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Abstract

The growth of the Internet and the advent of the
computational “Grid” have made it possible to
develop and deploy advanced computational
collaboratories . These systems build on high-end
computational  resources and  communication
technologies underlying the Grid, and provide
seamless and collaborative access to particular
resources, services or applications. Integrating these
“focused”  collaboratories presents  significant
challenges. Key among these is the design and
development of robust middleware support that
addresses scalability, service discovery, security and
access control, and interaction and collaboration
management for consistent access. In this paper we
first investigate the architecture of such a
middleware that enables global (web-based) access
to collaboratories. We then present the design and
implementation of a middleware substrate that
enables a peer-to-peer integration of and global
(collaborative) access to geographically distributed
instances of the DISCOVER computational
collaboratory for interaction and steering.

1 INTRODUCTION

A Collaboratory is defined as a place where
scientists and researchers work together to solve

complex interdisciplinary  problems,  despite
geographic and organizational boundaries [1].
Computational collaboratories provide uniform
(collaborative) access to computational resources,
services and/or applications. These systems expand
the resources available to researchers, enable
multidisciplinary collaborations and problem solving,
increase the efficiency of research, and accelerate the
dissemination of knowledge.

The growth of the Internet and the advent of the
computational “Grid” [2] have made it possible to
develop and deploy advanced computational
collaboratories [3][4]. Recent efforts include the
Upper Atmospheric Research Collaboratory (UARC)
[5][6], Diesel Combustion Collaboratory (DCC)
[71(8], Access Grid [9], RCSB [10], EMSL [11],
Cactus [12], Astrophysics Simulation Collaboratory
[13] and DISCOVER [14][15]. Each of these
systems provides a high-level problem-solving
environment (PSE) that builds on the underlying
Grid technologies to provide seamless access to
domain specific resources, services and applications.
Together these systems have the potential for
enabling truly global scientific investigation through
the creation of meta-laboratories spanning many
research groups, universities and countries, and
transforming  computational  applications and
simulations into global modalities for research and
instruction.

While combining these systems can lead to truly
collaborative, =~ multi-disciplinary = and  multi-
institutional problem solving, integrating these
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“focused”  collaboratories presents significant
challenges. This is because each of these systems has
a unique architecture and implementation, and builds
on different enabling technologies. Key among these
challenges is the design and development of robust
middleware support that addresses scalability, service
discovery, security and access control, and
interaction and collaboration management for
consistent access. Such a middleware should define a
minimal set of interfaces and protocols to enable
collaboratories to share resources, services and
applications on the Grid while being able to maintain
their architectures and implementations of choice.

In this paper we first investigate the architecture
of such a middleware that enables integration of and
global access to computational collaboratories. We
then present the design and implementation of a
middleware substrate that enables a peer-to-peer
integration of and global collaborative web-based
access to multiple, distributed instances of the
DISCOVER computational collaboratory.
DISCOVER provides collaborative access to high-
performance parallel and distributed applications for
interaction and steering using web-based portals
[14][15]. The key design challenge is enabling
scalable, secure, consistent and controlled access to
remote, highly dynamic distributed applications for
real-time monitoring, interaction and steering by
geographically distributed scientists and engineers in
a collaborative environment. The middleware
substrate enables DISCOVER interaction and
steering servers to dynamically discover and connect
to one another to form a peer-to-peer network. This
allows clients connected to their local servers to have
global access to all applications and services across
all the servers in the network based on their
credentials, capabilities and privileges. The design
and implementation of the DISCOVER middleware
substrate builds on existing web servers and
leverages commodity technologies and protocols
such as CORBA [16] and HTTP [17]. Its goal is to
enable rapid deployment, ubiquitous and pervasive
access, and easy integration with 3" party services,
while evaluating the viability of these technologies
for advanced Grid applications.

The overall aim of Grid computing is to enable
collaborative and coordinated problem solving in
dynamic, multi-institutional virtual organizations and
it focuses on large-scale resource sharing, innovative
applications, and high performance computing [18].
The middleware substrate presented in the paper
addresses one aspect of this general problem by
providing global collaborative access to grid
applications and services.

