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Abstract 

The growth of the Internet and the advent of the 
computational �Grid� have made it possible to 
develop and deploy advanced computational 
collaboratories . These systems build on high-end 
computational resources and communication 
technologies underlying the Grid, and provide 
seamless and collaborative access to particular 
resources, services or applications. Integrating these  
�focused� collaboratories presents significant 
challenges. Key among these is the design and 
development of robust middleware support that 
addresses scalability, service discovery, security and 
access control, and interaction and collaboration 
management for consistent access. In this paper we 
first  investigate the architecture of such a 
middleware that enables global (web-based) access 
to collaboratories.  We then present the design and 
implementation of a middleware substrate that 
enables a peer-to-peer integration of and global 
(collaborative) access to geographically distributed 
instances of the DISCOVER computational 
collaboratory for interaction and steering.   

 

1 INTRODUCTION 
 
A Collaboratory is defined as a place where 

scientists and researchers work together to solve 

complex interdisciplinary problems, despite 
geographic and organizational boundaries [1]. 
Computational collaboratories provide uniform 
(collaborative) access to computational resources, 
services and/or applications. These systems expand 
the resources available to researchers, enable 
multidisciplinary collaborations and problem solving, 
increase the efficiency of research, and accelerate the 
dissemination of knowledge.  

The growth of the Internet and the advent of the 
computational �Grid� [2] have made it possible to 
develop and deploy advanced computational 
collaboratories [3][4]. Recent efforts include the 
Upper Atmospheric Research Collaboratory (UARC) 
[5][6], Diesel Combustion Collaboratory (DCC) 
[7][8], Access Grid [9], RCSB [10], EMSL [11], 
Cactus [12], Astrophysics Simulation Collaboratory 
[13] and DISCOVER [14][15].  Each of these 
systems provides a high-level problem-solving 
environment  (PSE) that builds on the underlying 
Grid technologies to provide seamless access to 
domain specific resources, services and applications. 
Together these systems have the potential for 
enabling truly global scientific investigation through 
the creation of meta-laboratories spanning many 
research groups, universities and countries, and 
transforming computational applications and 
simulations into global modalities for research and 
instruction. 

While combining these systems can lead to truly 
collaborative, multi-disciplinary and multi-
institutional problem solving, integrating these  



�focused� collaboratories presents significant 
challenges. This is because each of these systems has 
a unique architecture and implementation, and builds 
on different enabling technologies. Key among these 
challenges is the design and development of robust 
middleware support that addresses scalability, service 
discovery, security and access control, and 
interaction and collaboration management for 
consistent access.  Such a middleware should define a 
minimal set of interfaces and protocols to enable 
collaboratories to share resources, services and 
applications on the Grid while being able to maintain 
their architectures and implementations of choice. 

In this paper we first investigate the architecture 
of such a middleware that enables integration of and 
global access to computational collaboratories.  We 
then present the design and implementation of a 
middleware substrate that enables a peer-to-peer 
integration of and global collaborative web-based 
access to multiple, distributed instances of the 
DISCOVER computational collaboratory. 
DISCOVER provides collaborative access to high-
performance parallel and distributed applications for 
interaction and steering using web-based portals 
[14][15]. The key design challenge is enabling 
scalable, secure, consistent and controlled access to 
remote, highly dynamic distributed applications for 
real-time monitoring, interaction and steering by 
geographically distributed scientists and engineers in 
a collaborative environment. The middleware 
substrate enables DISCOVER interaction and 
steering servers to dynamically discover and connect 
to one another to form a peer-to-peer network. This 
allows clients connected to their local servers to have 
global access to all applications and services across 
all the servers in the network based on their 
credentials, capabilities and privileges. The design 
and implementation of the DISCOVER middleware 
substrate builds on existing web servers and 
leverages commodity technologies and protocols 
such as CORBA [16] and HTTP [17]. Its goal is to 
enable rapid deployment, ubiquitous and pervasive 
access, and easy integration with 3rd party services, 
while evaluating the viability of these technologies 
for advanced Grid applications. 

The overall aim of Grid computing is to enable 
collaborative and coordinated problem solving in 
dynamic, multi-institutional virtual organizations and 
it focuses on large-scale resource sharing, innovative 
applications, and high performance computing [18]. 
The middleware substrate presented in the paper 
addresses one aspect of this general problem by 
providing global collaborative access to grid 
applications and services. 

This paper is organized as follows: Section 2 
discusses related work. Section 3 outlines a 

middleware design for integrating computational 
collaboratories. Section 4 introduces the DISCOVER 
web based computational collaboratory for 
interaction and steering, and describes the design, 
implementation, and operation of its interaction and 
collaboration server. This section also presents the 
design of the middleware substrate for peer-to-peer 
integration of a network of DISCOVER servers to 
provide global collaborative access to remote 
applications.  Section 5 describes the implementation 
and operation of the DISCOVER middleware 
substrate. Section 6 presents a retrospective 
evaluation of the design and discusses its advantages 
and disadvantages. This section also presents an 
evaluation of commodity distributed technologies and 
protocols and their ability to support Grid 
applications, and briefly discusses open issues and 
challenges. Section 7 presents some conclusions and 
outlines current and future work. 

 

2 RELATED WORK 
 
Related research can be broadly categorized into 

current efforts in developing and deploying 
Computational Collaboratories and Problem Solving 
Environments, and efforts in Peer-to-Peer and 
Internet Computing. These categories are briefly 
described below. 

