An Object Infrastructurefor Computational Steering of Distributed Simulations

Rajeev Muralidhar and Manish Parashar
Department of Electrical Engineering and CAIP Center,
94 Brett Road, Piscataway, NJ - 08854.

Email : {rajeevdm,parashar} @caip.rutgers.edu

Abstract

This paper presents a brief overview of a framework for
the interactive steering of distributed applications that ad-
dresses three key issues: (1) Definition of Interaction Ob-
jects that provide sensors and actuators for interrogation
and control. These objects encapsulate existing computa-
tion data-structures and can be distributed (spanning many
processors) and dynamic (be created, deleted, or migrated
to another processor). (2) Definition of a control network
of interaction agents that enable the interactive steering of
distributed interaction objects. (3) Definition of an Inter-
action Gateway that provides a proxy to the entire applica-
tion and can be accessed via a web server. Thisresearch is
part of an ongoing effort to devel op a web-based computa-
tional collaboratory that enables geographically distributed
scientists/engineersto collaboratively monitor, and control
distributed applications.

1. Introduction

Simulationsare playing an increasingly critical rolein all
areas of science and engineering. As the complexity and
computational costs of these simulations grows, it has be-
come important for the scientists and engineers to be able
to monitor the progress of these simulations, and to control
or steer them at runtime. Furthermore, the increased com-
plexity and multi-disciplinary nature of these simulations
necessitates a collaborative effort among multiple, usually
geographically distributed scientists/engineers. As aresult,
collaboration-enabling tools have become critical for trans-
forming simulations into true research modalities.

Enabling seamless interaction and steering of high-
performance parallel/distributed applications presents many
challenges. A key issue is the definition and deployment of
interaction objects with sensors and actuators that must be
co-located with the computational objects and that are ca-
pable of monitoring and controlling the application. Defin-
ing these interfacesin ageneric manner and deploying them

in distributed environments can be non-trivial, as compu-
tational objects can span multiple processors and address
spaces. The problem is further compounded in the case of
adaptive applications (e.g. simulations on adaptive meshes)
where computational objects can be created, deleted, modi-
fied and redistributed on the fly. Another issue isthe design
of acontrol network that interconnects these sensor and ac-
tuators so that commands and requests can be routed to the
appropriate set of computational objects, and information
returned can be collated and coherently presented. Finally,
the steering interfaces presented by the application need to
be exported so that they can be easily accessed by agroup of
collaborating users to monitor, analyze, and control the ap-
plication. Theobject infrastructure presented here addresses
these issues and is part of the DISCOVER computational
collaboratory *.

1.1. TheDISCOVER Computational Collaboratory

The overall objective of this research is aimed at de-
veloping a web-based interactive computational collabora
tory. The current implementation enables geographically
distributed clients to use the web to connect to, monitor
and steer multiple applications in a collaborative fashion
through adedicated web server. Thesystem supportsa3-tier
architecture composed of detachable, browser-enabled thin-
clientsat the front-end, anetwork of interaction web servers
in the middle, and a control network of interaction agents
and interaction objects within the application at the back-
end. The application control network enables sensors, ac-
tuators and interaction agentsto be directly deployed within
the application. Interaction agents resident at each compu-
tational node register the interaction objectsand export their
interaction interfaces through an Interaction Gateway. The
Interaction Gateway interacts with the external web server
and provides a proxy to the entire application. It uses the
JavaNative Interface (INI) to create Java proxy objectsthat
mirror the computational objects and allow them to be di-
rectly accessed by theinteraction web-server using standard

http://www.caip.rutgers.edu/TASSL/Projects/DISCOVER

distributed object interfaceslike JavaRMI, CORBA, etc.

2.DIOS-An Object framework for Interaction
and Steering

The Distributed Interactive Object System (DIOS) is
composed of two components: (1) Interaction Objects that
encapsulate interaction sensors and actuators, and (2) A
Control Network consisting of distributed Interaction Ob-
jectsand Interaction Agents.