This paper is organized as follows: Section 2
discusses related work. Section 3 outlines a

middleware design for integrating computational
collaboratories. Section 4 introduces the DISCOVER
web  based computational collaboratory  for
interaction and steering, and describes the design,
implementation, and operation of its interaction and
collaboration server. This section also presents the
design of the middleware substrate for peer-to-peer
integration of a network of DISCOVER servers to
provide global collaborative access to remote
applications. Section 5 describes the implementation
and operation of the DISCOVER middleware
substrate. Section 6 presents a retrospective
evaluation of the design and discusses its advantages
and disadvantages. This section also presents an
evaluation of commodity distributed technologies and
protocols and their ability to support Grid
applications, and briefly discusses open issues and
challenges. Section 7 presents some conclusions and
outlines current and future work.

2 RELATED WORK

Related research can be broadly categorized into
current efforts in developing and deploying
Computational Collaboratories and Problem Solving
Environments, and efforts in Peer-to-Peer and
Internet Computing. These categories are briefly
described below.

2.1 Computational Collaboratories and
PSEs

Computational collaboratories and PSEs such as
UARC [5][6], Astrophysics Simulation Collaboratory
(ASC) [12][13], Punch [20][21], WebFlow [22][23]
and HotPage/GridPort [24][25][26] address different
aspects of the overall Grid computing problem
[18][19]. For example, UARC and ASC implement
applications specific PSE’s, WebFlow provides
support for composing, configuring and deploying
scientific applications on the Grid, and systems such
as GridPort provide support for acquiring and
managing Grid resources. The systems are briefly
discussed below.

PUNCH (The Purdue University Network
Computing Hubs) [20][21] presents the user with an
illusion of a wide area computer by providing
functionality similar to an operating system. It
provides a computing portal for allocating resources,
and deploying and running applications in a wide-
area networked environment.

The NPACI HotPage [24][25] is a user portal
that attempts to simplify access to HPC resources



distributed across member organizations, and allows
them to be viewed either as an integrated Grid system
or as individual machines. The Grid Port toolkit [26]
generalizes the HotPage infrastructure and develops a
reusable portal toolkit. The overall goal of HotPage
and GridPort is to provide secure and customized
access to grid services through web portals.

The Astrophysics Simulation Collaboratory
(ASC Portal) [12][13] provides an application
specific PSE for composing, configuring and
deploying astrophysical simulations on the Grid.
ASC uses a N-tier application model and builds on
commodity technologies such as HTTPS, servlets,
and RDBMS. The ASC server architecture leverages
ongoing efforts aimed at providing high-level access
to grid services such as the Java CoG [27], and the
Grid Portal Development Toolkit (GPDK). The Java
CoG kit is part of the Commodity Grid (CoG)
project, which is working to overcome the difficulties
of accessing advanced grid services, such as
authentication, remote access to computers, resource
management, and directory services by defining
mappings and interfaces between the Grid and
commodity frameworks (e.g. Java, CORBA, Python)
that are familiar to problem solving environment
developers.

WebFlow [22][23] provides a framework for
publishing and reusing computational modules on the
web, so that end users can, using a web browser,
visually compose distributed applications using these
modules. The overall WebFlow architecture is very
similar to DISCOVER - it however addresses a
different aspect of the grid-computing problem. The
WebFlow middle tier also uses a network of Java
enhanced web servers (although it does not exploit
the peer-to-peer nature of the servers). Furthermore,
WebFlow, like DISCOVER, wuses high level
distributed technologies like servlets and CORBA,
and provides similar advantages such as portability
and extensibility.

Note that the efforts described above do not
address  collaboration, shared workspaces or
application interaction and steering. These systems
however address related aspects of the overall grid
computing problems and are, in fact, complementary
to DISCOVER and the research presented in this
paper. The overall goal of the middleware substrate
presented here (and the related CORBA CoG effort
[43]) is to define protocols and mechanisms for
integrating these services.

The Salamander =~ middleware substrate
[28][29][30] that is used in the UARC [5][6]
collaboratory and the IPMA (Internet Performance
Measurement and Analysis) project [31] is a wide
area network data dissemination substrate. The
Salamander substrate provides support for both web

casting and groupware applications by providing
virtual distribution channels through its channel
subscription service. The channel subscription
service provides an abstraction for the distribution of
data from publishers to subscribers with both
anonymous and negotiated push techniques.
Salamander supports a limited interaction and
steering capability through its negotiated push
technology. The DISCOVER  computational
collaboratory provides a richer control interface
allowing users to collaboratively monitor and control
overall application execution, access, interact with
and steer individual computation objects, manage
object dynamics and distribution, and schedule
automated periodic interactions.