  

2.1 Computational Collaboratories and 
PSEs 

 
Computational collaboratories and PSEs such as 

UARC [5][6], Astrophysics Simulation Collaboratory  
(ASC) [12][13], Punch [20][21], WebFlow [22][23] 
and HotPage/GridPort [24][25][26] address different 
aspects of the overall Grid computing problem 
[18][19]. For example, UARC and ASC implement 
applications specific PSE�s, WebFlow provides 
support for composing, configuring and deploying 
scientific applications on the Grid, and systems such 
as GridPort provide support for acquiring and 
managing Grid resources. The systems are briefly 
discussed below. 

PUNCH (The Purdue University Network 
Computing Hubs) [20][21] presents the user with an 
illusion of a wide area computer by providing 
functionality similar to an operating system. It 
provides a computing portal for allocating resources, 
and deploying and running applications in a wide-
area networked environment. 

The NPACI HotPage [24][25] is a user portal 
that attempts to simplify access to HPC resources 



distributed across member organizations, and allows 
them to be viewed either as an integrated Grid system 
or as individual machines. The Grid Port toolkit [26] 
generalizes the HotPage infrastructure and develops a 
reusable portal toolkit. The overall goal of HotPage 
and GridPort is to provide secure and customized 
access to grid services through web portals.  

The Astrophysics Simulation Collaboratory 
(ASC Portal) [12][13] provides an application 
specific PSE for composing, configuring and 
deploying astrophysical simulations on the Grid.  
ASC uses a N-tier application model and builds on 
commodity technologies such as HTTPS, servlets, 
and RDBMS. The ASC server architecture leverages 
ongoing efforts aimed at providing high-level access 
to grid services such as the Java CoG [27], and the 
Grid Portal Development Toolkit (GPDK). The Java 
CoG kit is part of the Commodity Grid (CoG) 
project, which is working to overcome the difficulties 
of accessing advanced grid services, such as 
authentication, remote access to computers, resource 
management, and directory services by defining 
mappings and interfaces between the Grid and 
commodity frameworks (e.g. Java, CORBA, Python) 
that are familiar to problem solving environment 
developers. 

WebFlow [22][23] provides a framework for 
publishing and reusing computational modules on the 
web, so that end users can, using a web browser, 
visually compose distributed applications using these 
modules. The overall WebFlow architecture is very 
similar to DISCOVER � it however addresses a 
different aspect of the grid-computing problem.  The 
WebFlow middle tier also uses a network of Java 
enhanced web servers (although it does not exploit 
the peer-to-peer nature of the servers). Furthermore, 
WebFlow, like DISCOVER, uses high level 
distributed technologies like servlets and CORBA, 
and provides similar advantages such as portability 
and extensibility.  

Note that the efforts described above do not 
address collaboration, shared workspaces or 
application interaction and steering. These systems 
however address related aspects of the overall grid 
computing problems and are, in fact, complementary 
to DISCOVER and the research presented in this 
paper.   The overall goal of the middleware substrate 
presented here (and the related CORBA CoG effort 
[43]) is to define protocols and mechanisms for 
integrating these services. 

The Salamander middleware substrate 
[28][29][30] that is used in the UARC [5][6] 
collaboratory and the IPMA (Internet Performance 
Measurement and Analysis) project [31] is a wide 
area network data dissemination substrate. The 
Salamander substrate provides support for both web 

casting and groupware applications by providing 
virtual distribution channels through its channel 
subscription service. The channel subscription 
service provides an abstraction for the distribution of 
data from publishers to subscribers with both 
anonymous and negotiated push techniques. 
Salamander supports a limited interaction and 
steering capability through its negotiated push 
technology. The DISCOVER computational 
collaboratory provides a richer control interface 
allowing users to collaboratively monitor and control 
overall application execution, access, interact with 
and steer individual computation objects, manage 
object dynamics and distribution, and schedule 
automated periodic interactions.  

 

2.2 Peer-to-Peer Computing and Internet 
Computing 

 
Peer-to-peer computing, as implemented in 

Internet communication and file sharing tools like 
ICQ, Napster [32], Gnutella [33], and Freenet [34], 
and Internet computing as implemented by systems 
such as SETI@home, Parabon, and Entropia [19], are 
examples of the more general sharing modalities and 
computational structures beyond traditional client 
server systems and characterize virtual organizations 
where information and resource sharing can take 
place among any subset of participants. These 
technologies and systems present a radical paradigm 
shift from client-server systems. These systems have 
so far focused entirely on vertically integrated 
solutions, rather than seeking to define common 
protocols that would allow for a shared infrastructure 
and interoperability. Enterprise computing 
technologies such as Universal Description 
Discovery and Integration (UDDI) [35] and 
Microsoft�s .NET [36] are related efforts aimed at 
supporting discovery of web services and interactions 
between them. These technologies define protocols 
for publishing and discovering information about 
Web Services. A related proposal from Intel [37] 
presents an approach for peer-to-peer computing for 
enterprise systems, where jobs are �split� into bite-
sized tasks for individual PCs. 

The DISCOVER design philosophy and 
architecture presents a hybrid approach.  While the 
DISCOVER middle tier server architecture is peer-
to-peer, it continues to support a client-server view 
from the users point of view. As a result, clients can 
access the �closest� server and have access to 
applications and services provided by all the servers. 
This approach reduces the performance requirements 
of the server, and allows for more secure and better-



managed peers as compared to a system comprising 
only of peers. This is because, security and 
manageability are still open issues in true peer-to-
peer systems, whereas one of the reasons for success 
of client server systems was the security and 
manageability associated with having centralized 
servers. The DISCOVER hybrid approach of having 
peer-to-peer servers drastically reduces the number of 
peers in the system and restricts the security and 
manageability concerns to the middle tier of servers. 

