Dynamic L oad Partitioning Strategies for Managing
Data of Space and Time Heterogeneity in Parallel
SAMR Applications*

Xiaolin Li and Manish Parashar

The Applied Software Systems L aboratory
Department of Electrical & Computer Engineering
Rutgers University, Piscataway, NJ 08854, USA
Email: {xlli, parashar} @caip.rutgers.edu

Abstract. This paper presents the design and experimental evaluation of two
dynamic load partitioning and balancing strategies for parallel Structured Adap-
tive Mesh Refinement (SAMR) applications: the Level-based Partitioning Al-
gorithm (LPA) and the Hierarchical Partitioning Algorithm (HPA). These tech-
niques specifically address the computational and communication heterogeneity
across refinement levels of the adaptive grid hierarchy underlying these methods.
An experimental evaluation of the partitioning schemes is also presented.
Keywords: Dynamic Load Balancing, Parallel and Distributed Computing, Struc-
tured Adaptive Mesh Refinement, Scientific Computing

1 Introduction

Large-scale parallel/distributed simulations are playing an increasingly important role
in science and engineering and are rapidly becoming critical research modalities in
academiaand industry. While the past decade has withessed a significant boost in CPU,
memory and networking technologies, the size and resolution of these applications
and their corresponding computational, communication and storage requirements have
grown at an even faster rate. As a result, applications are constantly saturating avail-
able resources. Dynamically adaptive techniques, such as Structured Adaptive Mesh
Refinement (SAMR) [1], can yield highly advantageous ratios for cost/accuracy when
compared to methods based upon static uniform approximations. SAMR provides a
means for concentrating computational effort to appropriate regions in the computa-
tional domain. These techniques can lead to more efficient and cost-effective solutions
to time dependent problems exhibiting localized features. Parallel implementations of
these methods offer the potential for accurate solutions of physically realistic models of
complex physical phenomena. However, the dynamics and space and time heterogene-
ity of the adaptive grid hierarchy underlying SAMR agorithms makes their efficient
parallel implementation a significant challenge.

* Support for thiswork was provided by the NSF viagrants numbers ACI 9984357 (CAREERS),
EIA 0103674 (NGS) and EIA-0120934 (ITR), DOE ASCI/ASAP (Caltech) via grant numbers
PC295251 and 1052856.

Traditional parallel implementation of SAMR applications [3] [5] [7] have used
dynamic partitioning/load-balancing algorithms that view the system as a flat pool of
(usually homogeneous) processors. These approaches are based on global knowledge
of the state of the adaptive grid hierarchy, and partition the grid hierarchy across the set
of processors. Global synchronization and communication is required to maintain this
global knowledge and can lead to significant overheads on large systems. Furthermore,
these approaches do not exploit the hierarchical nature of the grid structure and the
distribution of communications and synchronization in this structure.

This paper presents the design and experimental evaluation of dynamic load par-
titioning and balancing strategies for parallel SAMR applications that specifically ad-
dress the computational and communication heterogeneity across refinement levels of
the adaptive grid hierarchy underlying these methods. In this paper, wefirst analyze the
space/time computational and communication behavior of parallel SAMR applications.
We then present the design and experimental evaluation of two dynamic load partition-
ing and balancing strategies for parallel SAMR applications: Level-based Partitioning
Algorithm (LPA) and Hierarchical Partitioning Algorithm (HPA). These algorithms are
aso presented in combination.

Therest of the paper is organized as follows. Section 2 gives an overview on SAMR
technique and presents the computation and communication behavior of parallel SAMR
applications. Section 3 presents the LPA and HPA dynamic partitioning and load bal-
ancing strategies. Section 4 presents the experimental evaluation of these partitioners.
Section 5 presents conclusions.