2.2 Peer-to-Peer Computing and Internet
Computing

Peer-to-peer computing, as implemented in
Internet communication and file sharing tools like
ICQ, Napster [32], Gnutella [33], and Freenet [34],
and Internet computing as implemented by systems
such as SETI@home, Parabon, and Entropia [19], are
examples of the more general sharing modalities and
computational structures beyond traditional client
server systems and characterize virtual organizations
where information and resource sharing can take
place among any subset of participants. These
technologies and systems present a radical paradigm
shift from client-server systems. These systems have
so far focused entirely on vertically integrated
solutions, rather than seeking to define common
protocols that would allow for a shared infrastructure
and  interoperability. Enterprise computing
technologies such as Universal Description
Discovery and Integration (UDDI) [35] and
Microsoft’s .NET [36] are related efforts aimed at
supporting discovery of web services and interactions
between them. These technologies define protocols
for publishing and discovering information about
Web Services. A related proposal from Intel [37]
presents an approach for peer-to-peer computing for
enterprise systems, where jobs are “split” into bite-
sized tasks for individual PCs.

The DISCOVER design philosophy and
architecture presents a hybrid approach. While the
DISCOVER middle tier server architecture is peer-
to-peer, it continues to support a client-server view
from the users point of view. As a result, clients can
access the “closest” server and have access to
applications and services provided by all the servers.
This approach reduces the performance requirements
of the server, and allows for more secure and better-



managed peers as compared to a system comprising
only of peers. This is because, security and
manageability are still open issues in true peer-to-
peer systems, whereas one of the reasons for success
of client server systems was the security and
manageability associated with having centralized
servers. The DISCOVER hybrid approach of having
peer-to-peer servers drastically reduces the number of
peers in the system and restricts the security and
manageability concerns to the middle tier of servers.

3 A MIDDLEWARE ARCHITECURE FOR
INTEGRATING WEB-BASED
COMPUTATIONAL COLLABORATORIES

A schematic overview of the middleware
architecture for integrating web-based computational
collaboratories is presented in Figure 1. Web-based
computational collaboratories typically have a 3-tier
architecture consisting of collaborative client portals
at the front end, the computational resource, services
or applications at the back-end, and the server(s) in
the middle. In order to enable ubiquitous web-based
access, clients are kept as simple as possible. In this
model, the middle-tier has the responsibility for
providing controlled access to the back end,
interacting with peer servers, providing a “repository
of services” view to the client, and collectively
managing and coordinating collaboration. A client
can connect to its “local” server and have access to
all (local and remote) backend services based on its
privileges and capabilities. Backend services include
resource access and management toolkits, high-
performance applications, and network-monitoring
tools. The backend services (resource, service or
application) may be specific to a server or may form
a pool of services that can be accessed by any server
using standard protocols such as CORBA, RMI/RMI-
IIOP, DCOM, etc. In the former case, direct access to
the service is restricted to the local server, typically
due to security, scalability or compatibility
constraints. This is typically true of most scientific
resources, services and applications. In this case, the
local server advertises the service and its interface
and clients and peer servers can discover and access
the service through the local server. In either case,
the servers are connected using a ubiquitous and
pervasive protocol such as CORBA/IIOP.

The middleware architecture defines a simple
protocol requiring two levels of interfaces and
interactions for each server. The first level interfaces
provide a means for peer servers to authenticate with
the server and query it for active services,
applications and users. The second level interfaces

define interactions with the active services and/or
applications at the server, and enable a peer server or
client to authenticate, interact with and invoke the
service. For example, in the case of an interactive
application it would provide the methods for
monitoring application state, requesting/releasing
locks for steering accesses, querying and/or changing
its parameters, etc. If a server only provides a single
instance of an application or a service, e.g. a server
providing access to grid services using Java/CORBA
CoG and GPDSK, only the second level interfaces

would be required.
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Figure 1. Middleware Architecture for
Integrating Web-based = Computational
Collaboratories

The DISCOVER middleware substrate presented
in the following sections is a prototype
implementation of these interfaces to enable global
discovery of, and provide access to, distributed
applications for interaction and steering.