 

3 A MIDDLEWARE ARCHITECURE FOR 
INTEGRATING WEB-BASED 
COMPUTATIONAL COLLABORATORIES 

 
A schematic overview of the middleware 

architecture for integrating web-based computational 
collaboratories is presented in Figure 1. Web-based 
computational collaboratories typically have a 3-tier 
architecture consisting of collaborative client portals 
at the front end, the computational resource, services 
or applications at the back-end, and the server(s) in 
the middle. In order to enable ubiquitous web-based 
access, clients are kept as simple as possible. In this 
model, the middle-tier has the responsibility for 
providing controlled access to the back end, 
interacting with peer servers, providing a �repository 
of services� view to the client, and collectively 
managing and coordinating collaboration. A client 
can connect to its �local� server and have access to 
all  (local and remote) backend services based on its 
privileges and capabilities. Backend services include 
resource access and management toolkits, high-
performance applications, and network-monitoring 
tools. The backend services (resource, service or 
application) may be specific to a server or may form 
a pool of services that can be accessed by any server 
using standard protocols such as CORBA, RMI/RMI-
IIOP, DCOM, etc. In the former case, direct access to 
the service is restricted to the local server, typically 
due to security, scalability or compatibility 
constraints. This is typically true of most scientific 
resources, services and applications. In this case, the 
local server advertises the service and its interface 
and clients and peer servers can discover and access 
the service through the local server.  In either case, 
the servers are connected using a ubiquitous and 
pervasive protocol such as CORBA/IIOP.   

The middleware architecture defines a simple 
protocol requiring two levels of interfaces and 
interactions for each server. The first level interfaces 
provide a means for peer servers to authenticate with 
the server and query it for active services, 
applications and users.   The second level interfaces 

define interactions with the active services and/or 
applications at the server, and enable a peer server or 
client to authenticate, interact with and invoke the 
service. For example, in the case of an interactive 
application it would provide the methods for 
monitoring application state, requesting/releasing 
locks for steering accesses, querying and/or changing 
its parameters, etc.  If a server only provides a single 
instance of an application or a service, e.g. a server 
providing access to grid services using Java/CORBA 
CoG and GPDSK, only the second level interfaces 
would be required. 

   

 
 
 

 

Figure 1. Middleware Architecture for
Integrating Web-based Computational
Collaboratories 
 
The DISCOVER middleware substrate presented 

in the following sections is a prototype 
implementation of these interfaces to enable global 
discovery of, and provide access to, distributed 
applications for interaction and steering. 

 

4 DISCOVER: A WEB-BASED 
COMPUTATIONAL COLLABORATORY 
FOR INTERACTION AND STEERING 

 
This section presents the design and 

implementation of a middleware substrate that 
enables a peer-to-peer integration of and global 
collaborative web-based access to multiple, 
distributed instances of the DISCOVER 
computational collaboratory. DISCOVER is a virtual, 
interactive computational collaboratory that enables 
geographically distributed scientists and engineers to 
collaboratively monitor, and control (new and 
existing) high performance parallel/distributed 
applications. Its primary goal is to bring large 



(remote) distributed simulations to the 
scientists�/engineers� desktop by providing 
collaborative web-based portals for interrogation, 
interaction and steering.  DISCOVER has a 3-tier 
architecture (see Figure 2) composed of detachable 
client portals at the front-end, a network of 
interaction servers in the middle, and a control 
network of sensors, actuators, and interaction agents 
superimposed on the application at the back-end.  
Clients can connect to a server at any time using a 
browser to receive information about active 
applications. Furthermore, they can form or join 
collaboration groups and can (collaboratively) 
interact with one or more applications based on their 
capabilities. A network of interaction and 
collaboration servers forms the middle tier. These 
servers extend commodity web-servers with 
interaction and collaboration capabilities. The back-
end consists of control network composed of sensors, 
actuators and interaction agents. Session management 
and concurrency control is based on capabilities 
granted by the server (middle) tier. A locking 
protocol is used to ensure that the applications remain 
in a consistent state during collaborative interaction 
and steering. Security and authentication services are 
provided using customizable access control lists built 
on the SSL-based secure server. DISCOVER is 
currently operational1 and is being used to provide 
interaction capabilities to a number of scientific and 
engineering applications, including oil reservoir 
simulations, computational fluid dynamics, seismic 
modeling, and numerical relativity. Details about the 
design and implementation of DISCOVER can be 
found in [15]. 
 

 
 
                                                      

1 See http://www.discoverportal.org 

 
 

4.1 DISCOVER Interaction and 
Collaboration Servers 

The DISCOVER interaction/collaboration server 
builds on a commodity web server, and extends its 
functionality using Java servlets [38][39], to provide 
specialized services for real-time application 
interaction and steering and collaboration between 
client groups. Clients connect to the server using 
standard HTTP communication using a series of 
HTTP GET and POST requests. At the other end, 
application-to-server communication is achieved 
either using standard distributed object protocols 
such as CORBA [16] and Java RMI [40], or a more 
optimized, custom protocol using TCP sockets.   

The DISCOVER middleware creates 3 
communication channels between a server and an 
application: (1) a MainChannel for application 
registration and periodic updates, (2) a 
CommandChannel for forwarding client interaction 
requests to the local or remote application, and  (3) a 
ResponseChannel for communicating application 
responses to the interaction requests. Clients 
differentiate between the different messages (i.e. 
Response, Error or Update) using Java�s reflection 
mechanism, by querying the received object for its 
class name. Messages are processed differently at the 
client based on their type.  

An ApplicationProxy object is created at the 
server for each active application, and is given a 
unique identifier. This object encapsulates the entire 
context for the application. 

The core service handlers provided by each 
server include the Master Handler, Collaboration 
Handler, Command Handler, Security/Authentication 
Handler and the Daemon Servlet that listens for 
application connections. In addition to these core 
handlers, there can be a number of handlers providing 
auxiliary services such as session archival, database 
handling, visualization, request redirection, and 
remote application proxy invocations (using 
CORBA).  These services are optional and need not 
be provided by every server. We briefly discuss some 
of the core handlers below. 

