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Abstract 

The growth of the Internet and the advent of the computational Grid have made it possible to develop and 

deploy advanced computational collaboratories. These systems build on high-end computational resources, 

communication technologies, and enabling services underlying the Grid, and provide seamless and collaborative 

access to resources, applications and data. Combining these focused collaboratories and allowing them to 

interoperate has many advantages and can lead to truly collaborative, multi-disciplinary and multi-institutional 

problem solving. However, integrating these collaboratories presents significant challenges, as each of these 

collaboratories has a unique architecture and implementation, and builds on different enabling technologies. This 

paper investigates the issues involved in integrating collaboratories operating on the Grid. It then presents the design 

and implementation of a prototype middleware substrate to enable a peer-to-peer integration of and global access to 

multiple, geographically distributed instances of the DISCOVER computational collaboratory. An experimental 

evaluation of the middleware substrate is presented. 

1 INTRODUCTION 
A collaboratory is defined as a place where scientists and researchers work together to solve complex 

interdisciplinary problems, despite geographic and organizational boundaries [2]. Computational collaboratories 

provide uniform (collaborative) access to computational resources, services, applications and/or data. These systems 

can expand the resources available to researchers, enable multidisciplinary collaborations and problem solving, 

accelerate the dissemination of knowledge, and increase the efficiency of research. 

The growth of the Internet and the advent of the computational �Grid� [3] have made it possible to develop and 

deploy advanced computational collaboratories[4][5]. Recent efforts include the Upper Atmospheric Research 

Collaboratory (UARC) [6], Diesel Combustion Collaboratory (DCC) [7], Access Grid [8], Netsolve [9], EMSL [10], 

the Astrophysics Simulation Collaboratory [11], which builds on Cactus [12], and DISCOVER [1][13][14]. Each of 

these systems provides a high-level problem-solving environment  (PSE) that builds on the underlying Grid 

technologies to provide seamless access to domain specific resources, services and applications. Together these 

systems have the potential for enabling truly global scientific investigation through the creation of meta-laboratories 

spanning many research groups, universities and countries, and transforming computational applications and 

services into global modalities for research and instruction. 

                                                 
1 The research presented in this paper is supported by the National Science Foundation via grants number ACI 
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Combining these �focused� collaboratories and allowing them to interoperate presents many advantages. The 

services provided by the different collaboratories can be reused to reduce duplication of effort.  At a higher level, the 

domain specific services provided by the collaboratories can be combined and composed leading to truly 

collaborative, multi-disciplinary and multi-institutional problem solving. However, integrating these collaboratories 

presents significant challenges. These collaboratories have evolved in parallel with the Grid computing effort and 

have been developed to meet unique requirements and support specific user communities. As a result, these systems 

have customized architectures and implementations, and build on specialized enabling technologies. Furthermore, 

there are organizational constraints that may prevent such interaction as it involves modifying existing software. A 

key challenge then, is the design and development of robust and scalable middleware that addresses interoperability, 

and provides essential enabling services such as security and access control, discovery, and interaction and 

collaboration management. Such a middleware should provide loose coupling among systems to accommodate 

organizational constraints and an option to join or leave this interaction at any time. It should define a minimal set of 

interfaces and protocols to enable collaboratories to share resources, services, data and applications on the Grid 

while being able to maintain their architectures and implementations of choice.  

This paper has two objectives: (1) To motivate the need for interoperable collaboratories and to identify the 

issues involved. (2) To present the design, implementation and evaluation of the DISCOVER middleware substrate 

that enables interoperability between geographically distributed instances of the DISCOVER collaboratory and is a 

first step towards achieving interoperability on the Grid. In the first part of this paper we discuss the requirements 

and mechanisms for achieving interoperability among collaboratories on the Grid. In the second part of the paper we 

present a prototype middleware substrate for enabling a peer-to-peer integration of, and global collaborative access 

to multiple distributed instances of the DISCOVER computational collaboratory. Note that in a related effort 

(CORBA CoG [16]) we have extended this substrate to also enable interoperability between DISCOVER and the 

Grid services provided by the Globus Toolkit [46].  

DISCOVER provides collaborative access to high-performance parallel and distributed applications for 

interaction and steering using web-based portals [1][13][14]. The middleware substrate enables DISCOVER 

interaction and steering servers to dynamically discover and connect to one another to form a peer-to-peer network. 

This allows clients connected to their local servers to have global access to all applications and services across all 

the servers in the network based on their credentials, capabilities and privileges. The principal design challenge is 

enabling scalable, secure, consistent and controlled access to remote, highly dynamic distributed applications for 

real-time monitoring, interaction and steering by geographically distributed scientists and engineers in a 

collaborative environment. The implementation of the DISCOVER middleware substrate builds on existing web 

servers and leverages commodity technologies and protocols such as CORBA [17] and HTTP [18] to enable rapid 

deployment, ubiquitous and pervasive access, and easy integration with third party services.  An experimental 

evaluation of the middleware substrate is also presented.  

The rest of this paper is organized as follows. Section 2 describes the motivation for interaction among 

collaboratories. It also discusses issues and related work in interoperability among collaboratories. Section 3 

presents the overall design of the prototype middleware substrate for interoperability on the Grid. Section 4 
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introduces the DISCOVER computational collaboratory for interaction and steering. This section also describes 

peer-to-peer integration of a network of DISCOVER servers using the middleware substrate, to provide global 

collaborative access to remote applications.  Section 5 presents the implementation and operation of the DISCOVER 

middleware substrate. Section 6 presents an experimental evaluation of the DISCOVER middleware substrate. 