4 DISCOVER: A WEB-BASED
COMPUTATIONAL COLLABORATORY
FOR INTERACTION AND STEERING

This section presents the design and
implementation of a middleware substrate that
enables a peer-to-peer integration of and global
collaborative ~ web-based access to multiple,
distributed  instances of the  DISCOVER
computational collaboratory. DISCOVER is a virtual,
interactive computational collaboratory that enables
geographically distributed scientists and engineers to
collaboratively monitor, and control (new and
existing) high performance parallel/distributed
applications. Its primary goal is to bring large



(remote) distributed simulations to the
scientists’/engineers’ desktop by  providing
collaborative web-based portals for interrogation,
interaction and steering. DISCOVER has a 3-tier
architecture (see Figure 2) composed of detachable
client portals at the front-end, a network of
interaction servers in the middle, and a control
network of sensors, actuators, and interaction agents
superimposed on the application at the back-end.
Clients can connect to a server at any time using a
browser to receive information about active
applications. Furthermore, they can form or join
collaboration groups and can (collaboratively)
interact with one or more applications based on their
capabilities. A network of interaction and
collaboration servers forms the middle tier. These
servers extend commodity web-servers with
interaction and collaboration capabilities. The back-
end consists of control network composed of sensors,
actuators and interaction agents. Session management
and concurrency control is based on capabilities
granted by the server (middle) tier. A locking
protocol is used to ensure that the applications remain
in a consistent state during collaborative interaction
and steering. Security and authentication services are
provided using customizable access control lists built
on the SSL-based secure server. DISCOVER is
currently operational™ and is being used to provide
interaction capabilities to a number of scientific and
engineering applications, including oil reservoir
simulations, computational fluid dynamics, seismic
modeling, and numerical relativity. Details about the
design and implementation of DISCOVER can be
found in [15].
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4.1 DISCOVER Interaction and
Collaboration Servers

The DISCOVER interaction/collaboration server
builds on a commodity web server, and extends its
functionality using Java servlets [38][39], to provide
specialized services for real-time application
interaction and steering and collaboration between
client groups. Clients connect to the server using
standard HTTP communication using a series of
HTTP GET and POST requests. At the other end,
application-to-server communication is achieved
either using standard distributed object protocols
such as CORBA [16] and Java RMI [40], or a more
optimized, custom protocol using TCP sockets.

The DISCOVER middleware creates 3
communication channels between a server and an
application: (1) a MainChannel for application
registration and periodic updates, (2) a
CommandChannel for forwarding client interaction
requests to the local or remote application, and (3) a
ResponseChannel for communicating application
responses to the interaction requests. Clients
differentiate between the different messages (i.e.
Response, Error or Update) using Java’s reflection
mechanism, by querying the received object for its
class name. Messages are processed differently at the
client based on their type.

An ApplicationProxy object is created at the
server for each active application, and is given a
unique identifier. This object encapsulates the entire
context for the application.

The core service handlers provided by each
server include the Master Handler, Collaboration
Handler, Command Handler, Security/Authentication
Handler and the Daemon Servlet that listens for
application connections. In addition to these core
handlers, there can be a number of handlers providing
auxiliary services such as session archival, database
handling, visualization, request redirection, and
remote application proxy invocations (using
CORBA). These services are optional and need not
be provided by every server. We briefly discuss some
of the core handlers below.

The master (accepter/controller) handler servlet
is the client's gateway to the server. The master
servlet creates a session object for each connecting
client and uses it to maintain information about
client-server-application sessions. It provides each
client with a unique client-id. The client-id along
with an application-id (corresponding to the
application to which the client is connected) is used
to identify each session.



The command handler servlet manages all client
view/command requests. On receiving these requests
from the master handler, this handler looks up the
appropriate application proxy, and redirects them to
this proxy. The collaboration handler described
below handles the responses to these requests. All
requests and responses are Java objects and take
advantage of Java's object serialization capability.