2 Problem Description

SAMR techniques track regions in the domain that requires additional resolution and
dynamically overlay finer grids over these regions. These methods start with a base
coarse grid with minimum acceptable resolution that covers the entire computational
domain. As the solution progresses, regions in the domain requiring additional reso-
lution are tagged and finer grids are over laid on these tagged regions of the coarse
grid. Refinement proceeds recursively so that regions on the finer grid requiring more
resolution are similarly tagged and even finer grids are overlaid on these regions. The
resulting grid structure for the Structured Berger-Oliger AMR is a dynamic adaptive
grid hierarchy [1].

2.1 Computation and communication behavior for parallel SAMR

In the targeted SAMR formulation, the grid hierarchy is refined both in space and in
time. Refinements in space create finer level grids which have more grid points/cells
than their parents. Refinementsin time mean that finer grids take smaller time steps and
hence have to be advanced more often. As a result, finer grids not only have greater
computational loads but also have to be integrated and synchronized more often. This
results in space and time heterogeneity in the SAMR adaptive grid hierarchy. Further-
more, regridding occurs at regular intervals at each level and result in refined regions

are created, moved and deleted. Together, these characteristics of SAMR applications
makes their efficient parallel implementation a significant challenge.

Parallel implementations of hierarchical SAMR applications typically partition the
adaptive heterogeneous grid hierarchy across available processors, and each processor
operates on its local portions of this domain in parallel. Each processor starts at the
coarsest level, integratesthe patches at thislevel and performsintra-level or ghost com-
munications to update the boundaries of the patches. It then recursively operates on the
finer grids using the refined time steps - i.e. for each step on a parent grid, there are mul-
tiple steps (equal to the time refinement factor) on the child grid. When the parent and
child grid are at the same physical time, inter-level communications are used to inject
information from the child to its parent. Dynamic re-partitioning and re-distribution is
typically required after this step.

The overall performance of paralel SAMR applicationsis limited by the ability to
partition the underlying grid hierarchies at runtime to expose al inherent parallelism,
minimize communication and synchronization overheads, and balance load. A critical
requirement of the load partitioner is to maintain logical locality across partitions at
different levels of the hierarchy and at the same level when they are decomposed and
mapped across processors. The maintenance of locality minimizes the total communi-
cation and synchronization overheads.

communication

time

y / T

| \ I \ |1
communication

= ‘r'mlfm R R
o] |_| I_l Le -1 L2 L2l Iilmmpm..Orl

v Enlarged with mor e details

:l-
]

communication
I Zsync[2intra-level l 2and Linter-level] 2sync [1mtra-la/e| | _time

pif ... 2 o

. computation

—) 3+ communication
I 2intra-level] 2and 1inter-level]1mtra-le/e|| L time

2 IL

>
computation

* The number in the time slot box denotes the refinement level of theload under processing
* In this case, the number of refinement levelsis 3 and the refinement factor is 2.
* The communication time consists of three types, intra-level, iter-level and synchronization cost

Fig. 1. Timing Diagram for Parallel SAMR Algorithm

Thetiming diagram (notethat the timing is not drawn to scale) in Figure 1 illustrates
the operation of the SAMR algorithms described above using a 3 level grid hierarchy.
For simplification, only the computation and communication time behaviors of proces-
sors P1 and P2 are shown. The three components of communication overheads (listed
in Section 2.2) areillustrated in the enlarged portion of the time line. This figure shows
the exact computation and communication patterns for parallel SAMR implementa-
tions. Note that the timing diagram shows that there is one time step on the coarsest
level (level 0) of the grid hierarchy followed by two time steps on the first refinement
level and four time steps on the second level, before the second time step on level 0 can
start. Also note that the computation and communication for each refinement levels are

interleaved. This behavior makes it quite challenging to partition the dynamic SAMR
grid hierarchy to both balanceload and minimize communication/synchroni zation over-
heads.

