
An Object Infrastructure for Computational Steering of Distributed Simulations

Rajeev Muralidhar and Manish Parashar
Department of Electrical Engineering and CAIP Center,

94 Brett Road, Piscataway, NJ - 08854.
Email :

�
rajeevdm,parashar � @caip.rutgers.edu

Abstract

This paper presents a brief overview of a framework for
the interactive steering of distributed applications that ad-
dresses three key issues: (1) Definition of Interaction Ob-
jects that provide sensors and actuators for interrogation
and control. These objects encapsulate existing computa-
tion data-structures and can be distributed (spanning many
processors) and dynamic (be created, deleted, or migrated
to another processor). (2) Definition of a control network
of interaction agents that enable the interactive steering of
distributed interaction objects. (3) Definition of an Inter-
action Gateway that provides a proxy to the entire applica-
tion and can be accessed via a web server. This research is
part of an ongoing effort to develop a web-based computa-
tional collaboratory that enables geographically distributed
scientists/engineers to collaboratively monitor, and control
distributed applications.

1. Introduction

Simulations are playing an increasingly critical role in all
areas of science and engineering. As the complexity and
computational costs of these simulations grows, it has be-
come important for the scientists and engineers to be able
to monitor the progress of these simulations, and to control
or steer them at runtime. Furthermore, the increased com-
plexity and multi-disciplinary nature of these simulations
necessitates a collaborative effort among multiple, usually
geographically distributed scientists/engineers. As a result,
collaboration-enabling tools have become critical for trans-
forming simulations into true research modalities.

Enabling seamless interaction and steering of high-
performance parallel/distributedapplications presents many
challenges. A key issue is the definition and deployment of
interaction objects with sensors and actuators that must be
co-located with the computational objects and that are ca-
pable of monitoring and controlling the application. Defin-
ing these interfaces in a generic manner and deploying them

in distributed environments can be non-trivial, as compu-
tational objects can span multiple processors and address
spaces. The problem is further compounded in the case of
adaptive applications (e.g. simulations on adaptive meshes)
where computational objects can be created, deleted, modi-
fied and redistributed on the fly. Another issue is the design
of a control network that interconnects these sensor and ac-
tuators so that commands and requests can be routed to the
appropriate set of computational objects, and information
returned can be collated and coherently presented. Finally,
the steering interfaces presented by the application need to
be exported so that they can be easily accessed by a group of
collaborating users to monitor, analyze, and control the ap-
plication. The object infrastructure presented here addresses
these issues and is part of the DISCOVER computational
collaboratory 1.

1.1. The DISCOVER Computational Collaboratory

The overall objective of this research is aimed at de-
veloping a web-based interactive computational collabora-
tory. The current implementation enables geographically
distributed clients to use the web to connect to, monitor
and steer multiple applications in a collaborative fashion
through a dedicated web server. The system supports a 3-tier
architecture composed of detachable, browser-enabled thin-
clients at the front-end, a network of interaction web servers
in the middle, and a control network of interaction agents
and interaction objects within the application at the back-
end. The application control network enables sensors, ac-
tuators and interaction agents to be directly deployed within
the application. Interaction agents resident at each compu-
tational node register the interaction objects and export their
interaction interfaces through an Interaction Gateway. The
Interaction Gateway interacts with the external web server
and provides a proxy to the entire application. It uses the
Java Native Interface (JNI) to create Java proxy objects that
mirror the computational objects and allow them to be di-
rectly accessed by the interaction web-server using standard

1http://www.caip.rutgers.edu/TASSL/Projects/DISCOVER



distributed object interfaces like Java RMI, CORBA, etc.

2. DIOS - An Object framework for Interaction
and Steering

The Distributed Interactive Object System (DIOS) is
composed of two components: (1) Interaction Objects that
encapsulate interaction sensors and actuators, and (2) A
Control Network consisting of distributed Interaction Ob-
jects and Interaction Agents.

2.1. Sensors/Actuators and Interaction Objects

Interaction objects extend the application’s computa-
tional objects (data structures used by the application) with
steering capabilities by providing abstractions for creating
sensors and actuators. Sensors enables the object to be
queried while actuators allow it to be steered. Efficient ab-
stractions are essential for converting computational objects
to interaction objects especially when the computational ob-
jects are distributed and dynamic. In our system, this is
achieved by deriving the computational objects from a vir-
tual interaction base class of the Interaction Object library.
The derived objects define a set of Views that they can pro-
vide and a set of Commands that they can accept. Interaction
agents then export these views and commands to the interac-
tion server using a custom interaction IDL 2. Interaction ob-
jects can be either local to a single computational node, dis-
tributed across multiple nodes, or shared between some or
all of the nodes. Distributed objects have an additional dis-
tribution attribute that describes their layouts. Further, inter-
action objects can be dynamically created or deleted during
application execution, can migrate between computational
nodes or modify its distribution by notifying appropriate in-
teraction agents. In the case of applications written in non
object-oriented languages such as Fortran, application data
structures are first converted into computation objects using
C++ wrapper objects. These objects are then transformed to
interaction objects as described above.

2.2. The Control Network and Interaction Agents

The control network of interaction agents (Figure ??) has
a hierarchical cellular structure and partitions the process-
ing nodes into a number of interaction cells. The network
is composed of (1) Discover Agents on each node, (2) Base
Stations for each interaction cell and (3) an Interaction Gate-
way that connects to the interaction server and provides a
proxy to the entire application. The number of nodes per in-
teraction cell is programmable. The cellular control network
is automatically configured at run-time using an underlying

2Interface Definition Language

messaging environment (e.g. MPI) and the available num-
ber of processors.

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

for Interaction 
Cell

Base Station

Interaction
Messages

Interaction
Messages

Interaction
Messages

Interaction
Messages

Compute Node

Discover Agent 
and 

In
te

ra
ct

io
n

M
es

sa
ge

s

Broker 
Interaction

(Enhanced
Web Server)

Interaction Cell

Interaction Cell

Interaction Cell

Interaction Cell

� ��� ��� �
	��
� ��� ��� 	���� � ��� � ��������� ���

Gateway for
Application

Interaction

(with Java 

Virtual Machine)

Figure 1. Control Network of Interaction
Agents

Discover Agents present on each node maintain run-time
references to all registered interaction objects on that node.
Since object references can change dynamically during pro-
gram execution, the interaction agents ensure that object
references are valid and refer to consistent data. Discover
Agents, Base Stations and the Gateway each maintain reg-
istries of interaction objects registered in their respective
domains (node, cell, entire application, respectively). The
Gateway is additionally responsible for interfacing with the
interaction server, delegating interaction requests to the ap-
propriate interaction agents (Discover Agents and/or Base
Stations), and collecting their responses. In the case of dis-
tributed objects, the Gateway also performs a gather op-
eration for collating the responses arriving from the corre-
sponding nodes. Furthermore, the Gateway uses JNI to cre-
ate Java mirrors of each registered interaction object. Thus
interaction Web Servers can directly access the application’s
interaction objects (and thus the computational objects) us-
ing standard distributed object interfaces like Java RMI.

2.3. Experimentation Evaluation

Initial experiments conducted on a Sun HPC E10000
cluster using upto 16 nodes indicate that (1) End-to-end
steering latency varies between a few milliseconds to tens
of milliseconds for varying data sizes, which is comparable
to other steering systems. (2) Overhead of minimum steer-
ing (providing continuous updates of only important steer-
ing parameters) is only a fraction of computation time. (3)
Overheads of object registration and interaction IDL pro-
cessing at the interaction agents is a constant factor of the
number of objects being registered and the size of the inter-
action cells being used.