The collaboration handler enables multiple
clients to collaboratively interact with and steer
applications. All clients connected to a particular
application form a collaboration group by default.
Global updates (e.g. current application status) are
automatically broadcast to this group. Clients can
form or join (or leave) collaboration sub-groups
within the application group. Clients can also disable
all collaboration so that their requests/responses are
not broadcast to the entire collaboration group.
Individual views can still be explicitly shared in this
mode. In addition to collaborative
interaction/steering, the client portal is provided with
chat and whiteboard tools to further assist
collaboration.

The Daemon serviet forms the bridge between
the server and the applications. Each application is
authenticated at the server using a pre-assigned
unique identifier. The daemon servlet creates an
Application Proxy for each new application that
connects to it, and maintains a handle to the proxy
object. It also assigns the application a unique session
identifier. It buffers all client requests and sends
them to the application when the application is in the
“interaction" phase. This ensures that requests are
not lost while the application is busy computing.

Section 5 discusses the server architecture again
in the context of peer-to-peer network of servers.

4.2 A Middleware Substrate for Peer-to-
Peer Integration of DISCOVER
Servers

The primary objective of the middleware
substrate is to enable integration of the DISCOVER
computational collaboratories so that a client can
access and interact with all the applications for which
it has access privileges, regardless of whether they
are local or remote. Having all applications connect
to a single DISCOVER server or having a centralized
repository of servers are not scalable options.
Furthermore, security constraints often prevent
applications from connecting to remote servers
outside their domain. This is true for applications
executing on most high-end resources. Finally,
applications typically do not provide standard access

interfaces for interaction and steering, and need to be
coupled to their server using a proprietary protocol.
The proposed peer-to-peer architecture with coupled
server/application(s) sets is a more appropriate
architecture for such integration.

The DISCOVER peer-to-peer architecture
consists of multiple independent collaboratory
domains, each consisting of one or more DISCOVER
servers, and applications connected the server(s). A
discovery mechanism is provided to allow a server to
locate remote servers and to access applications
connected to those remote servers. As a result, a
client can connect to its “closest” collaboratory
(using HTTP) and have secure and authorized access
to all applications. This is significant as no
assumptions are made on the nature of the client-
server connection. Furthermore, the client can
collaboratively interact with and steer the application
in a controlled manner. The access control
mechanisms, such as locks, are extended by the
middleware to manage local and remote accesses.
Finally, clients spanning multiple collaboratories can
form virtual communities and collaborate seamlessly.
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Figure 3. A typical network of servers
providing a repository of services

An overview of the DISCOVER network of
peer-to-peer servers is presented in Figure 3. As
shown in this figure, the middleware can be extended
to include other servers and services using the “pool
of services” model described earlier. For example, a



middleware can provide access to a monitoring
service, an archival service or grid services using
Java/CORBA CoG Kits. Note that the availability of
these servers is not guaranteed and must be
determined at runtime. The middleware substrate
builds on CORBA/IIOP, which provides peer-to-peer
connectivity between DISCOVER servers within and
across domains.  Furthermore,  server/service
discovery mechanisms are built using the CORBA
Trader Service [41]. Although CORBA does
introduce some overheads, it enables scalability and
high availability and provides the services required to
implement the middleware substrate. Moreover, we
believe that the servers will be typically connected
through reasonable bandwidth links (~100 MB). As
no assumptions can be made about client-server
connections, having the client connect to the “nearest
server”, and using CORBA to connect that server and
the desired application may actually reduce client
latencies.

5 IMPLEMENTATION AND OPERATION OF
THE DISCOVER MIDDLEWARE
SUBSTRATE

This section presents the implementation and
operation of a CORBA-based prototype of the
DISCOVER middleware substrate.

5.1 Middleware Implementation

The middleware substrate builds on the
DISCOVER interaction/collaboration server
architecture described in Section 4. It implements the
2 interface levels described in Section 3 — the
DiscoverCorbaServer interface is the level one
interface and represents a server in the system while
the CorbaProxy interface represents an application at
a server. These interfaces expose the servers’ and
applications’ functionality to other servers and
collaboratories.

The DISCOVER middleware uses the same 3
communication channels between two servers which
it uses between a server and an application i.e. a
Main Channel, a Command Channel and a Response
Channel (see Section 4.1). For interaction between
two servers, an additional Control Channel is used to
forward error messages and system events. The
Control Channel serves as a notification service
similar to the one used in Salamander substrate
[28][29][30].