Section 7 presents a retrospective evaluation of the design and implementation of DISCOVER and the technology 

used. This section also presents an evaluation of the commodity distributed technologies and protocols and their 

ability to support Grid applications. Section 8 presents some conclusions and outlines current and future work. 

2 BACKGROUND AND RELATED WORK  

2.1 Current Status of  Problem Solving Environments and Computational Collaboratories  

The growth of the Internet and the advent of the computational �Grid� [3] have resulted in the development and 

deployment of advanced problem solving environments and computational collaboratories [4][5]. These include the 

Upper Atmospheric Research Collaboratory (UARC)[6], the Diesel Combustion Collaboratory (DCC) [7], Access 

Grid [8], Netsolve [9], EMSL [10], the Astrophysics Simulation Collaboratory  (ASC) [11] and Cactus[12], Punch 

[20], WebFlow [21], Gateway [22], HotPage [23] and GridPort [24], GPDK [25], Commodity CoG Kits [26], 

Nimrod-G [27], JiPang [28], and DISCOVER [1][13][14]. These systems provide specialized services to their user 

communities and address different issues in wide area resource sharing and the overall Grid computing problem 

[15][19]. For example, UARC and ASC implement applications specific PSEs, WebFlow provides support for 

composing, configuring and deploying scientific applications on the Grid, and systems such as GridPort provide 

support for acquiring and managing Grid resources.  

2.2 Motivations for Interoperable Collaboratories 

There are several compelling reasons for allowing multiple types of collaboratories to co-exist and interoperate 

on the Grid [29].  The systems mentioned above are customized to meet the unique requirements of a specific user 

community, and provide specialized services and user interfaces that best meet the needs of their users. For example, 

some systems might require ubiquitous web access through web browsers and therefore use HTTP for access. Other 

systems might require rich collaboration services among clients and build on a multicast protocol for access.  Any 

effort aimed at building collaboratories on the Grid should accommodate all such preferences.  

Furthermore, domain specific services provided by the collaboratories can be combined and composed leading 

to truly collaborative, multi-disciplinary and multi-institutional problem solving. For example, one could combine 

the physical models provided by ASC and UARC, visually compose and configure an application using WebFlow, 

allocate resources, deploy and run the application using PUNCH, collaboratively interact and steer the applications 

using DISCOVER, and if the application generates large amounts of real time data, one could broadcast it to 

participating clients using the Salamander data dissemination substrate [30] (used in the UARC and the IPMA 

project [31]). Building each system to provide all required capabilities would not only lead to duplication but is 

rapidly ceasing to be a viable option.  However, as most of these systems are standalone with customized 

architectures, combining them in the fashion outlined above can be a significant challenge. For example, these 

systems use different underlying protocols and enabling technologies - WebFlow and DISCOVER use CORBA and 
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HTTP, PUNCH uses HTML and CGI, while Salamander uses a customized API  (application programming 

interface) written in C/Java/Perl.   

The need for an intermediate interoperability layer on top of the Grid has been emphasized earlier [29]. Such a 

layer will provide basic concepts and mechanisms that can be shared by collaboratories on the Grid, avoiding 

duplication of effort and core development, and allowing individual systems to focus on domain specific issues and 

the needs of their user community.  Note that the access modes, client-server interaction protocols and user interface 

designs typically need to be customized for specific domains. Therefore, such a common interoperability layer 

should only be implemented at the middle tier of a typical 3-tier architecture.  

2.3 Approaches to Interoperability  

As motivated above, a middleware layer on top of the Grid is one means of achieving interoperability. Such a 

middleware can be defined as a set of interoperable high-level services providing functionality that is common to 

these collaboratories, and will enable collaboratory developers to compose these services to develop new and 

specialized user level services for their specific user community. We believe that without a standard set of high-level 

services, collaboratories will continue to implement this common functionality in customized ways, resulting in non-

reusability and lack of interoperability. Following this approach, we identify three distinct ways to implement 

interoperable higher-level services � same implementation everywhere, same interface and/or API everywhere, and 

same protocol everywhere. 

Shared Implementation: In this approach, the services are built into a toolkit and all users use the same toolkit. An 

example of this approach is the use of different commercial instant messaging software available from Yahoo, 

Microsoft, etc. Users of these systems can only share messages with other users with the same software. The 

scalability, extensibility and the level of interoperability of such an approach leaves much to be desired.  

Shared Interfaces and APIs: In this approach, each system publishes a set of APIs and interfaces for its services. 

This approach is used by CORBA applications where the APIs are specified using its IDL (Interface Definition 

Language) and these IDLs are shared by all systems. The approach by Fox et al. [32] described below also uses this 

approach. This solution is feasible for moderate numbers of systems and services, and is most widely used. 

However, it requires all implementations of a service to conform to a common interface and other systems to use 

this interface to access the service, and will not provide truly global sharing and interoperability on the Grid. 

Shared Protocols: The third approach is to have each system communicate using the same protocol. As identified 

by Foster et al. in [15][33], true interoperability in a networked environment can only be achieved by using common 

protocols. A protocol definition specifies how distributed elements interact with one another to achieve a specified 

behavior, and the structure of the information exchanged during this interaction. It defines the format of the data that 

is sent between two systems, including the syntax of messages, character sets, and sequencing of messages. The 

most scalable and interoperable system today is the Internet and the World Wide Web and the major forces behind 

their success are standard protocols like TCP/IP and HTTP.  