The master (accepter/controller) handler servlet 
is the client's gateway to the server. The master 
servlet creates a session object for each connecting 
client and uses it to maintain information about 
client-server-application sessions. It provides each 
client with a unique client-id. The client-id along 
with an application-id (corresponding to the 
application to which the client is connected) is used 
to identify each session. 

Figure 2. Architectural schematic of the
DISCOVER Computational Collaboratory 



The command handler servlet manages all client 
view/command requests. On receiving these requests 
from the master handler, this handler looks up the 
appropriate application proxy, and redirects   them to 
this proxy. The collaboration handler described 
below handles the responses to these requests. All 
requests and responses are Java objects and take 
advantage of Java's object serialization capability. 

The collaboration handler enables multiple 
clients to collaboratively interact with and steer 
applications. All clients connected to a particular 
application form a collaboration group by default. 
Global updates (e.g. current application status) are 
automatically broadcast to this group. Clients can 
form or join (or leave) collaboration sub-groups 
within the application group. Clients can also disable 
all collaboration so that their requests/responses are 
not broadcast to the entire collaboration group. 
Individual views can still be explicitly shared in this 
mode. In addition to collaborative 
interaction/steering, the client portal is provided with 
chat and whiteboard tools to further assist 
collaboration.  

The Daemon servlet forms the bridge between 
the server and the applications. Each application is 
authenticated at the server using a pre-assigned 
unique identifier. The daemon servlet creates an 
Application Proxy for each new application that 
connects to it, and maintains a handle to the proxy 
object. It also assigns the application a unique session 
identifier.  It buffers all client requests and sends 
them to the application when the application is in the 
``interaction'' phase. This ensures that requests are 
not lost while the application is busy computing. 

Section 5 discusses the server architecture again 
in the context of peer-to-peer network of servers. 
 

4.2 A Middleware Substrate for Peer-to-
Peer Integration of DISCOVER 
Servers 

 
The primary objective of the middleware 

substrate is to enable integration of the DISCOVER 
computational collaboratories so that a client can 
access and interact with all the applications for which 
it has access privileges, regardless of whether they 
are local or remote. Having all applications connect 
to a single DISCOVER server or having a centralized 
repository of servers are not scalable options. 
Furthermore, security constraints often prevent 
applications from connecting to remote servers 
outside their domain. This is true for applications 
executing on most high-end resources. Finally, 
applications typically do not provide standard access 

interfaces for interaction and steering, and need to be 
coupled to their server using a proprietary protocol. 
The proposed peer-to-peer architecture with coupled 
server/application(s) sets is a more appropriate 
architecture for such integration. 

The DISCOVER peer-to-peer architecture 
consists of multiple independent collaboratory 
domains, each consisting of one or more DISCOVER 
servers, and applications connected the server(s). A 
discovery mechanism is provided to allow a server to 
locate remote servers and to access applications 
connected to those remote servers. As a result, a 
client can connect to its �closest� collaboratory 
(using HTTP) and have secure and authorized access 
to all applications. This is significant as no 
assumptions are made on the nature of the client-
server connection. Furthermore, the client can 
collaboratively interact with and steer the application 
in a controlled manner. The access control 
mechanisms, such as locks, are extended by the 
middleware to manage local and remote accesses. 
Finally, clients spanning multiple collaboratories can 
form virtual communities and collaborate seamlessly.     

 

 
 

 
 

An overview of the DISCOVER network of 
peer-to-peer servers is presented in Figure 3. As 
shown in this figure, the middleware can be extended 
to include other servers and services using the �pool 
of services� model described earlier.  For example, a 

Figure 3. A typical network of servers
providing a repository of services 



middleware can provide access to a monitoring 
service, an archival service or grid services using 
Java/CORBA CoG Kits. Note that the availability of 
these servers is not guaranteed and must be 
determined at runtime. The middleware substrate 
builds on CORBA/IIOP, which provides peer-to-peer 
connectivity between DISCOVER servers within and 
across domains. Furthermore, server/service 
discovery mechanisms are built using the CORBA 
Trader Service [41]. Although CORBA does 
introduce some overheads, it enables scalability and 
high availability and provides the services required to 
implement the middleware substrate. Moreover, we 
believe that the servers will be typically connected 
through reasonable bandwidth links (~100 MB). As 
no assumptions can be made about client-server 
connections, having the client connect to the �nearest 
server�, and using CORBA to connect that server and 
the desired application may actually reduce client 
latencies. 

 

5 IMPLEMENTATION AND OPERATION OF 
THE DISCOVER MIDDLEWARE 
SUBSTRATE  

 
This section presents the implementation and 

operation of a CORBA-based prototype of the 
DISCOVER middleware substrate. 

 

5.1 Middleware Implementation 

The middleware substrate builds on the 
DISCOVER interaction/collaboration server 
architecture described in Section 4. It implements the 
2 interface levels described in Section 3 � the 
DiscoverCorbaServer interface is the level one 
interface and represents a server in the system while 
the CorbaProxy interface represents an application at 
a server. These interfaces expose the servers� and 
applications� functionality to other servers and 
collaboratories. 

The DISCOVER middleware uses the same 3 
communication channels between two servers which 
it uses between a server and an application i.e. a 
Main Channel, a Command Channel and a Response 
Channel (see Section 4.1). For interaction between 
two servers, an additional Control Channel is used to 
forward error messages and system events. The 
Control Channel serves as a notification service 
similar to the one used in Salamander substrate 
[28][29][30].  

