1. INTRODUCTION

A collaboratory is defined as a place where scientists and researchers work together to solve complex
interdisciplinary problems, despite geographic and organizational boundaries [18]. The growth of the
Internet and the advent of the computational “Grid” [8, 7] have made it possible to develop and
deploy advanced computational collaboratories [12, 11] that provide uniform (collaborative) access
to computational resources, services, applications and/or data. These systems expand the resources
available to researchers, enable multidisciplinary collaborations and problem solving, accelerate the
dissemination of knowledge, and increase the efficiency of research.

This chapter presents the design, implementation and deployment of the DISCOVER computational
collaboratory that enables interactive applications on the Grid. High performance simulations are
playing an increasingly critical role in all areas of science and engineering. As the complexity and
computational cost of these simulations grows, it has become important for scientists and engineers to
be able to monitor the progress of these simulations, and to control or steer them at runtime. The utility
and cost-effectiveness of these simulations can be greatly increased by transforming traditional batch
simulations into more interactive ones. Closing the loop between the user and the simulations enables
experts to drive the discovery process by observing intermediate results, by changing parameters to lead
the simulation to more interesting domains, play what-if games, detect and correct unstable situations,
and terminate uninteresting runs early. Furthermore, the increased complexity and multi-disciplinary
nature of these simulations necessitates a collaborative effort among multiple, usually geographically
distributed scientists/engineers. As a result, collaboration-enabling tools are critical for transforming
simulations into true research modalities.

DISCOVER [6, 17] is a virtual, interactive computational collaboratory that enables geographically
distributed scientists and engineers to collaboratively monitor, and control high performance
parallel/distributed applications on the Grid. Its primary goal is to bring Grid applications to the
scientists’/engineers’ desktop, enabling them to collaboratively access, interrogate, interact with and
steer these applications using web-based portals. DISCOVER is composed of three key components
(see Figure 1):

1. DISCOVER Middleware Substrate, that enables global collaborative access to multiple,
geographically distributed instances of the DISCOVER computational collaboratory, and
provides interoperability between DISCOVER and external Grid services. The middleware
substrate enables DISCOVER interaction and collaboration servers to dynamically discover and
connect to one another to form a peer network. This allows clients connected to their local
servers to have global access to all applications and services across all servers based on their
credentials, capabilities and privileges. The DISCOVER middleware substrate and interaction
and collaboration servers build on existing web servers and leverage commodity technologies
and protocols to enable rapid deployment, ubiquitous and pervasive access, and easy integration
with third party services.

2. DIOSInteractive Object Framework (DI OS), that enables the runtime monitoring, interaction
and computational steering of parallel and distributed applications on the Grid. DIOS enables
application objects to be enhanced with sensors and actuators so that they can be interrogated and
controlled. Application objects may be distributed (spanning many processors) and dynamic (be
created, deleted, changed or migrated at runtime). A control network connects and manages the
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Figure 1. Architectural schematic of the DISCOVER computational collaboratory

distributed sensors and actuators, and enables their external discovery, interrogation, monitoring
and manipulation. The DIOS distributed rule engine allows users to remotely define and deploy
rules and policies at runtime and enables automated monitoring and steering of Grid applications.

3. DISCOVER Interaction and Collaboration Portal, that provides remote, collaborative access
to applications, application objects and grid services. The portal provides a replicated shared
workspace architecture and integrates collaboration tools such as chat and whiteboard. It also
integrates “Collaboration Streams,” that maintain a navigable record of all client-client and
client-applications interactions and collaboration.

Using the DISCOVER computational collaboratory clients can connect to a local server using the
portal, and can use it to discover and access active applications and services on the Grid as long as
they have appropriate privileges and capabilities. Furthermore, they can form or join collaboration
groups and can securely, consistently and collaboratively interact with and steer applications based
on their privileges and capabilities. DISCOVER is currently operational and is being used to provide
interaction capabilities to a number of scientific and engineering applications, including oil reservoir
simulations, computational fluid dynamics, seismic modeling, and numerical relativity. Furthermore,
the DISCOVER middleware substrate provides interoperability between DISCOVER interaction and
collaboration services and Globus [9] grid services. The current DISCOVER server network includes
deployments at CSM, University of Texas at Austin, and is being expanded to include CACR,
California Institute of Technology.