Note that true (protocol-based) interoperability can be achieved using CORBA by leveraging the fact that 

CORBA uses the IIOP (Internet Inter-ORB Protocol) protocol for all communication. The services to be shared can 

be built into the CORBA ORB as standard CORBA services, and can be accessed in a standard way using IIOP. 
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This is analogous to the sockets API supported by various implementations of TCP/IP. Although this does involve a 

standardization process we believe it is feasible. 

2.4 Related Work  

Although interoperability has been identified as a central issue for Grid based systems in previous work [3][15] 

[33][34], there has been limited progress towards achieving this goal. This is particularly true in the case of 

computational collaboratories. Although, there have been specific efforts aimed at bilateral sharing and 

interoperability such as those between Ninf [35] and NetSolve [9], these have been made possible because of joint 

development efforts by their respective development teams. These efforts only further highlight the benefits and 

significance of interoperability and the need for having a general solution for interoperability.  

The Collaboratory Interoperability Framework (CIF) Project [34] addresses the interoperability problem by 

proposing a common communication API that can be used by collaboratory developers to build tools for 

collaboration such as videoconferencing, text-based collaboration through chat, whiteboard and electronic 

notebooks. The idea is that, since these tools will use a common communication API that hides the details of the 

underlying protocol used, they should be able to interoperate with each other. While this approach can provide low-

level interoperability at the communication layer, collaboratories will continue to build customized services on top 

of this layer and cease to be interoperable. 

Another approach for enabling interoperability has been recently presented by Fox et al. in [32]. This approach 

characterizes portals as web based interfaces to applications. In particular it focuses on portals for computational 

science and web based education. This approach takes the view that interoperable portals should be based on 

interface standards, which are essentially hierarchical frameworks in the Java approach but are probably best defined 

in XML. These portal frameworks are based on a 3-tier architecture which uses two interface definitions based on 

XML. These are the resource markup language (resourceML) that describes the basic learning or computing objects 

and the portal markup language (portalML) that describes the user view of the portal.  

3 DESIGN OF A PROTOTYPE MIDDLEWARE SUBSTRATE FOR  GRID-BASED 

COLLABORATORIES  

The overall goal of the middleware substrate (and the related CORBA CoG effort [16]) is to define interfaces 

and mechanisms for a peer-to-peer integration and interoperation of the services provided by domain specific 

collaboratories.  The middleware design builds on existing web servers and leverages commodity technologies and 

protocols such as CORBA [17] and HTTP [18]. Its goal is to enable rapid deployment, ubiquitous and pervasive 

access, and easy integration with third party services, while evaluating the viability of these technologies for 

advanced Grid applications. Interoperability in the current implementation of the middleware is achieved by sharing 

interfaces defined in the CORBA IDL.  

The overall architecture of our prototype is hybrid rather than pure peer-to-peer or client-server. While the 

middleware substrate provides a client-server architecture from the users� point of view, the middle tier has a peer-

to-peer architecture. This approach provides several advantages. The middle-tier peer-to-peer network distributes 
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services across peer-servers and reduces the requirements of a server.  As clients connect to the middle-tier using the 

client-server approach, the number of peers in the system is significantly smaller.  Security and manageability are 

still open issues in true peer-to-peer systems, while one of the reasons for the success of client server systems is the 

security and manageability associated with having centralized servers. The smaller number of peer servers allows 

the hybrid architecture to be more secure and better managed as compared to a true peer-to-peer system, and restricts 

the security and manageability concerns to the middle tier. Furthermore, this approach makes no assumptions about 

the capabilities of the clients or the bandwidth available to them, and allows for very thin clients.  Finally, servers in 

this model can be lightweight, portable and easily deployable and manageable, instead of being heavy weight (as in 

pure client-server systems). As the functionality of a centralized server is distributed across multiple peer servers in 

a peer-to-peer system, it makes them more manageable and lightweight as compared to a centralized server in a 

client server system, even though each server has an ORB running. A server may be deployed anywhere there is a 

growing community of users, much like a HTTP Proxy server. 

 
Figure 1. Middleware design for integrating computational collaboratories 

 

A schematic overview of the middle substrate is presented in Figure 1. It consists of (collaborative) client 

portals at the front end, computational resources, services or applications at the backend, and the network of peer 

servers in the middle. In order to enable ubiquitous web-based access, clients are kept as simple as possible. The 

responsibilities of the middle-tier include providing a �repository of services� view to the client, providing 

controlled access to these backend services, interacting with peer servers, and collectively managing and 

coordinating collaboration. A client always connects to its �closest� server and has access to all  (local and remote) 

backend services based on its privileges and capabilities. Backend services include resource access and management 

toolkits, high-performance applications, data archives, and network-monitoring tools. These services may be 
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specific to a server or may form a pool of services that can be accessed by any server. A service will be server-

specific if direct access to the service is restricted to the local server, possibly due to security, scalability or 

compatibility constraints. This is true for many scientific resources and applications. In this case, the local server 

advertises the service and its interface, and clients and peer servers can discover and access the service through the 

local server. The server may also wrap this service as a distributed object and bind it to a naming service, registry or 

a trader service. In either case, the servers and the backend services are accessed using standard distributed object 

technologies such as CORBA/IIOP, RMI, and DCOM. 