The ApplicationProxy object created at the 
server for each active application encapsulates the 

entire context for the application including its 
CorbaProxy interfaces. 

 

5.1.1 The DiscoverCorbaServer Interface 
The DiscoverCorbaServer interface is 

implemented by each server, and specifies methods 
for interacting with the server including 
authenticating with the server, getting a list of all 
active services on the server, and getting a list of 
users logged on to the server. The 
DiscoverCorbaServer object is the server�s gateway 
for all other DISCOVER servers. It is maintained by 
the Daemon Servlet (see Section 4). 
DiscoverCorbaServer publishes its availability using 
the CORBA trader service. It also maintains a table 
of references to the CorbaProxy objects (i.e. 
CorbaProxyInterface) for remote applications. Using 
this reference, the DISCOVER Daemon Servlet can 
provide transparent access to remote applications and 
support local clients� interactions with those 
applications. Thus all requests for remote 
applications from locally connected clients go 
through the DiscoverCorbaServer, which then 
forwards them to the appropriate 
CorbaProxyInterface reference. 

 

5.1.2 The CorbaProxy Interface 
The CorbaProxy interface represents a service or 

an application that is active at a particular server. 
This interface specifies all the methods that are 
required for accessing, interacting with and steering 
the application. This includes methods for querying 
application status, querying and changing application 
parameters, requesting steering controls (locks) and 
issuing commands. The CorbaProxy interface is 
therefore an application�s gateway for all other 
servers. All servers that have clients interacting with 
remote applications maintain a reference to the 
CorbaProxy objects for those applications (as 
mentioned above, the DiscoverCorbaServer object 
maintains this table of references). CorbaProxy also 
binds itself to the CORBA naming service using the 
application�s unique identifier as the name. This 
allows the application to be remotely accessed from 
any server.   

A CorbaProxy object is contained within each 
DISCOVER ApplicationProxy object. The 
ApplicationProxy object manages all communication 
with the application required during application 
registration, or during interaction and steering with 
the application. In the case of local applications, 
ApplicationProxy directly communicates with the 
applications using the appropriate protocol. In the 
case of remote applications however, this 



communication is done with the remote CorbaProxy 
object using its local reference (i.e. 
CorbaProxyInterface). 

 

5.2 Middleware Operation 

 
The overall interaction between DISCOVER 

servers is summarized in Figure 4. Key operations are 
described below. 

 

5.2.1 Servers and Applications Discovery 
DISCOVER servers locate each other using the 

CORBA trader services. The CORBA trader service 
maintains all the server references as service-offer 
pairs. In our prototype we have implemented a 
minimalist trader service on top of the CORBA 
naming service. All DISCOVER servers are 
identified by the service-id �DISCOVER�. The 
service offer is a CORBA CosTrading module 
(CORBA Trader service specification), which 
encapsulates the CORBA object reference and a list 
of properties defined as name-value pairs. Thus an 
object can be identified based on the service it 
provides or its properties list.  

Applications are located using their globally 
unique identifiers, which are dynamically assigned by 
the DaemonServlet. The application identifier is 
chosen to be a combination of the server�s IP address 
and a local count of the applications on each server. 
This ensures that even if the same application is 
connected to multiple servers or multiple instances of 
an application are connected to the same server, each 
instance will have a unique identifier. Moreover, the 
server�s IP address can be extracted from this 
application identifier, making it very easy to 
determine if the application is a local application or a 
remote application. 

 

 
 

  
 

5.2.2 Security/Authentication across Servers 
As described in Section 4.1, each DISCOVER 

server supports a two-level client authentication; the 
first level authorizes access to the server and the 
second level permits access to a particular 
application. To control access, all applications are 
required to be registered with the server and to 
provide a list of users and their access privileges (e.g. 
read-only, read-write). This information is used to 
create access control lists (ACL) for each user-
application pair. For access to remote applications, 
the security handler uses the DiscoverCorbaServer to 
authenticate the client with each server in the 
network, and in return gets the list of active 
applications connected to all the servers to which the 
user has some access privileges. Once the client 
selects a remote application, the second level 
authentication is performed to get a customized 
interaction/steering interface for the application based 
on the client�s access privileges. As a result each 
client can access only those applications that it is 
authorized to, and only it can interact in ways defined 
by its privileges and capabilities. Note that a client 
has access only to those servers where he is a 
registered user � i.e. he is on the authorized user list 
for at least one of the applications registered with the 
server. Thus, in the current system, a client�s user-Id 
for a particular application is assumed to be 
consistent across all servers.   

 

5.2.3 Collaboration across Servers 
DISCOVER enables multiple clients to 

collaboratively interact with and steer applications. 
As described in section 4.1, the dedicated 

Figure 4. Interaction Model between
DISCOVER Servers. 



collaboration handler servlet handles all 
collaboration on the server side, while a dedicated 
thread is used on the client side. All clients connected 
to an application form a collaboration group by 
default. These collaboration groups can span multiple 
servers. In this case, the CorbaProxy objects poll 
each other for updates and responses. The peer-to-
peer architecture offers two significant advantages 
for collaboration. First, it reduces the network traffic 
generated by reducing the large number of broadcast 
messages that would be typically sent by a server to 
all the participants of the collaboration session. This 
is because, now, instead of sending individual 
collaboration messages to all the clients connected 
through a remote server, only one message is sent to 
that remote server, which then updates it locally 
connected clients. Since clients always interact 
through the server closest to them and the broadcast 
messages for collaborative updates are generated at 
this server, these messages don�t have to travel large 
distances across the network. This reduces overall 
network traffic as well as client latencies when the 
servers are geographically far away. It also leads to 
better scalability in terms of the number of clients 
that can be supported within a collaboration session 
without overloading a server as the collaboration load 
now spans across multiple servers.  
 