The rest of the chapter is organized as follows. Section 2 presents the DISCOVER middleware
substrate. Section 3 describes the DIOS interactive object framework. Section 4 presents the
experimental evaluation. Section 5 describes the DISCOVER collaborative portal. Section 6 presents a
summary of chapter and the current status of DISCOVER.
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2. The DISCOVER Middleware Substrate for Grid-Based Collaboratories

The proliferation of the computational Grid and recent advances in Grid technologies have enabled
the development and deployment of a number of advanced problem solving environments and
computational collaboratories. These systems provide specialized services to their user communities
and/or address specific issues in wide area resource sharing and Grid computing [10]. However,
solving real problems on the Grid requires combining these services in a seamless manner. For
example, execution of an application on the Grid requires security services to authenticate users and the
application, information services for resource discovery, resource management services for resource
allocation, data transfer services for staging, and scheduling services for application execution.
Once the application is executing on the Grid, interaction, steering, and collaboration services allow
geographically distributed users to collectively monitor and control the application allowing the
application to be a true research or instructional modality. Once the application terminates data storage
and clean up services come into play. Clearly, a seamless integration and interoperability of these
services is critical to enable global, collaborative, multi-disciplinary and multi-institutional, problem
solving.

Integrating these collaboratories and Grid services presents significant challenges. The
collaboratories have evolved in parallel with the Grid computing effort and have been developed
to meet unique requirements and support specific user communities. As a result, these systems
have customized architectures and implementations, and build on specialized enabling technologies.
Furthermore, there are organizational constraints that may prevent such interaction as it involves
modifying existing software. A key challenge then, is the design and development of a robust and
scalable middleware that addresses interoperability, and provides essential enabling services such
as security and access control, discovery, and interaction and collaboration management. Such a
middleware should provide loose coupling among systems to accommodate organizational constraints
and an option to join or leave this interaction at any time. It should define a minimal set of interfaces
and protocols to enable collaboratories to share resources, services, data and applications on the Grid
while being able to maintain their architectures and implementations of choice.

The DISCOVER middleware substrate [20, 21] defines interfaces and mechanisms for a peer-to-peer
integration and interoperability of services provided by domain specific collaboratories on the Grid.
It currently enables interoperability between geographically distributed instances of the DISCOVER
collaboratory. Furthermore, it also integrates DISCOVER collaboratory services with the Grid services
provided by the Globus Toolkit [9] using the CORBA Commodity Grid (CORBA CoG) Kit [25, 27].
Clients can now use the services provided by the CORBA CoG Kit to discover available resources on
the Grid, to allocate required resources and to run applications on these resources, and use DISCOVER
to connect to and collaboratively monitor, interact with, and steer the applications. The middleware
substrate enables DISCOVER interaction and steering servers as well as Globus servers to dynamically
discover and connect to one another to form a peer network. This allows clients connected to their local
servers to have global access to all applications and services across all the servers in the network based
on their credentials, capabilities and privileges.
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Figure 2. DISCOVER Middleware Substrate: (a) Architecture (b) Implementation

2.1. DISCOVER Middleware Substrate Design

The DISCOVER middleware substrate has a hybrid architecture, i.e. it provides a client-server
architecture from the users’ point of view, while the middle tier has a peer-to-peer architecture. This
approach provides several advantages. The middle-tier peer-to-peer network distributes services across
peer-servers and reduces the requirements of a server. As clients connect to the middle-tier using the
client-server approach, the number of peers in the system is significantly smaller than a pure peer-
to-peer system. The smaller number of peers allows the hybrid architecture to be more secure and
better managed as compared to a true peer-to-peer system, and restricts the security and manageability
concerns to the middle tier. Furthermore, this approach makes no assumptions about the capabilities
of the clients or the bandwidth available to them, and allows for very thin clients. Finally, servers in
this model can be lightweight, portable and easily deployable and manageable, instead of being heavy
weight (as in pure client-server systems). A server may be deployed anywhere there is a growing
community of users, much like a HTTP Proxy server.

A schematic overview of the overall architecture is presented in Figure 2a. It consists of
(collaborative) client portals at the front end, computational resources, services or applications at the
backend, and the network of peer servers in the middle. To enable ubiquitous access, clients are kept as
simple as possible. The responsibilities of the middleware include providing a “repository of services”
view to the client, providing controlled access to these backend services, interacting with peer servers,
and collectively managing and coordinating collaboration. A client connects to its “closest” server and
should have access to all (Iocal and remote) backend services and applications defined by its privileges
and capabilities.