The ApplicationProxy object created at the
server for each active application encapsulates the

entire context for the application including its
CorbaProxy interfaces.

5.1.1 The DiscoverCorbaServer Interface

The  DiscoverCorbaServer  interface is
implemented by each server, and specifies methods
for interacting with the server including
authenticating with the server, getting a list of all
active services on the server, and getting a list of
users logged on to the server. The
DiscoverCorbaServer object is the server’s gateway
for all other DISCOVER servers. It is maintained by
the  Daemon  Servlet (see Section  4).
DiscoverCorbaServer publishes its availability using
the CORBA trader service. It also maintains a table
of references to the CorbaProxy objects (i.e.
CorbaProxylnterface) for remote applications. Using
this reference, the DISCOVER Daemon Servlet can
provide transparent access to remote applications and
support local clients’ interactions with those
applications. Thus all requests for remote
applications from locally connected -clients go
through the DiscoverCorbaServer, which then
forwards them to the appropriate
CorbaProxylnterface reference.

5.1.2  The CorbaProxy Interface

The CorbaProxy interface represents a service or
an application that is active at a particular server.
This interface specifies all the methods that are
required for accessing, interacting with and steering
the application. This includes methods for querying
application status, querying and changing application
parameters, requesting steering controls (locks) and
issuing commands. The CorbaProxy interface is
therefore an application’s gateway for all other
servers. All servers that have clients interacting with
remote applications maintain a reference to the
CorbaProxy objects for those applications (as
mentioned above, the DiscoverCorbaServer object
maintains this table of references). CorbaProxy also
binds itself to the CORBA naming service using the
application’s unique identifier as the name. This
allows the application to be remotely accessed from
any server.

A CorbaProxy object is contained within each
DISCOVER  ApplicationProxy  object. The
ApplicationProxy object manages all communication
with the application required during application
registration, or during interaction and steering with
the application. In the case of local applications,
ApplicationProxy directly communicates with the
applications using the appropriate protocol. In the
case of remote applications however, this



communication is done with the remote CorbaProxy
object  using its local reference (i.e.
CorbaProxylInterface).

5.2 Middleware Operation

The overall interaction between DISCOVER
servers is summarized in Figure 4. Key operations are
described below.

5.2.1  Servers and Applications Discovery

DISCOVER servers locate each other using the
CORBA trader services. The CORBA trader service
maintains all the server references as service-offer
pairs. In our prototype we have implemented a
minimalist trader service on top of the CORBA
naming service. All DISCOVER servers are
identified by the service-id ‘DISCOVER’. The
service offer is a CORBA CosTrading module
(CORBA Trader service specification), which
encapsulates the CORBA object reference and a list
of properties defined as name-value pairs. Thus an
object can be identified based on the service it
provides or its properties list.

Applications are located using their globally
unique identifiers, which are dynamically assigned by
the DaemonServiet. The application identifier is
chosen to be a combination of the server’s IP address
and a local count of the applications on each server.
This ensures that even if the same application is
connected to multiple servers or multiple instances of
an application are connected to the same server, each
instance will have a unique identifier. Moreover, the
server’s IP address can be extracted from this
application identifier, making it very easy to
determine if the application is a local application or a
remote application.
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5.2.2  Security/Authentication across Servers

As described in Section 4.1, each DISCOVER
server supports a two-level client authentication; the
first level authorizes access to the server and the
second level permits access to a particular
application. To control access, all applications are
required to be registered with the server and to
provide a list of users and their access privileges (e.g.
read-only, read-write). This information is used to
create access control lists (ACL) for each user-
application pair. For access to remote applications,
the security handler uses the DiscoverCorbaServer to
authenticate the client with each server in the
network, and in return gets the list of active
applications connected to all the servers to which the
user has some access privileges. Once the client
selects a remote application, the second level
authentication is performed to get a customized
interaction/steering interface for the application based
on the client’s access privileges. As a result each
client can access only those applications that it is
authorized to, and only it can interact in ways defined
by its privileges and capabilities. Note that a client
has access only to those servers where he is a
registered user — i.e. he is on the authorized user list
for at least one of the applications registered with the
server. Thus, in the current system, a client’s user-Id
for a particular application is assumed to be
consistent across all servers.