5.2.4 Distributed Locking 
Session management and concurrency control is 

based on capabilities granted by the server. A simple 
locking mechanism is used to ensure that the 
application remains in a consistent state during 
collaborative interactions. This ensures that only one 
client �drives� (issues commands) the application at 
any time. In a distributed server framework, locking 
information is only maintained at the application�s 
host server i.e. the server to which the application 
connects directly. Servers providing remote access to 
this application only relay lock requests to the host 
server and receive locking information from the host 
server.  

 

5.2.5 Distributed Logging 
The session archival handler maintains two types 

of logs. The first one logs all interactions between a 
client(s) and an application. This log enables clients 
to replay their interactions with the applications. It 
also enables latecomers to a collaboration group to 
get up to speed. The second log maintains all 
requests, responses, and status messages for each 
application. This log allows clients to have direct 
access to the entire history of the application. For 
remote applications, the client logs are maintained at 

the server where the clients are connected, where as 
the application logs are maintained at its application�s 
host server. 

 

6 DESIGN EVALUATION 

6.1 Current Status and Performance 

 
DISCOVER is currently operational and the 

DISCOVER server network includes a deployment at 
CSM, University of Texas at Austin, and is being 
expanded to include a deployment at CACR, 
California Institute of Technology. We have 
conducted some preliminary experiments to test the 
performance of the middleware under high load 
conditions. The initial tests were conducted within 
the local area network at Rutgers University. The 
current middleware can support more than 40 
simultaneous applications on a single server. With 
the peer-to-peer server network in place, the number 
of simultaneous applications that can be supported 
should further increase. In another set of experiments, 
the middleware was able to support 20 simultaneous 
clients. As we increased the number of simultaneous 
clients beyond 20, we noticed degradation in 
performance.  

These set of experiments show an interesting 
trend, which we are further exploring. The server and 
application interaction used TCP sockets and a 
custom protocol, while the client and server 
interaction used servlets over HTTP. The fact that the 
system is able to support more simultaneous 
applications than simultaneous clients, illustrates the 
design trade off between high performance and wide 
spread deployment when using commodity 
technologies.  We comment more on this in the next 
subsection. 

 

6.2 Use of Commodity Technologies 

 
The primary goal of the solutions presented in 

the paper is to support wide deployment and global 
access; as a result we build on widely used 
commodity distributed technologies. For example, 
access to DISCOVER is provided using thin web 
browsers and the ubiquitous HTTP protocol. Our 
implementation builds on existing HTTP servers and 
adds new services, rather than building customized 
servers from scratch. The choice of CORBA as the 
middleware substrate is motivated by its inherent 
support for peer-to-peer interactions.  But the use of 
these commodity technologies is not without 



disadvantages and limitations. While the use of 
HTTP for client-server interactions provides 
ubiquitous pervasive access, it necessitates a poll and 
pull mechanism for fetching the data from the server 
instead of a push mechanism, as HTTP is a request-
response protocol. The poll and pull mechanism 
makes it necessary to maintain FIFO buffers at the 
server for each client to support slow clients.  Such a 
poll and pull mechanism may be unsuitable for large 
virtual reality collaborative environments where 3D 
data is involved, as it presents both memory and 
performance overheads. 

Similarly the use of CORBA as the 
middleware technology supports peer-to-peer 
interactions and enables seamless integration with 
3rd party custom servers.  CORBA, however, causes 
the middleware to give up control over its transport 
and communication policies and reduces performance 
when compared to a lower level socket based system. 
Furthermore, in our experience, the current CORBA 
ORBs leave much to be desired, especially in the 
areas of performance and interoperability.  

  

6.3 Challenges and Open Issues in a Peer-
to-Peer Computational Environment 

 
The peer-to-peer integration of DISCOVER 

servers in Grid environments consisting of multiple 
institutions and different administrative domains has 
presented many challenges. We briefly discuss a few 
of them. 
Authentication and Security across servers: 
Authentication of users and applications across 
servers presents a significant challenge. DISCOVER 
tries to minimize global knowledge by having the 
services or applications identify the users (or user-
IDs) that have access and their access privileges. 
Thus when an application or a service registers with a 
server, it supplies the server with this information in 
the form of a list of authorized users-IDs and their 
privileges. Once a user-ID is supplied, a server will 
automatically authenticate that user-ID. Thus, even 
though the system assumes consistent user-IDs across 
all servers, this is hardly a problem, as the user-IDs 
do not belong to a server but to an 
application/service. In the current implementation, 
the user is authenticated at his home server before he 
can proceed. One way to get around this problem is 
to have a centralized directory service like the GIS 
that maintains user-IDs and other global information. 
All the servers in the system can now use this 
directory service. 
Resource utilization: It is important to account for 
the resources used by any remote server. Currently, 

the system does not track the use of resources. It is, 
however, possible to add control mechanisms by 
creating access policies for each server, and then 
restricting each server�s use of resources according to 
that policy. The access policies can be added to the 
current ACLs and can be defined in terms of metrics 
like number of requests per second, or the data bytes 
being transferred to each server per second. 
Data Management and ownership across servers: 
In a peer-to-peer environment enabling interaction 
and steering of remote applications, the management 
of the generated data becomes important. The current 
implementation of DISCOVER avoids these issues 
by using Relational Databases to store all the data 
generated in the form of records. Access to these 
databases is provided through customized interfaces 
and is protected through passwords. The data 
produced by the application/service in response to 
clients� requests is handled by the local server (i.e. 
the server to which the clients are directly connected) 
and the local server creates the output files or the 
records under the ownership of the user who 
requested that data. The periodic data generated by 
the applications/services are handled by the home 
server of the application (i.e. the server to which the 
application is directly connected) and records are 
created under the ownership of the user-id who owns 
the application. All the clients, who have access 
privileges to this application, are also provided with 
read only access rights to these records. Thus, the 
peer-to-peer architecture doesn�t allow creation of 
files/records on a remote server by the clients. 