Backend services can divided into two main classes - (a) resource access and management toolkits
(e.g. Globus, CORBA CoG) providing access to Grid services, and (b) collaboratory specific services
(e.g high-performance applications, data archives, and network-monitoring tools). Services may be
specific to a server or may form a pool of services that can be accessed by any server. A service
will be server-specific if direct access to the service is restricted to the local server, possibly due to
security, scalability or compatibility constraints. In either case, the servers and the backend services
are accessed using standard distributed object technologies such as CORBA/IIOP [2, 4] and RMI [16].
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XML based protocols such as SOAP [26] have been designed considering the services model and are
ideal candidates.

The middleware architecture defines three levels of interfaces for each server in the substrate. The
level-one interfaces enable a server to authenticate with peer servers and query them for active services
and users. The level-two interfaces are used for authenticating with and accessing a specific service
at a server. The level-three interfaces (Grid Infrastructure Interfaces) are used for communicating with
underlying core Grid services (e.g. security, resource access). The implementation and operation of the
current DISCOVER middleware substrate is briefly described below. Details can be found in [20, 1].

2.2. DISCOVER Middleware Substrate | mplementation
2.2.1. DISCOVER Interaction and Collaboration Server

The DISCOVER interaction/collaboration servers build on commodity web servers, and extend their
functionality (using Java Servlets [13]) to provide specialized services for real-time application
interaction and steering and for collaboration between client groups. Clients are Java applets and
communicate with the server over HTTP using a series of HTTP GET and POST requests. Application-
to-server communication either uses standard distributed object protocols such as CORBA [2] and Java
RMI [16], or a more optimized, custom protocol over TCP sockets. An ApplicationProxy object is
created for each active application/service at the server, and is given a unique identifier. This object
encapsulates the entire context for the application. Three communication channels are established
between a server and an application: (1) a MainChannel for application registration and periodic
updates, (2) a CommandChannel for forwarding client interaction requests to the application, and
(3) a ResponseChannel for communicating application responses to interaction requests. At the other
end, clients differentiate between the various messages (i.e. Response, Error or Update) using Java’s
reflection mechanism. Core service handlers provided by each server include the Master Handler,
Collaboration Handler, Command Handler, Security/Authentication Handler and the Daemon Servlet
that listens for application connections. Details about the design and implementation of the DISCOVER
Interaction and Collaboration servers can be found in [17].

2.2.2. DISCOVER Middleware Substrate

The current implementation of the DISCOVER middleware consists of multiple independent
collaboratory domains, each consisting of one or more DISCOVER servers, applications/services
connected to the server(s) and/or core Grid services. The middleware substrate builds on CORBA/IIOP,
which provides peer-to-peer connectivity between servers within and across domains, while allowing
them to maintain their individual architectures and implementations. The implementation is illustrated
in Figure 2b. It uses the level-one and level-two interfaces to construct a network of DISCOVER
servers. A third level of interfaces is used to integrate Globus Grid Services [9] via the CORBA
CoG [25, 27]. The different interfaces are described below.

Discover CorbaServer Interface: The DiscoverCorbaServer is the level-one interface and represents
a server in the system. This interface is implemented by each server and defines the methods
for interacting with a server. This includes methods for authenticating with the server, querying
the server for active applications/services, and obtaining the list of users logged on to the server.
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A DiscoverCorbaServer object is maintained by each server’s Daemon Servlet and publishes its
availability using the CORBA trader service. It also maintains a table of references to CorbaProxy
objects for remote applications/services.

CorbaProxy Interface: The CorbaProxy interface is the level-two interface and represents an active
application (or service) at a server. This interface defines methods for accessing and interacting with
the application/service. The CorbaProxy object also binds itself to the CORBA naming service using
the application’s unique identifier as the name. This allows the application/service to be discovered
and remotely accessed from any server. The DiscoverCorbaServer objects at servers that have clients
interacting with a remote application maintain a reference to the application’s CorbaProxy object.
Grid Infrastructurelnterfaces: The level-three interfaces represent core Globus Grid Services. These
include: (1) The Discover GSl interface that enables the creation and delegation of secure proxy objects
using the Globus GSI Grid security service. (2) The DiscoverMDSthat provides access to the Globus
MDS Grid information service using JNDI [14], and enables users to securely connect to and access
MDS servers. (3) The DiscoverGRAM interface that provides access to the Globus GRAM Grid
resource management service and allows users to submit jobs on remote hosts, and to monitor and
manage these jobs using the CORBA Event Service [3]. (4) The Discover GASSinterface that provides
access to the Globus GASS Grid data access service and enables Grid applications to access and store
remote data.