5.2.3 Collaboration across Servers

DISCOVER enables multiple clients to
collaboratively interact with and steer applications.
As described in section 4.1, the dedicated



collaboration ~ handler  servlet  handles all
collaboration on the server side, while a dedicated
thread is used on the client side. All clients connected
to an application form a collaboration group by
default. These collaboration groups can span multiple
servers. In this case, the CorbaProxy objects poll
each other for updates and responses. The peer-to-
peer architecture offers two significant advantages
for collaboration. First, it reduces the network traffic
generated by reducing the large number of broadcast
messages that would be typically sent by a server to
all the participants of the collaboration session. This
is because, now, instead of sending individual
collaboration messages to all the clients connected
through a remote server, only one message is sent to
that remote server, which then updates it locally
connected clients. Since clients always interact
through the server closest to them and the broadcast
messages for collaborative updates are generated at
this server, these messages don’t have to travel large
distances across the network. This reduces overall
network traffic as well as client latencies when the
servers are geographically far away. It also leads to
better scalability in terms of the number of clients
that can be supported within a collaboration session
without overloading a server as the collaboration load
now spans across multiple servers.

5.2.4  Distributed Locking

Session management and concurrency control is
based on capabilities granted by the server. A simple
locking mechanism is used to ensure that the
application remains in a consistent state during
collaborative interactions. This ensures that only one
client “drives” (issues commands) the application at
any time. In a distributed server framework, locking
information is only maintained at the application’s
host server i.e. the server to which the application
connects directly. Servers providing remote access to
this application only relay lock requests to the host
server and receive locking information from the host
server.

5.2.5 Distributed Logging

The session archival handler maintains two types
of logs. The first one logs all interactions between a
client(s) and an application. This log enables clients
to replay their interactions with the applications. It
also enables latecomers to a collaboration group to
get up to speed. The second log maintains all
requests, responses, and status messages for each
application. This log allows clients to have direct
access to the entire history of the application. For
remote applications, the client logs are maintained at

the server where the clients are connected, where as
the application logs are maintained at its application’s
host server.

6 DESIGN EVALUATION

6.1 Current Status and Performance

DISCOVER is currently operational and the
DISCOVER server network includes a deployment at
CSM, University of Texas at Austin, and is being
expanded to include a deployment at CACR,
California Institute of Technology. We have
conducted some preliminary experiments to test the
performance of the middleware under high load
conditions. The initial tests were conducted within
the local area network at Rutgers University. The
current middleware can support more than 40
simultaneous applications on a single server. With
the peer-to-peer server network in place, the number
of simultaneous applications that can be supported
should further increase. In another set of experiments,
the middleware was able to support 20 simultaneous
clients. As we increased the number of simultaneous
clients beyond 20, we noticed degradation in
performance.

These set of experiments show an interesting
trend, which we are further exploring. The server and
application interaction used TCP sockets and a
custom protocol, while the «client and server
interaction used servlets over HTTP. The fact that the
system is able to support more simultaneous
applications than simultaneous clients, illustrates the
design trade off between high performance and wide
spread deployment when using commodity
technologies. We comment more on this in the next
subsection.

6.2  Use of Commodity Technologies

The primary goal of the solutions presented in
the paper is to support wide deployment and global
access; as a result we build on widely used
commodity distributed technologies. For example,
access to DISCOVER is provided using thin web
browsers and the ubiquitous HTTP protocol. Our
implementation builds on existing HTTP servers and
adds new services, rather than building customized
servers from scratch. The choice of CORBA as the
middleware substrate is motivated by its inherent
support for peer-to-peer interactions. But the use of
these commodity technologies is not without



disadvantages and limitations. While the use of
HTTP for client-server interactions provides
ubiquitous pervasive access, it necessitates a poll and
pull mechanism for fetching the data from the server
instead of a push mechanism, as HTTP is a request-
response protocol. The poll and pull mechanism
makes it necessary to maintain FIFO buffers at the
server for each client to support slow clients. Such a
poll and pull mechanism may be unsuitable for large
virtual reality collaborative environments where 3D
data is involved, as it presents both memory and
performance overheads.