The middleware design defines two levels of interfaces for each server. The first level interfaces enable other 

peer servers to authenticate with a server and query it for active services and users.   The second level interfaces are 

used for authenticating with and accessing a specific service at the server. If a server provides a single application or 

a service only the second level interfaces may be provided as the server and the service do not have to be identified 

separately � i.e. the service itself can represent the server.  The pool of services model is implemented using the 

second level interfaces. 

The portalML and resourceML interfaces for interoperable web portals presented in [32], are similar to the two 

levels of interfaces described above. However, the first level interfaces, instead of providing a user view of a portal 

as in portalML, define a system view of a server, which can be used, by other servers to access its services. The 

second level interfaces describe a particular service at a server, which is similar to the resourceML.  In our current 

design, these interfaces are defined in the CORBA IDL instead of XML (which is used by portalML and 

resourceML). The choice between CORBA IDL and XML is a trade-off between speed and loose coupling. XML is 

self-describing and can provide a greater level of interoperability. However, XML parsing is still an overhead and is 

significantly slower than CORBA IDL based object marshalling. CORBA also provides more sophisticated services 

such as discovery and naming. 

The DISCOVER middleware substrate presented in the following sections is a prototype implementation of this 

design to achieve interoperability between multiple, distributed instances of the DISCOVER computational 

collaboratory. 

4 DISCOVER: A COMPUTATIONAL COLLABORATORY FOR INTERACTION AND STEERING 

DISCOVER is a virtual, interactive computational collaboratory that enables geographically distributed 

scientists and engineers to collaboratively monitor, and control high performance parallel/distributed applications. 

Its primary goal is to bring remote distributed simulations to the scientists�/engineers� desktop by providing 

collaborative web-based portals for interrogation, interaction and steering. The DISCOVER architecture (see Figure 

2) is composed of detachable client portals at the front-end, an interaction server in the middle, and a control 

network of sensors, actuators, and interaction agents superimposed on the application at the backend.  Clients are 

implemented as Java applets and they communicate with the server over HTTP. They can connect to a server at any 

time using a browser to receive information about active applications. Furthermore, they can form or join 

collaboration groups and can collaboratively interact with one or more applications based on their privileges and 

capabilities. The middle tier consists of Interaction and Collaboration servers, which extend commodity web-servers 
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with interaction and collaboration capabilities. The backend consists of a control network composed of sensors, 

actuators and interaction agents. Session management and concurrency control is based on capabilities granted by 

the server. A locking protocol is used to ensure that the applications remain in a consistent state during collaborative 

interaction and steering. Security and authentication services are provided using customizable access control lists 

built on the SSL-based secure server. DISCOVER is currently operational2 and is being used to provide interaction 

capabilities to a number of scientific and engineering applications, including oil reservoir simulations, computational 

fluid dynamics, seismic modeling, and numerical relativity. Details about the design and implementation of the 

DISCOVER collaboratory can be found in [14]. 

 

 
Figure 2. Architectural schematic of the DISCOVER computational collaboratory 

4.1 A Middleware Substrate for Peer-to-Peer Integration of DISCOVER Servers 

The DISCOVER middleware substrate integrates multiple instances of the DISCOVER computational 

collaboratory so that a client can access and interact with all the applications for which it has access privileges, 

regardless of whether they are local or remote. It is motivated by a number of requirements. First, having all 

applications connect to a single DISCOVER server or having a centralized repository of servers are not scalable 

options. Furthermore, security constraints often prevent applications from connecting to remote servers outside their 

domain. This is true for applications executing on most high-end resources. Finally, applications typically do not 

provide standard access interfaces for interaction and steering, and need to be coupled to their server using a 

proprietary protocol. The proposed peer-to-peer server architecture with coupled server/application(s) sets is more 

appropriate for such integration. 

                                                 
2 See http://www.discoverportal.org 
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The DISCOVER middleware consists of multiple independent collaboratory domains, each consisting of one or 

more DISCOVER servers, and applications connected to the server(s). The middleware can be extended to include 

other servers and services using the �pool of services� model described earlier.  For example, the middleware can 

provide access to a monitoring service, a data archival service or grid services using Java/CORBA CoG Kits. A 

domain typically consists of different types of servers. All the servers within a domain share a common database 

with information about users and applications/services. Servers may also share the same security mechanism. Note 

that the availability of these servers is not guaranteed and must be determined at runtime using a discovery 

mechanism. A client can connect to a server within its domain (using HTTP), and have secure and authorized access 

to all applications/services in the entire system. The current configuration of the DISCOVER server network is 

shown in Figure 3. 

The DISCOVER middleware substrate builds on CORBA/IIOP and provides peer-to-peer connectivity between 

servers within and across domains. Server/service discovery mechanisms are built using the CORBA Trader Service 

[38], which allows a server to locate remote servers and to access applications connected to those remote servers. 