2.3. DISCOVER Middleware Operation

This section briefly describes key operations of the DISCOVER middleware. Details can be found
in [20, 1].

2.3.1. Security/Authentication

The DISCOVER security model is based on the Globus GSI protocol and builds on the CORBA
Security Service. The GSI delegation model is used to create and delegate an intermediary object (the
CORBA GSI Server Object) between the client and the service. The process consists of three steps:
(1) Client and server objects mutually authenticate using the CORBA Security Service. (2) The client
delegates the Discover GS server object to create a proxy object that has the authority to communicate
with other GSI enabled Grid Services. (3) The client can use this secure proxy object to invoke secure
connections to the services.

Each DISCOVER server supports a two-level access control for the collaboratory services: the first
level manages access to the server while the second level manages access to a particular application.
Applications are required to be registered with a server and to provide a list of users and their access
privileges (e.g. read-only, read-write). This information is used to create access control lists (ACL) for
each user-application pair.

2.3.2. Discovery of Servers, Applications and Resources
Peer DISCOVER servers locate each other using the CORBA trader services [5]. The CORBA trader

service maintains server references as service-offer pairs. All DISCOVER servers are identified by the
service-id DISCOVER. The service offer contains the CORBA object reference and a list of properties
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8 V. MANN, AND M. PARASHAR %

defined as name-value pairs. Thus the object can be identified based on the service it provides or
its properties. Applications are located using their globally unique identifiers, which are dynamically
assigned by the DISCOVER server and are a combination of the server’s IP address and a local count
at the server. Resources are discovered using the Globus MDS Grid information service, which is
accessed via the MDSHandler Servlet and the DiscoverMDS interface.

2.3.3. Accessing Globus Grid Services. Job Submission and Remote Data Access

DISCOVER middleware allows users to launch applications on remote resources using the Globus
GRAM service. The clients invoke the GRAMHandler Servlet in order to submit a job. The
GRAMHandler Servlet, using the delegated CORBA GSI Server Object, accesses the Discover GRAM
server object to submit jobs to the Globus gatekeeper. The user can monitor jobs using the CORBA
Event Service. Similarly, clients can store and access remote data using the Globus GASS service. The
GASSHandler Servlet, using the delegated CORBA GSI Server Object, accesses the Discover GASS
server object and the corresponding GASS service using the protocol specified by the client.

2.3.4. Distributed Collaboration

The DISCOVER collaboratory enables multiple clients to collaboratively interact with and steer (local
and remote) applications. The collaboration handler servlet at each server handles the collaboration
on the server side, while a dedicated polling thread is used on the client side. All clients connected to
an application instance form a collaboration group by default. However, as clients can connect to an
application through remote servers, collaboration groups can span multiple servers. In this case, the
CorbaProxy objects at the servers poll each other for updates and responses.

The peer-to-peer architecture offers two significant advantages for collaboration. First, it reduces the
network traffic generated. This is because, instead of sending individual collaboration messages to all
the clients connected through a remote server, only one message is sent to that remote server, which
then updates its locally connected clients. Since clients always interact through the server closest to
them and the broadcast messages for collaboration are generated at this server, these messages don’t
have to travel large distances across the network. This reduces overall network traffic as well as client
latencies, especially when the servers are geographically far away. It also leads to better scalability
in terms of the number of clients that can participate in a collaboration session without overloading a
server, as the session load now spans multiple servers.

2.3.5. Distributed Locking and Logging for Interactive Seering and Collaboration

Session management and concurrency control is based on capabilities granted by the server. A
simple locking mechanism is used to ensure that the application remains in a consistent state during
collaborative interactions. This ensures that only one client “drives” (issues commands) the application
at any time. In the distributed server case, locking information is only maintained at the application’s
host server i.e. the server to which the application connects directly.

The session archival handler maintains two types of logs. The first log maintains all interactions
between a client and an application. For remote applications, the client logs are maintained at the
server where the clients are connected. The second log maintains all requests, responses, and status
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messages for each application throughout its execution. This log is maintained at the application’s host
server (the server to which the application is directly connected).

2.4. DISCOVER Middleware Substrate Experimental Evaluation

This section gives a brief summary of the experimental evaluation of the DISCOVER middleware
substrate. A more detailed description is presented in [20, 1].