2.1. Sensorg/Actuatorsand I nteraction Objects

Interaction objects extend the application’s computa-
tional objects (data structures used by the application) with
steering capabilities by providing abstractions for creating
sensors and actuators. Sensors enables the object to be
queried while actuators allow it to be steered. Efficient ab-
stractionsare essential for converting computational objects
tointeraction objects especially when the computational ob-
jects are distributed and dynamic. In our system, thisis
achieved by deriving the computational objects from a vir-
tual interaction base class of the Interaction Object library.
The derived objects define a set of Views that they can pro-
videand aset of Commandsthat they can accept. Interaction
agentsthen export these views and commandsto theinterac-
tion server using acustom interaction IDL 2. Interaction ob-
jectscan be either local to a single computational node, dis-
tributed across multiple nodes, or shared between some or
all of the nodes. Distributed objects have an additional dis-
tribution attribute that describestheir layouts. Further, inter-
action objects can be dynamically created or deleted during
application execution, can migrate between computational
nodes or modify its distribution by notifying appropriatein-
teraction agents. In the case of applications written in non
object-oriented languages such as Fortran, application data
structures are first converted into computation objects using
C++ wrapper objects. These abjects are then transformed to
interaction objects as described above.

2.2. The Control Network and Interaction Agents

Thecontrol network of interaction agents (Figure ??) has
a hierarchical cellular structure and partitions the process-
ing nodes into a number of interaction cells. The network
iscomposed of (1) Discover Agentson each node, (2) Base
Stationsfor each interaction cell and (3) an Interaction Gate-
way that connects to the interaction server and provides a
proxy to the entire application. The number of nodes per in-
teraction cell isprogrammable. The cellular control network
isautomatically configured at run-time using an underlying

?Interface Definition Language

messaging environment (e.g. MPI) and the available num-
ber of processors.

Internal Interactivity System

Interaction
Messages Base Station

- T for Interaction
Cell

Interaction .
Gateway for Interaction

Interaction Cell
Interaction
) Messages Base Station
Interaction Cell for Interaction
Cell
Application Egc:‘ker d
nhance
Interaction (with Java \(Neb Sarver)
v Messages Base Station Virtual Machine)
Interaction Cell for Interaction [~
Cell
Interaction B St
Messages ase Station
Interaction Cell for Interaction
Cell

Figure 1. Control Network of Interaction
Agents

Interaction
Messages

Discover Agents present on each node maintain run-time
referencesto all registered interaction objects on that node.
Since object references can change dynamically during pro-
gram execution, the interaction agents ensure that object
references are valid and refer to consistent data. Discover
Agents, Base Stations and the Gateway each maintain reg-
istries of interaction objects registered in their respective
domains (node, cell, entire application, respectively). The
Gateway is additionally responsible for interfacing with the
interaction server, delegating interaction requests to the ap-
propriate interaction agents (Discover Agents and/or Base
Stations), and collecting their responses. In the case of dis-
tributed objects, the Gateway also performs a gather op-
eration for collating the responses arriving from the corre-
sponding nodes. Furthermore, the Gateway uses NI to cre-
ate Javamirrors of each registered interaction object. Thus
interaction Web Serverscan directly accesstheapplication’'s
interaction objects (and thus the computational objects) us-
ing standard distributed object interfaces like Java RMI.

2.3. Experimentation Evaluation

Initial experiments conducted on a Sun HPC E10000
cluster using upto 16 nodes indicate that (1) End-to-end
steering latency varies between a few milliseconds to tens
of milliseconds for varying data sizes, which is comparable
to other steering systems. (2) Overhead of minimum steer-
ing (providing continuous updates of only important steer-
ing parameters) is only a fraction of computation time. (3)
Overheads of object registration and interaction IDL pro-
cessing at the interaction agents is a constant factor of the
number of objects being registered and the size of theinter-
action cellsbeing used.