Although CORBA does introduce some overheads, it enables scalability and high availability and provides the 

services necessary to implement the middleware substrate. It also allows interoperability between servers, while 

allowing them to maintain their individual architectures and implementations. Moreover, servers are typically 

connected via link with reasonable bandwidth (~1 Mbps). As no assumptions can be made about client-server 

connections, having the client connect to the �nearest server�, and use CORBA/IIOP to connect the server and the 

desired application may actually reduce client latencies in some cases. This is because clients (implemented as Java 

applets) communicate with their �home� server using HTTP and their home server communicates with remote 

servers on the clients� behalf using IIOP. Since IIOP (unlike HTTP), reuses connections and hence reduces 

connection overheads, its use over the larger network path helps in reducing client latencies when a large 

geographical distance separates the two communicating servers, and small chunks of data are transferred 

(<20Kbytes). This is shown in the experiments presented in Section 6.1.  
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Figure 3. Deployment of DISCOVER servers providing access to a repository of services 

 
The following section describes the implementation and operation of the DISCOVER middleware substrate. 

The middleware substrate supports the following operations: 

• Security, authentication and access control across servers: Since clients will be accessing applications 

connected to remote servers, the middleware substrate is able to authenticate a client with remote servers 

and/or remote applications and control access based on privileges and capabilities. 

• Collaboration and interaction across servers: In a network of servers, an application might be connected to 

one server, and clients from different servers might want to collaboratively interact with it. Clients 

interacting with the same application can form a collaborative group, even if they are connected via 

different servers. 

• Data/State consistency across servers: DISCOVER servers use a simple locking mechanism to ensure that 

applications remain in a consistent state during collaboration and interaction sessions. The middleware 

substrate extends this locking mechanism to handle multiple clients from multiple servers. 

• Logging capabilities across servers: Since clients from any server can access an application, the application 

and the client logs are maintained separately. 
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5 IMPLEMENTATION AND OPERATION OF THE DISCOVER MIDDLEWARE SUBSTRATE  

5.1 DISCOVER Interaction and Collaboration Server 

The DISCOVER interaction/collaboration servers build on commodity web servers, and extends their 

functionality (using Java Servlets [36]) to provide specialized services for real-time application interaction and 

steering and for collaboration between client groups. Clients are Java applet and communicate with the server over 

HTTP using a series of HTTP GET and POST requests. Application-to-server communication either uses standard 

distributed object protocols such as CORBA [17] and Java RMI [37], or a more optimized, custom protocol over 

TCP sockets.  An ApplicationProxy object is created for each active application at the server, and is given a unique 

identifier. The application identifier is a combination of the server�s IP address and a local count of the applications 

on the server. This object encapsulates the entire context for the application. Three communication channels are 

established between a server and an application: (1) a MainChannel for application registration and periodic 

updates, (2) a CommandChannel for forwarding client interaction requests to the application, and  (3) a 

ResponseChannel for communicating application responses to interaction requests. These communication channels 

are abstractions for server-application communication and in the current implementation these channels correspond 

to three different socket connections.  At the other end, clients differentiate between the various messages (i.e. 

Response, Error or Update) using Java�s reflection mechanism (i.e. by querying the received object for its class 

name). Use of reflection to differentiate messages from the server at the client side has been incorporated to use 

Java�s object serialization for all communication between the client and the server. This eliminates the need for 

message parsing at the client side as entire Java objects can be sent from the server and their type is determined 

dynamically through refelction.  Although it might be a little slow, object serialization makes the client code much 

cleaner and simpler. 

Core service handlers provided by each server include the Master Handler, Collaboration Handler, Command 

Handler, Security/Authentication Handler and the Daemon Servlet that listens for application connections. In 

addition to these core handlers, there can be a number of additional handlers providing auxiliary services such as 

session archival, database handling, visualization, request redirection, and remote application proxy invocations 

(using CORBA).  These services are optional and need not be provided by every server.  Details about the design 

and implementation of the DISCOVER Interaction and Collaboration servers can be found in [14]. 

5.2 Implementation  of the Middleware Substrate for peer-to-peer Integration of DISCOVER 
Servers 

The DISCOVER middleware substrate builds a peer-to-peer network of DISCOVER servers by implementing 

the two levels of interfaces described in Section 3. The DiscoverCorbaServer interface is the level one interface and 

represents a server in the system. This interface enables peer servers to discover, authenticate and interact with one 

another. The CorbaProxy interface is the level two interface and represents an application/service at a server. This 

interface defines the functionality exported by the application/service and allows remote servers to access this 

functionality. The middleware substrate builds on the DISCOVER interaction/collaboration server architecture 

described above.  Server-server communication uses the three communication channels set up for application-server 

communication, i.e. Main Channel, Command Channel and Response Channel (see Section 5.1), and establishes an 



 

12 

additional Control Channel for error messages and system events. The Control Channel implements a notification 

service similar to the one used in the Salamander substrate [30].  The schematic of the middleware implementation 

is presented in Figure 4. The two interfaces are described below. 

5.2.1 The DiscoverCorbaServer Interface 
The DiscoverCorbaServer interface is implemented by each server and defines the methods for interacting with 

the server. This includes methods for authenticating with the server, querying the server for active 

applications/services, and obtaining the list of users logged on to the server. A DiscoverCorbaServer object is 

maintained by each server�s Daemon Servlet and represents the server within the peer-to-peer system. The 

DiscoverCorbaServer object publishes its availability using the CORBA trader service. It also maintains a table of 

references to CorbaProxy objects (i.e. CorbaProxyInterface) for remote applications. These references are used to 

provide transparent access to the associated remote applications and to enable local clients to interact with these 

applications � i.e. all interactions with remote applications from locally connected clients go through the 

DiscoverCorbaServer, which then forwards them to the appropriate CorbaProxyInterface reference. 