2.4.1. Evaluation of DISCOVER Collaboratory Services

This evaluation compared latencies for indirect (remote) accesses and direct accesses to DISCOVER
services over a local area network (LAN) and a wide area network (WAN). The first set of
measurements was for a 10Mbps local area network (LAN) and used DISCOVER servers at Rutgers
University in New Jersey. The second set of measurements was for a wide area network (WAN) and
used DISCOVER servers at Rutgers University and at University of Texas at Austin. The clients were
running on the local area network at Rutgers University for both sets of measurements and requested
data of different sizes from the application. Response times were measured for both, a direct access to
the server where the application was connected and an indirect (remote) access through the middleware
substrate. The time taken by the application to compute the response was not included in the measured
time. Indirect (remote) access time included the direct access time plus the time taken by the server
to forward the request to the remote server and to receive the result back from the remote server over
I1OP. An average response time over 10 measurements was calculated for each response size.

The resulting response latencies for direct and indirect accesses measured on the LAN indicated that
it is more efficient to directly access an application when it is on the same LAN. In contrast to the
results for the LAN experiment, indirect access times measured on the WAN were of comparable order
to direct access times. In fact, for small data sizes (1 KB, 10 KB and 20 KB) indirect access times were
either equal to or smaller than direct access times. While these results might appear to be contradictory
to expectations, the underlying communication for the two accesses provides an explanation. In the
direct access measurement, the client was running at Rutgers and accessing the server at Austin over
HTTP. Thus in the direct access case, a large network path across the Internet was covered over HTTP,
which meant that a new TCP connection was set up over the wide area network for every request.
In the indirect access case however, the client at Rutgers accessed the local server at Rutgers over
HTTP, which in turn accessed the server at Austin over IIOP. Thus, the path covered over HTTP was
short and within the same LAN, while the larger network path (across the Internet) was covered over
I1OP, which uses the same TCP connection for multiple requests. Since the time taken to set up a new
TCP connection for every request over a wide area network is considerably larger than that over a
local area network, the direct access times are significantly larger. As data sizes increase, the overhead
of connection set up time becomes a relatively smaller portion of the overall communication time
involved. As a result the overall access latency is dominated by the communication time, which is
larger for remote accesses involving accesses to two servers. In both the cases, the access latency was
less than a second.
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2.4.2. Evaluation of DISCOVER Grid Services

This experiment evaluates access to Grid services using the DISCOVER middleware substrate. The
setup consisted of two DISCOVER server running on gridl.rutgers.edu and tassl-pc-2.rutgers.edu,
connected via a 10Mbps LAN. The Globus Toolkit was installed on gridl.rutgers.edu. The test
scenario consisted of: (1) the client logging on to the Portal, (2) the client using the DiscoverMDS
service to locate an appropriate resource, (3) the client using the Discover GRAM service to launch an
application on the remote resource, (4) the client using the Discover GASSto transfer the output and
error files produced by the application, (5) the client interacting and steering the application using the
collaboratory services and (6) the client terminating the application using the Discover GRAM service.
The number of clients was varied up to a maximum of 25. The DiscoverMDS access time averaged
around 250ms. The total time for finding a resource also depends on the search criterion. We restricted
our search criteria to memory size and available memory. The Discover GASS service was used to
transfer files of various sizes. Discover GASS service performed well for small file sizes (below 10
MB) and deteriorated for larger files. The total time taken for the entire test scenario was measured
for two cases: (1) the services were accessed locally at grid1.rutgers.edu and (2) the server at tassl-pc-
2.rutgers accessed the grid services provided by grid1.rutgers.edu. This time was further divided into
5 distinct time intervals - a) time taken for resolving services, b) time taken for delegation, c) time
taken for event channel creation to receive job updates, d) time taken for unbinding the job and €) time
taken for transferring the error file. The time taken was approximately 14.5 seconds in the first case
and approximately 18 seconds in the second case. The additional time in the second case was spent in
resolving the services not present locally.

3. DIOS: Distributed Interactive Object Substrate

DIOS is a distributed object infrastructure that enables the development and deployment of interactive
application. It addresses three key challenges: (1) definition and deployment of interaction objects
that extend distributed and dynamic computational objects with sensors and actuators for interaction
and steering, (2) definition of a scalable control network that interconnects interaction objects and
enables object discovery, interrogation and control and (3) definition of an interaction gateway that
enables remote clients to access, monitor and interact with applications. The design, implementation
and evaluation of DIOS is presented below. DIOS is composed of 2 key components: (1) interaction
objects that encapsulate sensors and actuators, and (2) a hierarchical control network composed of
Discover Agents, Base Sations, and an Interaction Gateway.