Some of these issues are still open and we are in 
the process of addressing them. Note that the current 
implementation of DISCOVER is a prototype aimed 
at evaluating the viability of the peer-to-peer 
architecture and current commodity technologies for 
addressing the requirements of current and emerging 
Grid applications. 

7 CONCLUSION AND FUTURE WORK 
 
This paper presented the design, implementation, 

and operation of a middleware substrate that enables 
peer-to-peer integration of and global collaborative  
(web-based) access to multiple, geographically 
distributed instances of the DISCOVER 
computational collaboratory for interaction and 
steering. The substrate builds on the CORBA 
distributed object technology and enables dynamic 
application/service discovery on the Grid, remote 
authentication and access control, coordinated 
interactions for collaborative interaction and steering.  

The DISCOVER middleware architecture is 
currently operational and provides collaborative 



interaction and steering capabilities to remote 
distributed scientific and engineering simulations, 
including oil reservoir simulations, computational 
fluid dynamics and numerical relativity. The 
DISCOVER server network currently includes 
deployments at CSM, University of Texas at Austin, 
and is being expanded to include CACR, California 
Institute of Technology. In addition to addressing the 
issues discussed above, we are currently evaluating 
this framework to determine response latencies and 
throughput for remote applications as compared to 
multiple applications connected to the same server. 
We are also measuring the overheads incurred for 
application/service discovery and for remote 
authentication.  Finally we are evaluating the 
scalability of the architecture and the limitations of 
the underlying technologies.  

In a related research effort we are building a 
CORBA CoG kit to provide application developers 
with access to Grid services using CORBA [43]2. The 
overall goal is to integrate Grid services provided by 
CORBA with the collaborative interaction and 
steering services provided by DISCOVER. For 
example a client can use Globus services provide by 
the CORBA CoG Kit to discover, allocate and stage a 
scientific simulation, and then use the DISCOVER 
web-portal to collaboratively monitor, interact with, 
and steer the application. 

 

REFERENCES 
 

[1]. R. T. Kouzes, J. D. Myers, and W. A. Wulf, 
�Collaboratories: Doing science on the Internet�, 
IEEE Computer, Vol.29, No.8, August 1996. 

[2]. I. Foster and C. Kesselman, �The Grid: Blueprint for 
a New Computing Infrastructure, Morgan 
Kaufmann�, San Francisco, 1998. 

[3]. The 1st Global Grid Forum, March 2001, 
Amsterdam, Netherland, http://www.ggf1.nl. 

[4]. Grid Computing Environments Working Group, 
Global Grid Forum, 
http://www.computingportals.org. 

[5]. S. Subramanian, G.R. Malan, H.S. Shim, J.H.Lee, P. 
Knoop, T. Weymouth, F. Jahanian, A. Prakash, and 
J. Hardin, �The UARC web-based
 collaboratory: Software architecture and 
experiences�, IEEE Internet Computing, Vol.3, 
No.2, pp.46-54, 1999. See also: 
http://intel.si.umich.edu/sparc/. 

                                                      
2www.caip.rutgers.edu/TASSL/CorbaCoG/COR

BACog.htm 

 

[6]. J. H. Lee, A. Prakash, T. Jaeger, and G. Wu, 
�Supporting multi-user, multi-applet workspaces in 
CBE�, Proc. of the ACM 1996 Conf. on Computer 
Supported Cooperative Work (CSCW'96), 
Cambridge, MA, pp.344-353, November 1996. 

[7]. C. M. Pancerella, L. A. Rahn, and C. L.Yang, �The 
diesel combustion collaboratory: Combustion 
researchers collaborating over the Internet�, Proc. of 
IEEE Conference on High Performance Computing 
and Networking, Portland, OR, November 1999. 

[8]. R. A. Whiteside, E. J. Friedman-Hill, and R. J. 
Detry, �PRE: A framework for enterprise 
integration�, Proc. of Design and Information 
Infrastructure Systems for Manufacturing (DIISM), 
Fort Worth, TX, May 1998. 

[9]. Argonne National Laboratory. Access Grid. Online 
at: http://www-fp.mcs.anl.gov/fl/accessgrid/ 

[10]. Protein Data Bank Research Collaboratory for 
Structural Bioinformatics. http://www.rcsb.org/pdb/ 

[11]. The EMSL Collaboratory. 
http://www.emsl.pnl.gov:2080/docs/collab/. 

[12]. Cactus Computational Collaboratory. 
http://www.cactuscode.org. 

[13]. M. Russell, G. Allen, G. Daues, I. Foster, T. 
Goodale, E. Seidel, J. Novotny, J. Shalf, W. Suen, 
and G. von Laszewski, �The Astrophysics 
Simulation Simulation Collaboratory: A Science 
Portal Enabling Community Software 
Development�. Proceedings of Tenth IEEE 
International Symposium on High Performance 
Distributed Computing, August 2001 (submitted). 

[14]. DISCOVER (Distributed Interactive Steering and 
Collaborative Visualization EnviRonment), 
http://www.discoverportal.org.   

[15]. S. Kaur, V. Mann, V. Matossian, R. Muralidhar, M. 
Parashar, "Engineering a Distributed Computational 
Collaboratory", 34th Hawaii Conference on System 
Sciences, January 2001. 

[16]. �CORBA: Common Object Request Broker 
Architecture�, http://www.corba.org. 