5.2.2 The CorbaProxy Interface 
The CorbaProxy interface represents an active application (or service) at a server. This interface specifies all 

the methods required for accessing, interacting with and steering the application. This includes methods for querying 

application status, querying and changing application parameters, requesting steering controls (locks) and issuing 

commands. The CorbaProxy object also binds itself to the CORBA naming service using the application�s unique 

identifier as the name. This allows the application to be discovered and remotely accessed from any server. The 

DiscoverCorbaServer objects at all remote servers that have clients interacting with a remote application maintain a 

reference to the CorbaProxy object for that application. This reference thus serves as the gateway to the 

applications.  

The CorbaProxy object is contained within each DISCOVER ApplicationProxy created at the server. As 

described above, the ApplicationProxy manages all interactions with the application. In the case of local 

applications, the ApplicationProxy directly communicates with the applications, while in the case of remote 

applications this communication is through the local reference (i.e. CorbaProxyInterface) to the remote CorbaProxy 

object. 
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Figure 4. Interaction Model between DISCOVER Servers 

5.3 Middleware Operation 

This section describes the operation of key mechanisms across multiple instances of the DISCOVER 

computational collaboratory, namely, server and applications discovery, security/authentication across servers, 

collaboration across servers, distributed locking, and distributed information logging.  

5.3.1 Discovery of Servers and Applications  

Peer DISCOVER servers locate each other using the CORBA trader services. The CORBA trader service 

maintains all the server references as service-offer pairs. In our current system we have implemented a minimal 

trader service on top of the CORBA naming service.  All DISCOVER servers are identified by the service-id 

�DISCOVER�. The service offer is a CORBA CosTrading module (CORBA Trader service specification), which 

encapsulates the CORBA object reference and a list of properties defined as name-value pairs. Thus the object can 

be identified based on the service it provides or its list of properties.  

Typically, an application will connect just to its local server. However, in the case of meta-applications, 

different application components may connect to different servers (without overlap). There is also the possibility 

that there are multiple instances of an application (run by different groups) on the same or different servers. A 

scheme was chosen for assigning globally unique identifiers to applications such that the identifiers are unique for 

both of these cases. These identifiers are dynamically assigned by the Daemon Servlet and each identifier is a 

combination of the server�s IP address and a local count of the applications on each server, guaranteeing that even if 

the same application is connected to multiple servers or multiple instances of the application are connected to the 

same server, each instance will have a unique identifier. Furthermore, the server�s IP address can be extracted from 
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this application identifier, making it very easy to determine if the application is a local application or a remote 

application. 

 
5.3.2 Security/Authentication across Servers 

Each DISCOVER server supports a two-level client authentication; the first level authorizes access to the server 

and the second level permits access to a particular application. To control access, all applications are required to be 

registered with a server and to provide a list of users and their access privileges (e.g. read-only, read-write). This 

information is used to create access control lists (ACL) for each user-application pair. For access to remote 

applications, the security handler uses the DiscoverCorbaServer interface to authenticate the client with each server 

in the network, and in return receives the list of all active applications connected to all the servers to which the user 

has access privileges. Once the client selects a remote application, the second level authentication is performed to 

get a customized interaction/steering interface for the application based on the client�s access privileges. As a result 

each client can access only those applications that it is authorized to, and can only interact with them in ways 

defined by its privileges and capabilities. Note that a client has access only to those servers where it is a registered 

user. 

5.3.3 Collaboration across Servers 

The DISCOVER collaboratory enables multiple clients to collaboratively interact with and steer (local and 

remote) applications. The collaboration handler servlet within each server handles the collaboration on the server 

side, while a dedicated polling thread is used on the client side. All clients connected to an application form a 

collaboration group by default. However, as clients can connect to an application through remote servers, 

collaboration groups can span multiple servers. In this case, the CorbaProxy objects at the servers poll each other for 

updates and responses. They use the main channel for retrieving global messages, the response channel for 

retrieving response messages generated in response to a clients� requests, and the control channel for retrieving any 

error messages or steering control (lock) updates. In the case of multiple instances of an application connected to a 

single server or to multiple servers, all clients (possibly from different servers) connected to a specific application 

instance form a collaboration group. The clients can prevent invasive communication from other clients by choosing 

not to participate in the collaboration and disabling all collaboration updates. 

The peer-to-peer architecture offers two significant advantages for collaboration. First, it reduces the network 

traffic generated, by reducing the large number of broadcast messages that would be typically sent by a server to all 

the participants of the collaboration session. This is because, instead of sending individual collaboration messages to 

all the clients connected through a remote server, only one message is sent to that remote server, which then updates 

its locally connected clients. This is illustrated in Figure 5. Since clients always interact through the server closest to 

them and the broadcast messages for collaboration are generated at this server, these messages don�t have to travel 

large distances across the network. This reduces overall network traffic as well as client latencies, especially when 

the servers are geographically far away. It also leads to better scalability in terms of the number of clients that can 

participate in a collaboration session without overloading a server, as the session load now spans multiple servers.  
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Figure 5. Collaborative Group spanning multiple servers 

5.3.4 Distributed Locking for Interactive Steering and Collaboration 

Session management and concurrency control is based on capabilities granted by the server. A simple locking 

mechanism is used to ensure that the application remains in a consistent state during collaborative interactions. This 

ensures that only one client �drives� (issues commands) the application at any time. In a distributed server case, 

locking information is only maintained at the application�s host server i.e. the server to which the application 

connects directly. Servers providing remote access to the application only relay lock requests to the host server and 

receive locking information from the host server. Thus using the application�s host server as the controller of the 

session guarantees consistency during interaction and collaboration. 