3.1. Sensors, Actuatorsand Interaction Objects

Interaction objects extend application computational objects with interaction and steering capabilities,
through embedded sensors and actuators. Computational objects are the objects (data-structures,
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algorithms) used by the application for its computations. In order to enable application interaction
and steering, these objects must export interaction interfaces that enable their state to be externally
monitored and changed. Sensors and actuators provide such an interface. Sensors provide an interface
for viewing the current state of the object, while actuators provide an interface to process commands
to modify the state. Note that the sensors and actuators need to be co-located in memory with the
computational objects and have access to their internal state. Transforming computational objects
into interaction objects can be a significant challenge. This is especially true when the computational
objects are distributed across multiple processors and can be dynamically created, deleted, migrated
and redistributed. Multiple sensors and actuators now have to coordinate in order to collectively process
interaction requests.

DIOS provides application-level programming abstractions and efficient runtime support to support
the definition and deployment of sensors and actuators for distributed and dynamic computational
objects. Using our current implementation of DIOS, existing applications can be converted by deriving
the computational objects from a DIOS virtual interaction base class. The derived objects can then
selectively overload the base class methods to define their interaction interfaces as a set of views that
they can provide and a set of commands that they can accept and process. Views represent sensors and
define the type of information that the object can provide. For example, a mesh object might export
views for its structure and distribution. Commands represent actuators and define the type of controls
that can be applied to the object. Commands for the mesh object may include refine, coarsen, and
redistribute. The view and command interfaces may be guarded by access polices that define who can
access the interfaces, how they can access them and when they can access them. This process requires
minimal modification to original computational objects. Discover agents, which are a part of the DIOS
control network, combine the individual interfaces and export them to the interaction server using an
Interaction IDL (Interface Definition Language). The Interaction IDL contains metadata for interface
discovery and access and is compatible with standard distributed object interfaces like CORBA[2]
and RMI[16]. In the case of applications written in languages such as Fortran, proxy objects are
first created for the application data structures that require interaction. These proxy objects are then
transformed to interaction objects as described above. DIOS interaction objects can be created or
deleted during application execution and can migrate between computational nodes. Furthermore, a
distributed interaction object can modify its distribution at any time.

3.2. Local, Global and Distributed Objects

Interaction objects can be classified based on the address space(s) they span during the course of
the computation as local, global, and distributed objects. Local interaction objects are created in a
processor’s local memory. These objects may migrate to another processor during the lifetime of the
application, but always exist in a single processor’s address space at any time. Multiple instances of a
local object could exist on different processors at the same time. Global interaction objects are similar
to local objects, except that there can be exactly one instance of the object that is replicated on all
processors at any time. A distributed interaction object spans multiple processors’ address spaces. An

Note that computational objects do not refer only to objects in an object-oriented implementation of an application, but also to
application data structures and operations on these data-structures implemented in languages such as C and Fortran.
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example is a distributed array partitioned across available computational nodes. These objects contain
an additional distribution attribute that maintains its current distribution type (e.g. blocked, staggered,
inverse space filling curve-based, or custom) and layout. This attribute can change during the lifetime
of the object. Like local and global interaction objects, distributed objects can be dynamically created,
deleted, or redistributed.

In order to enable interaction with distributed objects, each distribution type is associated with gather
and scatter operations. Gather aggregates information from the distributed components of the object,
while scatter performs the reverse operation. For example, in the case of a distributed array object,
the gather operation would collate views generated from sub-blocks of the array while the scatter
operator would scatter a query to the relevant sub-blocks. An application can select from a library of
gather/scatter methods for popular distribution types provided by DIOS, or can register gather/scatter
methods for customized distribution types.

3.3. DIOSControl Network and Interaction Agents

The control network has a hierarchical “cellular” structure with three components - Discover Agents,
Base Stations, and Interaction Gateway, as shown in Figure 3. Computational nodes are partitioned
into interaction cells, with each cell consisting of a set of Discover Agents and a Base Station.
The number of nodes per interaction cell is programmable. Discover Agents are present on each
computational node and manage run-time references to the interaction objects on the node. The Base
Station maintains information about interaction objects for the entire interaction cell. The highest level
of the hierarchy is the Interaction Gateway that provides a proxy to the entire application. The control
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network is automatically configured at run-time using the underlying messaging environment (e.g.
Message Passing Interface (MPI) [22]) and the available number of processors.