2.2 Communication overheadsfor parallel SAMR applications

As described above and shown in Figure 1, the communication overheads of parallel
SAMR applications primarily consist of three components: (1) Inter-level communi-
cations defined between component grids at different levels of the grid hierarchy and
consist of prolongations (coarse to fine transfer and interpolation) and restrictions (fine
to coarse transfer and interpolation). (2) Intra-level communications required to update
the grid-elements aong the boundaries of local portions of a distributed grid, consists
of near-neighbor exchanges. These communications can be scheduled so as to be over-
lapped with computations on theinterior region; (3) Synchronization cost, which occurs
when the load is not well balanced among all processors. These costs may occur at any
time step and at any refinement level due to the hierarchical refinement of space and
timein SAMR applications.

Clearly, an optimal partitioning of the SAMR grid hierarchy and scalable imple-
mentations of SAMR applications requires careful consideration of the timing pattern
as shown in Figure 1 and the three communication overhead components. Critical ob-
servationsfrom thetiming diagramin Figure 1 arethat, in addition to balancing thetotal
load assigned to each processor and maintaining parent child locality, we also have to
balance the load on each refinement level and address the communi cation and synchro-
nization costs within alevel. The load partitioning and balancing strategies presentedin
the following section address these issues.

3 Dynamic Load Partitioning and Balancing Strategies

The dynamic partition- Y |
ing algorithms presented in Higher vl | | — |
this paper arebased on acore - =
CompositeGrid Distribution towerlel | cpA |
Strategy (CGDS) [7]. This Common Basiq SFC + CGDS |
domain-based partiti oning strat- Fig. 2. Layers of Partitioning Algorithms
egy performsacompositede-

composition of the adaptive grid hierarchy using Space Filling Curve (SFC) [8]. Space
filling curves are locality preserving recursive mappings from n-dimensional space to
1-dimensional space. CGDS uses SFCs, and partitions the entire SAMR domain into
sub-domains such that each sub-domain keeps al refinement levels in the sub-domain
as a single composite grid unit. Thus all inter-level communication are local to a sub-
domain and the inter-level communication time is greatly reduced. The resulting com-
posite grid unit list (GUL) for the overall domain must now be partitioned and balanced
across processors.

A Greedy Partitioning Algorithm (GPA) is used to partition the global GUL to pro-
ducesalocal GUL for each processor. The key motivation for using the GPA schemeis

that it isfast and efficient asit scansthe global GUL only oncetotry to equally distribute
load among all processors. Thisisimportant as the number of composite grid units can
be large and regridding steps can be quite frequent. This scheme works very well for
homogeneous computational domain. However, for heterogeneous computational do-
mains, it may cause large intra-level synchronization cost due to load imbalance for
each refinement level.

To improve the performance of GPA scheme, we propose two efficient partitioning
schemes, Level-based Partitioning Algorithm (LPA) and Hierarchical Partitioning Al-
gorithm (HPA). As shown in Figure 2, GPA is alower-level partitioning scheme which
can work independently. LPA and HPA are higher-level partitioning schemes that work
on the top of the lower-level scheme. Specially, HPA can work either on the top of LPA
or directly on the top of GPA. Detailed description and analysis of LPA and HPA are
presented in the following two subsections.

3.1 Level-based partitioning algorithm

The level-based partitioning algorithm (LPA) essentially preprocesses a portion of the
global GUL by disassembling it according to refinement levels, and feeds the resulting
homogeneouscomposite GUL to GPA. The GPA then partitionsthislist to balanceload.
Asaresult of the preprocessing, the load on each refinement level isalso balanced. This
agorithmisasfollows:

1. Get the maximum refinement level MaxLev. Disassemble the global GUL into homoge-
neous GUL's according to grid unit’s refinement depth, denoted by gul_array[lev]. The
load assigned in the previous iteration is denoted by load_array[np] .

2. Loop for refinement level lev = MaxLev to O reversely

Passing gul_array[lev] and load_array[np] to GPA to obtain local assignment.