5.3.5 Distributed Logging 

The session archival handler maintains two types of logs. The first logs all interactions between a client and an 

application. This log enables clients to replay their interactions with the applications. It also enables latecomers to a 

collaboration group to get up to speed. For remote applications, the client logs are maintained at the server where the 

clients are connected. The peer-to-peer architecture assumes that there is an application running on a remote server, 

and the application information is sent to all servers that have clients interested in that information. Thus all client 

logs are handled by the server to which is connected to and this server creates the necessary output files or records 

under the ownership of the client. The architecture does not allow files to be created on a remote server. 

The second log maintains all requests, responses, and status messages for each application throughout its 

execution. This log is maintained at the application�s host server (the server to which the application is directly 

connected and   allows clients to have direct access to the entire history of the application.   
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6 AN EXPERIMENTAL EVALUATION OF THE DISCOVER MIDDLEWARE SUBSTRATE 
The DISCOVER collaboratory is currently operational and the current server network includes server 

deployments Rutgers University and the Center for Subsurface Modeling (CSM), University of Texas at Austin. We 

are currently expanding the network to include a deployment at the Center for Advanced Computational Research 

(CARC), California Institute of Technology.  Figure 6 shows the setup used for the experimental evaluation 

presented in this section. The middleware implementation used the Apache Web Server 1.3 [39] with Apache Jserv 

1.1.12 [40] as the servlet engine, and Visibroker for Java 4.5.1 [41] as the CORBA ORB. The evaluation consists of 

three experiments, viz. access latency over local area and wide area networks, effect of multiple clients on access 

latencies and server memory overheads due to local and remote applications. 

 
Figure 6. Setup for the experimental evaluation of the DISCOVER middleware 

6.1 Experiment 1 �Access Latency over Local Area Networks (LAN) and Wide Area Networks 
(WAN) 

This experiment consisted of two sets of latency measurements. The first set of measurements was for a 

10Mbps local area network (LAN) and used DISCOVER servers at Rutgers University. The second set of 

measurements was for a wide area network (WAN) and used DISCOVER servers at Rutgers University and at CSM, 

University of Texas at Austin. The clients were running on the local area network at Rutgers University for both sets 

of measurements. 

In this experiment an application was connected to one of the servers, and a minimal client (without any user 

interface) was used to access and interact with the application. In case of the LAN measurements (set 1) the 
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application was connected to one of the servers at Rutgers University while in case of the WAN measurements (set 

2), the application was connected to the server at CSM, University of Texas at Austin. The client requested data of 

different sizes from the application, and response times were measured for both, a direct access to the server where 

the application was connected and an indirect (remote) access through the middleware substrate. Direct access times 

included the time taken for the client�s request to be sent to the server over HTTP, the server handling the request 

and forwarding the request to the application, the server getting and processing the response from the application, 

and the response being sent back to the client. The time taken by the application to compute the response was not 

included in the measured time. Indirect (remote) access time included the direct access time plus the time taken by 

the server to forward the request to the remote server and to receive the result back from the remote server over 

IIOP. An average response time over 10 measurements was calculated for each response size. 

 
Figure 7. Comparison of latencies for direct and indirect application accesses on a Local Area 

Network (LAN)  
 

The resulting response latencies for direct and indirect accesses measured on the LAN are plotted in Figure 7.  It 

can be seen that, as expected, the response times for direct accesses to an application at a local server increases with 

the increase in response size. This increase in latency is primarily due the increased communication times as the 

server overhead for request-response handling is almost constant. The response times for indirect accesses to an 

application at a remote server also increase with increase in data size.  Indirect access times are almost twice the 

direct access times, which is not surprising as an indirect access includes the time for a direct access. However, it 

should be noted that the difference in indirect and direct access times approaches a constant as the data size 

increases. The obvious conclusion from these results is that it is more efficient to directly access an application when 

it is on the same LAN. 
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Figure 8. Comparison of latencies for direct and indirect application accesses on a Wide Area 

Network (WAN) 
 

The response latencies for direct and indirect responses measured on the WAN are plotted in Figure 8.   In 

contrast to the results for the LAN experiment, indirect access times measured on the WAN are of comparable order 

to direct access times. In fact, for small data sizes (1K, 10 K and 20K) indirect access times are either equal to or 

smaller than direct access times. While these results might appear to be contradictory to expectations, the underlying 

communication for the two accesses provides an explanation. In the indirect access measurement, the application 

was connected to the server at Austin, while both the client and locally accessed server were running on machines at 

Rutgers University. The indirect access consisted of the client at Rutgers accessing the local server at Rutgers over 