Similarly the wuse of CORBA as the
middleware  technology  supports peer-to-peer
interactions and enables seamless integration with
3rd party custom servers. CORBA, however, causes
the middleware to give up control over its transport
and communication policies and reduces performance
when compared to a lower level socket based system.
Furthermore, in our experience, the current CORBA
ORBs leave much to be desired, especially in the
areas of performance and interoperability.

6.3 Challenges and Open Issues in a Peer-
to-Peer Computational Environment

The peer-to-peer integration of DISCOVER
servers in Grid environments consisting of multiple
institutions and different administrative domains has
presented many challenges. We briefly discuss a few
of them.

Authentication and Security across servers:
Authentication of users and applications across
servers presents a significant challenge. DISCOVER
tries to minimize global knowledge by having the
services or applications identify the users (or user-
IDs) that have access and their access privileges.
Thus when an application or a service registers with a
server, it supplies the server with this information in
the form of a list of authorized users-IDs and their
privileges. Once a user-ID is supplied, a server will
automatically authenticate that user-ID. Thus, even
though the system assumes consistent user-IDs across
all servers, this is hardly a problem, as the user-IDs
do not belong to a server but to an
application/service. In the current implementation,
the user is authenticated at his home server before he
can proceed. One way to get around this problem is
to have a centralized directory service like the GIS
that maintains user-IDs and other global information.
All the servers in the system can now use this
directory service.

Resource utilization: It is important to account for
the resources used by any remote server. Currently,

the system does not track the use of resources. It is,
however, possible to add control mechanisms by
creating access policies for each server, and then
restricting each server’s use of resources according to
that policy. The access policies can be added to the
current ACLs and can be defined in terms of metrics
like number of requests per second, or the data bytes
being transferred to each server per second.

Data Management and ownership across servers:
In a peer-to-peer environment enabling interaction
and steering of remote applications, the management
of the generated data becomes important. The current
implementation of DISCOVER avoids these issues
by using Relational Databases to store all the data
generated in the form of records. Access to these
databases is provided through customized interfaces
and is protected through passwords. The data
produced by the application/service in response to
clients’ requests is handled by the local server (i.e.
the server to which the clients are directly connected)
and the local server creates the output files or the
records under the ownership of the user who
requested that data. The periodic data generated by
the applications/services are handled by the home
server of the application (i.e. the server to which the
application is directly connected) and records are
created under the ownership of the user-id who owns
the application. All the clients, who have access
privileges to this application, are also provided with
read only access rights to these records. Thus, the
peer-to-peer architecture doesn’t allow creation of
files/records on a remote server by the clients.

Some of these issues are still open and we are in
the process of addressing them. Note that the current
implementation of DISCOVER is a prototype aimed
at evaluating the viability of the peer-to-peer
architecture and current commodity technologies for
addressing the requirements of current and emerging
Grid applications.

7  CONCLUSION AND FUTURE WORK

This paper presented the design, implementation,
and operation of a middleware substrate that enables
peer-to-peer integration of and global collaborative
(web-based) access to multiple, geographically
distributed  instances of the  DISCOVER
computational collaboratory for interaction and
steering. The substrate builds on the CORBA
distributed object technology and enables dynamic
application/service discovery on the Grid, remote
authentication and access control, coordinated
interactions for collaborative interaction and steering.

The DISCOVER middleware architecture is
currently operational and provides collaborative



interaction and steering capabilities to remote
distributed scientific and engineering simulations,
including oil reservoir simulations, computational
fluid dynamics and numerical relativity. The
DISCOVER server network currently includes
deployments at CSM, University of Texas at Austin,
and is being expanded to include CACR, California
Institute of Technology. In addition to addressing the
issues discussed above, we are currently evaluating
this framework to determine response latencies and
throughput for remote applications as compared to
multiple applications connected to the same server.
We are also measuring the overheads incurred for
application/service discovery and for remote
authentication.  Finally we are evaluating the
scalability of the architecture and the limitations of
the underlying technologies.

In a related research effort we are building a
CORBA CoG kit to provide application develgpers
with access to Grid services using CORBA [43]"~. The
overall goal is to integrate Grid services provided by
CORBA with the -collaborative interaction and
steering services provided by DISCOVER. For
example a client can use Globus services provide by
the CORBA CoG Kit to discover, allocate and stage a
scientific simulation, and then use the DISCOVER
web-portal to collaboratively monitor, interact with,
and steer the application.
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