[17]. HyperText Transfer Protocol (HTTP), 
http://www.w3.org/Protocols/ 

[18]. I. Foster, C. Kesselman, S. Tuecke, �The Anatomy 
of the Grid: Enabling Scalable Virtual 
Organizations�, Intl. J. Supercomputing 
Applications, 2001 

[19]. I. Foster, �Internet Computing and the Emerging 
Grid�, Nature Web Matters, (http://www.nature.com 
/nature/webmatters/grid/grid.html) 2000. 

[20]. N. H. Kapadia and J. A. B. Fortes,� PUNCH: An 
Architecture for Web-Enabled Wide-Area Network-
Computing�, Cluster Computing: The Journal of 
Networks, Software Tools and Applications; special 
issue on High Performance Distributed Computing. 
September 1999. 

[21]. N. H. Kapadia, R. J. Figueiredo, and J. A. B. Fortes, 
�PUNCH: Web Portal for Running Tools�, IEEE 
Micro, May-June 2000. 

[22]. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. 
Furmanski, and G. Premchandran, �WebFlow - A 
Visual Programming Paradigm for Web/Java Based 

http://www.ggf1.nl/
http://www.computingportals.org/
http://intel.si.umich.edu/sparc/
http://www-fp.mcs.anl.gov/fl/accessgrid/
http://www.rcsb.org/pdb/
http://www.emsl.pnl.gov:2080/docs/collab/
http://www.cactuscode.org./
http://www.corba.org/
http://www.w3.org/Protocols/


Coarse Grain Distributed Computing�, Presented at 
Workshop on Java for Computational Science and 
Engineering Workshop, Syracuse University, 
December 1996. 

[23]. E. Akarsu, G. Fox, T. Haupt, A. Kalinichenko, K. 
Kim, P. Sheethaalnath, and C. H. Youn, �Using 
Gateway System to Provide a Desktop Access to 
High Performance Computational Resources�, 8th 
IEEE International Symposium on High 
Performance Distributed Computing (HPDC-8), 
Redondo Beach, California, August, 1999.  

[24]. HotPage User Portal- https://hotpage.npaci.edu/ 
[25]. M. Thomas, S. Mock, and J. Boisseau, 

�Development of Web Toolkits for Computational 
Science Portals: The NPACI HotPage�, The 9th 
IEEE International Symposium on High 
Performance Distributed Computing (HPDC 2000), 
Pittsburgh, Aug. 1-4, 2000. 

[26]. SDSC GridPort Toolkit - http://gridport.npaci.edu/ 
 
 

[27]. Gregor von Laszewski, Ian Foster, Jarek Gawor, 
Peter Lane, Nell Rehn, and Mike Russell, 
�Designing Grid-based Problem Solving 
Environments and Portals�, Proceedings of the 34th 
Hawaii International Conference on System 
Sciences, January 2001. 

[28]. G. R. Malan, F. Jahanian, and S. Subramanian, 
�Salamander: A Push-based Distribution Substrate 
for Internet Applications�, Proceedings of the 
USENIX Symposium on Internet Technologies and 
Systems, December 1997, Monterey, CA. 

[29]. G. R. Malan, F. Jahanian and P. Knoop, 
�Comparison of Two Middleware Data 
Dissemination Services in a Wide-Area Distributed 
System�, Proceedings of the 17th IEEE International 
Conference on Distributed Computing Systems,  
May 1997, Baltimore, MD. 

[30]. G. R. Malan, F. Jahanian, C. Rasmussen, and P. 
Knoop, �Performance of a Distributed Object-Based 
Internet Collaboratory�, Technical Report CSE-TR-
297-96, University of Michigan EECS Deptartment, 
July 1996. 

[31]. Internet Performance Measurement and Analysis 
(IPMA) project homepage, 
http://nic.merit.edu/ipma/ 

[32]. Napster, http://www.napster.com/ (2000).  
[33]. Gnutella, http://gnutella.wego.com/ (2000).  
[34]. I.Clarke, O. Sandberg, B.Wiley, and T.W. Hong, 

�Freenet: A Distributed Anonymous Information 

Storage and Retrieval System�, ICSI Workshop on 
Design Issues in Anonymity and Unobservability, 
1999. 

[35]. Universal Description Discovery and Integration 
(UDDI), Technical White Paper, 
http://www.uddi.org, September 6,2000. 

[36]. Microsoft .NET, http://www.microsoft.com/net/ 
[37]. Intel Proposals on Peer-to-Peer Computing, 

http://www.intel.com/ebusiness/products/peertopeer/
index.htm 

[38]. J. Hunter, �Java Servlet Programming�, 1st edition, 
O�Reilly, California (1998). 

[39]. Java Servlet API Specification, 
http://java.sun.com/products/servlet/2.2/. 

[40]. Java Remote Method Invocation, 
http://java.sun.com/products/jdk/rmi. 

[41]. CORBA Trader Service Specification, 
ftp://ftp.omg.org/pub/docs/formal/97-07-26.pdf. 

[42]. M. Baker, R. Buyya and D. Laforenza, �The Grid: A 
Survey on Global Efforts in Grid Computing�, ACM 
Journal of Computing Surveys, 2000 (submitted). 

[43]. S. Verma, J. Gawor, M. Parashar, and G. von 
Laszewski, �A CORBA Commodity Grid Kit�, 
Submitted to the 2nd International Workshop on Grid 
Computing, November 2001.

 
 

http://gridport.npaci.edu/
http://nic.merit.edu/ipma/
http://www.microsoft.com/net/
http://www.intel.com/ebusiness/products/peertopeer/index.htm
http://www.intel.com/ebusiness/products/peertopeer/index.htm
http://java.sun.com/products/servlet/2.2/
http://java.sun.com/products/jdk/rmi
ftp://ftp.omg.org/pub/docs/formal/97-07-26.pdf