4. InGPA, it will partition theload such that each processor get equal distribution on each
refinement level.

w

We observethat the LPA scheme partitions deep compositegrid units before shallow
grid units. The previous iteration has assigned some load on lower refinement level be-
cause we use the composite grid strategy. Since we cannot guarantee the perfect balance
during the partition of each iteration, to compensate the possible imbalance introduced
in higher level and equally partition the GUL on the lower level, we need to keep track
of the load on lower level previously assigned. Thisis done using load array[np]. LPA
takes full advantages of CGDS by keeping parent-children relationshipsin the compos-
ite grid and localizing inter-level communications. Furthermore, it balances the load on
each refinement level which reduces the synchronization cost as shown by the experi-
mental evaluation and demonstrated by the following example.

Consider partitioning a one dimensional grid hierarchy with two refinement levels,
as shownin Figure 3. For this 1-D example, GPA partitions the composite grid unit list
into two subdomains. These two parts contain exactly same load: the load assigned to
P0is2+ 2 x 4 whiletheload assigned to P1 is 10 units. From the viewpoint of GPA

level 1 AQ_H—‘
o “synchronization cost | 0 1 1]o e
[l T T = T T mputaion

level 0 }

+
[oT ‘synchronization cost

[o 1

(@

level 1

M m [i9]
R | | { ——

T T
| O N
(b)

level 0

(b)

Fig. 3. Partitions of a 1-D Grid Hierarchy and Resulting Timing Diagrams (a) GPA (b) LPA

scheme, the partition result is perfectly balanced. However, due to the heterogeneity of
SAMR algorithm, this distribution leads to large synchronization costs as shown in the
timing diagram of Figure 3 (). The LPA scheme takes these synchronization costs at
each refinement level into consideration. For this simple example, LPA will produce a
partition as shown in Figure 3 (b) which results in the computation and communica-
tion behavior as shown in Figure 3 (b). As aresult, there is an improvement in overall
execution time and a reduction in communication and synchronization time.

3.2 Hierarchical partitioning algorithm

In most parallel implemen-
tationsof SAMR, such asParaMesh
[5], SAMRAI [3] and GrACE
[6], load partitioning and balanc-
ing is collectively done by all
processorsand all processorsmain-
tain a global knowledge of the
total workload. These schemes
have the advantage of a better
load balance. However these ap-
proaches require the collection
and maintenance of global load
information which makes them
expensive, specialy on large systems. In HPA, after initially obtaining the global GUL,
the top processor group partitions it and assign portions to each processor subgroup in
a hierarchical manner. In this way, HPA further localizes the communication to sub-
groups, enables concurrent communication and reduces the global communication and
synchronization costs.

Figure 4 illustrates a general hierarchical tree structure of processor groups, where,
Gy is the root level group (grouplevel=0) which consists of al processors. G ; is the
1 — th group at the group level 1. Note that only the leaves of the tree are processors.
The communication between processorsis accomplished through their closest common
parent group. For example, for the processors P and Py 4, they have common ancestor
group G, G2 and G4 2, where GG, » istheir closest common ancestor. Thus communica-
tion between P and P14 isviathe group G2 ». Similarly, the communication between

G,, Gy2z

Fig.4. A General Hierarchical Structure of Proces-
sor Groups

processors Py and Pjq is viathe group G. The detailed steps of HPA are as follows.
More detailed description of HPA and its variantsis presented in [4].

1. Setup the processor group hierarchy according to group size and group levels.

. Loop for group level lev=1 to num.group_level

3. Partition the global GUL into N, subdomains using GPA, where N;.,, is the number
of processor groups at this level.

4. Assign the load L; on subdomain R; to a group of processors G; such that the num-
ber of processors N P; in the group G; is proportional to the load L;, i.e, NP, =
L;/Lsum X N Psym, where Ly, is the total size of load and N Pk, is the total
number of processors in the parent group level.

5. Loop until reaching the leaves of the group tree hierarchy. Partition the load portion L;
using GPA and assign the appropriate portion to the individual processor in the group
Gi, fori =0,1,..., NP; — 1, where N P; is the number of processors in the lowest
group level.