3.3.1. Discover Agents, Base Sations and Interaction Gateway .
Each computation node In the control network houses a Discover Agent (DA). Each Discover Agent

maintains a local interaction object registry containing references to all interaction objects currently
active and registered by that node, and exports the interaction interfaces for these objects (using the
Interaction IDL). Base Stations (BS) form the next level of control network hierarchy. They maintain
interaction registries containing the Interaction IDL for all the interaction objects in the interaction
cell, and export this information to the Interaction Gateway. The Interaction Gateway (IG) represents
an interaction proxy for the entire application. It manages a registry of interaction interfaces for all
the interaction objects in the application, and is responsible for interfacing with external interaction
servers or brokers. The Interaction Gateway delegates incoming interaction requests to the appropriate
Base Stations and Discover Agents, and combines and collates responses. Object migrations and re-
distributions are handled by the respective Discover Agents (and Base Stations if the migration/re-
distribution is across interaction cells) by updating corresponding registries. The Discover Agent, Base
Station and Interaction Gateway are all initialized on the appropriate processors during application start
up. They execute in the same address space as the application and communicate using the application
messaging environment, e.g. MPI. A recent extension to DIOS allows clients to define and deploy
rules to automatically monitor and control applications and/or application objects. The conditions and
actions of the rules are composed using the exported view/command interfaces. A distributed rule-
engine is built in the control network that authenticates and validates incoming rules, decomposes the
rules and distributes components to appropriate application objects, and manages the execution of the
rules.

In our implementation, interactions between an interaction server and the interaction gateway are
achieved using two approaches. In the first approach, the Interaction Gateway serializes the interaction
interfaces and associated meta-data information for all registered interaction objects to the server. A
set of Java classes at the server parse the serialized Interaction IDL stream to generate corresponding
interaction object proxies. In the second approach, the Interaction Gateway initializes a Java Virtual
Machine (JVM) and uses the Java Native Interface [15] to create Java mirrors of registered interaction
objects. These mirrors are registered with a RMI [16] registry service executing at the Interaction
Gateway. This enables the Server to gain access to and control the interaction objects using the Java
RMI API. We are currently evaluating the performance overheads of using Java RMI and JNI. The use
of the JVM and JNI in the second approach assumes that the computing environment supports the Java
runtime environment.

A more detailed description of the DIOS framework, including examples for converting existing
applications into interactive ones, registering them with the DISCOVER interaction server and using
web portals for monitoring and controlling them, can be found in [24, 23].

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency: Pract. Exper. 2002; 00:1-15
Prepared using cpeauth.cls



14 V. MANN, AND M. PARASHAR %

Table I. View and command processing times

View Type Data Size (Bytes) Time Taken Command Time Taken
Text 65 0.4 ms Stop, Pause or Resume 250 psec
Text 120 0.7 ms Refine GridHierarchy 32ms
Text 760 0.7 ms Checkpoint 1.2 sec
XSlice Generation 1024 1.7ms Rollback 43 ms

4. Experimental Evaluation

DIOS has been implemented as a C++ library and has been ported to a number of operating systems
including Linux, Windows NT, Solaris, IRIX, and AIX. This section summarizes an experimental
evaluation of the DIOS library using the IPARS reservoir simulator framework on the Sun Starfire
E10000 cluster. The E10000 configuration used consists of 64, 400 MHz SPARC processors, a 12.8
GBytes/sec interconnect. IPARS is a Fortran-based framework for developing parallel/distributed oil
reservoir simulators. Using DIOS/DISCOVER, engineers can interactively feed in parameters such
as water/gas injection rates and well bottom hole pressure, and observe the water/oil ratio or the oil
production rate. The transformation of IPARS using DIOS consisted of creating C++ wrappers around
the IPARS well data structures and defining the appropriate interaction interfaces in terms of views and
commands. The DIOS evaluation consists of 5 experiments:

Interaction Object Registration: Object registration (generating the Interaction IDL at the Discover
Agents and exporting it to Base Station/Gateway) took 500 usec per object at each Discover Agent,
10 ms per Discover Agent in the interaction cell at the Base Station, and 10 ms per Base Station in the
control network at the Gateway. Note that this is a one-time cost.

Overhead of Minimal Steering: This experiment measured the runtime overheads introduced due
to DIOS monitoring during application execution. In this experiment, the application automatically
updated the DISCOVER server and connected clients with the current state of its interactive objects.
Explicit command/view requests were disabled during the experiment. The application contained 5
interaction objects, 2 local objects and 3 global objects. The measurements showed that the overheads
due to the DIOS runtime are very small and typically within the error of measurement. In some cases,
due to system load dynamics, the performance with DIOS was slightly better. Our observations have
shown that for most applications, the DIOS overheads are less that 0.2% of the application computation
time.

View/Command Processing Time: The query processing time depends on - (a) the nature of
interaction/steering requested, (b) the processing required at the application to satisfy the request and
generate a response, and (c) type and size of the response. In this experiment we measured time required
for generating and exporting different views and commands. A sampling of the measured times for
different scenarios is presented in Table 1.

DIOS Control Network Overheads: This experiment consisted of measuring the overheads due
to communication between the Discover Agents, Base Stations and the Interaction Gateway while
processing interaction requests for local, global and distributed objects. As expected, the measurements
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Figure 4. The DISCOVER Collaborative Interaction/Steering Portal

indicated that the interaction request processing time is minimum when the interaction objects are co-
located with the Gateway, and is the maximum for distributed objects. This is due to the additional
communication between the different Discover Agents and the Gateway, and the gather operation
performed at the Gateway to collate the responses. Note that for the IPARS application, the average
interaction time was within 0.1 to 0.3% of the average time spent in computation during each iteration.
End-to-end steering latency: This measured the time to complete a round-trip steering operation
starting with a request from a remote client and ending with the response delivered to that client.
Remote clients executed within web-browsers on laptops/workstations on different subnets. These
measurements of course depend on the state of the client, the server and the network interconnecting
them. The DISCOVER system exhibits end-to-end latencies comparable to related steering systems, as
reported in [24].

5. TheCollaborative Interaction and Steering Portal

The DISCOVER collaborative computational portal provides scientists and engineers with an
anytime/anywhere capability of collaboratively (and securely) launching, accessing, monitoring and
controlling Grid applications. It integrates access to the collaboratory services and the grid services
provided by the DISCOVER middleware. A screen shot of the current DISCOVER portal is presented
in Figure 4.

The DISCOVER portal consists of a virtual desktop with local and shared areas. The shared areas
implement a replicated shared workspace and enable collaboration among dynamically formed user
groups. Locking mechanisms are used to maintain consistency. The base portal, presented to user after
authentication and access verification, is a control panel. The control panel provides the user with a
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list of services and applications and is customized to match each user’s access privileges. Once clients
download the control panel they can launch any desired service such as resource discovery, application
execution, application interrogation, interaction, collaboration, or application/session archival access.
For application access, the desktop consists of: (1) a list of interaction objects and their exported
interaction interfaces (views and/or commands), (2) an information pane that displays global updates
(current timestep of a simulation) from the application, and (3) a status bar that displays the current
mode of the application (computing, interacting) and the status of issued command/view requests. The
list of interaction objects is once again customized to match the client’s access privileges. Chat and
whiteboard tools can be launched from the desktop to support collaboration. View requests generate
separate (possibly shared) panes using the corresponding view plug-in. All users choosing to steer a
particular application form a collaboration group by default with a corresponding shared area on the
virtual desktop. New groups can be formed or modified at any time. A separate application registration
page is provided to allow super-users to register application, add application users and modify user
capabilities.

6. Summary and Current Status

In this chapter we presented an overview of the DISCOVER computational collaboratory for enabling
interactive applications on the Grid. Its primary goal is to bring large distributed Grid applications to the
scientists’/engineers’ desktop and enable collaborative application monitoring, interaction and control.
DISCOVER is composed of 3 key components: (1) a middleware substrate that integrates DISCOVER
servers and enables interoperability with external Grid services, (2) an application control network
consisting of sensors, actuators, and interaction agents that enable monitoring, interaction and steering
of distributed applications, and (3) detachable portals for collaborative access to grid applications and
services. The design, implementation, operation and evaluation of these components was presented.
DISCOVER is currently operational and is being used to provide these capabilities to a number
of application specific PSEs including the IPARS oil-reservoir simulator system at the Center for
Subsurface Modeling, University of Texas at Austin, the virtual test facility at the ASCI/ASAP Center,
California Institute of Technology, and the Astrophysical Simulation Collaboratory. Furthermore, the
DISCOVER middleware integrates access to Globus Grid services. Additional information and an
online demonstration are available at http://www.discoverportal.org.
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