N

During the repartitioning phase, instead of performing global load balancing, HPA
hierarchically checksfor load imbalance. Starting from the lower level subgroups, if the
imbalance is below some threshold, it only repartitions and redistributes load among
the lowest subgroup, elseif it is above the threshold, it checksfor load imbalancein the
next higher level group. It proceedsrecursively up to the root processor group consisting
of al processors in this way HPA thus reduces the amount of globa synchronization
required and enable incremental load balancing. Furthermore, HPA scheme exploits
more communication parallelism through multiple concurrent communi cation channels
among hierarchical groups.

4 Experimental Evaluation

The partitioning strategies are evaluated on the IBM SP2 cluster BlueHorizon at San
Diego Supercomputer Center. The design of the adaptive runtime framework is driven
by specific problems in enabling realistic simulations using AMR techniques. The 3-
D Richtmyer-Meshkov instability application from computational fluid dynamics are
used. RM3D has been developed by Ravi Samtaney as part of the virtual test facility at
the Caltech ASCI/ASAP Center [2].

The input configurations are as follow: the base grid size is 128 x 32 x 32, max-
imum 3 refinement levels, refinement factor is 2, granularity is 4, regrid every 4 time
stepson each level, thetotal base level time steps are 100. Four partitioning schemes are
used in the experiments, namely, GPA, LPA, HPA and HPA+LPA, running on a range
of processors from 16 to 128. The comparison of the total execution time is shownin
Figure 5. In this figure, the execution time for the different parameters are normalized
against GPA on 16 processors (100%). We observe that execution time reduction using
LPA scheme compared to GPA is about 48.8% on the average for these five system
configurations. HPA scheme alone reduces the execution time by about 52.9% on the
average. Applying HPA scheme on the top of LPA scheme, we gain further improve-
ment reducing overall execution time by about 56% for 16 processors, 60% for 128

Communication Time of RM3D application

Execution Time of RM3D application Size=128x32x32)
ze:

(100 steps, size=128x32x32)

Fig. 5. Execution and Communication Time: GPA, LPA, HPA and HPA+LPA

processors, and 57.3% on the average. These reductionsin the overall execution times
are due to a reduction in communication times as shown in Figure 5. The figure aso
showsthat, HPA greatly reducesthe global communication time and exploits more con-
current communications. For all cases, HPA+LPA delivers the best performance since
it takes full advantages of HPA and LPA.

5 Conclusions

In this paper we presented the design and experimental evaluation of two dynamic load
partitioning and balancing strategies for parallel Structured Adaptive Mesh Refinement
(SAMR) applications: the Level-based Partitioning Algorithm (LPA) and the Hierarchi-
cal Partitioning Algorithm (HPA). These techniques specifically address the computa-
tional and communication heterogeneity across refinement levels of the adaptive grid
hierarchy underlying these methods. The efficiency of LPA and HPA is experimentally
validated using a real SAMR application (RM3D). The improvement over the GPA
scheme is significant. The overall reduction of executiontimeis about 48.8% for LPA,
52.9% for HPA and 57.3% for HPA+LPA on the average.

References

1. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equa-
tions. Journal of Computational Physics, 53:484-512, 1984.

2. J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and D. Meiron. A virtual
test facility for the simulation of dynamic response in materials. Journal of Supercomputing,
23:39-50, 2002.

3. R.D.Hornung and S. R. Kohn. Managing application complexity in the samrai object-oriented
framework. Concurrency and Computation - Practice & Experience, 14(5):347-368, 2002.

4. X. Li and M. Parashar. Hierarchica partitioning techniques for structured adaptive mesh
refinement applications. (to appear) Journal of Supercomputing, 2003.

5. P MacNeice. Paramesh. http://esdcd. gsfc. nasa. gov/ ESS/ macnei ce/
par amesh/ par anesh. ht i .

6. M. Parashar. Grace. htt p: // www. cai p. rut gers. edu/ ~ parashar/ TASSL/ .

7. M. Parashar and J. Browne. On partitioning dynamic adaptive grid hierarchies. In 29th Annual
Hawaii Int. Conference on System Sciences, pages 604—613, 1996.

8. H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