HTTP, which in turn accessed the server at Austin over IIOP.  In the direct access measurement, the client was 

running at Rutgers and accessing the server at Austin over HTTP. Thus in the direct access case, a large network 

path across the Internet was covered over HTTP, which meant that a new TCP connection was set up over the wide 

area network for every request. In the indirect access case however, the path covered over HTTP was short and 

within the same LAN, while the larger network path (across the Internet) was covered over IIOP, which uses the 

same TCP connection for multiple requests. Since the time taken to set up a new TCP connection for every request 

over a wide area network is considerably larger than that over a local area network, the direct access times are 

significantly larger. As data sizes increase, the overhead of connection set up time becomes a relatively smaller 

portion of the overall communication time involved. As a result the overall access latency is dominated by the 

communication time, which is larger for remote accesses involving accesses to two servers. Also note that, in both 

cases, this latency was less than a second.  
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6.2 Experiment 2 �Access Latency with Multiple Simultaneous Clients 

This experiment measured the variation of direct and indirect access latencies in the presence of multiple 

simultaneously connected clients over a LAN. The setup used for this experiment was the same as that for 

experiment 1 (Section 6.1) for the LAN. In this experiment, an application was connected to one of the servers and 

multiple clients simultaneously accessed and interacted with the application. Each client requested data of size 20 

Kbytes. Response times for direct access to the server with the application and indirect access through the 

middleware substrate were measured. These results are plotted in Figure 9. The results show that the response times 

more or less hover around the average response times for a single client for 20 Kbytes of data (see Figure 7), for 

both direct and indirect accesses. The 3 points towards the right end of the graph (for 16, 17 and 19 clients) are most 

probably due to the communication and network irregularities � we are unable to explain these values and are in the 

process of repeating these experiments.   

 
Figure 9. Variation in access latencies with multiple, simultaneous clients over a LAN 

6.3 Experiment 3 � An Evaluation of Server Memory Requirements 

This set of experiments was conducted to evaluate the server memory requirements for different configurations 

when multiple applications were connected to it. The motivation for this experiment was our design goal to make the 

DISCOVER servers lightweight and easily deployable. Memory usage was computed as the difference between the 

total memory available to the Java Virtual Machine (JVM) for current and future objects and free memory available 

for future objects. The method calls freeMemory() and totalMemory() defined in the java.lang.Runtime class were 

used for this purpose. These methods return an approximation of the total bytes of memory currently available for 

future allocated objects and the total bytes of memory currently available for current and future objects respectively.  

Since these methods return only an approximate value and this value is for the entire JVM rather than a single 

process within the JVM, the calculated values for memory usage are also approximates and the actual values will be 
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slightly lower than those plotted here. However, we made sure that only the server process was operational in the 

JVM during the experiment, so that changes in the memory usage reflected memory allocated for new applications 

that connected to the server. 

Three different server configurations were used in this experiment. In the single standalone server configuration 

the server had no ORB or Naming Service running, and made no CORBA invocations. In this case there were no 

updates generated for remote servers. A single client running on a different machine connected to active applications 

and generated requests for 1K of data, and memory usage was measured as the number of applications connected to 

the server was increased. The next 2 configurations consisted of a network of two servers with a local server (the 

server to which the application was directly connected) and a remote server (the server accessing an application 

remotely). The goal of this experiment was to measure the memory use at a local server when it publishes its local 

applications for remote accesses.  The applications connected to its local server and this server created the required 

CORBA objects for the applications (i.e. CorbaProxy objects), which then registered themselves with the CORBA 

Naming Service. CORBA updates for remote servers were generated in this case.  A single client running on a 

different machine accessed one of the applications directly through the application�s local server. Memory usage 

was measured at the local server (the server where the application was connected).  In the final experiment, multiple 

clients were used to access multiple applications remotely through CORBA. As for the previous configuration, the 

memory utilization at the local server was measured � however in this case there were multiple clients accessing 

multiple applications remotely instead of a single client accessing one of the many applications directly. In this 

experiment, the memory utilization at the remote server was also measured. Remote server memory utilization 

includes the memory required for storing remote CORBA references to applications and invoking IDL methods on 

them. The measured memory utilizations for these experiments are plotted in Figure 10.   

As expected, the memory usage increases for each configuration as the number of applications is increased. 

However, it should be noted that the overall memory required at the server was not significant, i.e. less than 10 MB. 

It is interesting to see that the memory requirements are smaller when a server accesses remote applications as 

compared to when the applications connect directly to the server � i.e. the single standalone server where all 

applications are local (with no CORBA objects) requires more memory than a remote server having a remote 

reference to the application.  However, publishing a local application for remote access (creating CORBA objects) 

almost doubles the memory requirements. Thus, local servers (i.e. servers to which the application connects directly) 

publishing applications have larger memory requirements, while remote servers accessing these applications using 

the middleware substrate have reduced memory requirements.  Note that the memory required for maintaining client 

state at the server is not significant. This can be inferred from the local server memory requirements for a single 

direct client and multiple remote clients.  
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Figure 10. Sever memory utilization for different configurations 

7 RETROSPECTIVE EVALUATION OF THE DESIGN AND TECHNOLOGIES USED 
The primary goal of the solutions presented in this paper is to support wide deployment and global access; as a 

result we build on widely used commodity distributed technologies. For example, access to DISCOVER is provided 

using thin web browsers and the ubiquitous HTTP protocol. Our implementation builds on existing HTTP servers 

and adds new services, rather than building customized servers from scratch. The choice of CORBA as the 

middleware substrate is motivated by its inherent support for peer-to-peer interactions.  It enables seamless 

integration with 3rd party custom servers, thereby achieving interoperability through shared IDLs. Integration of 

these IDLs as standard CORBA services into an ORB is the next step towards true interoperability. The use of IIOP 

for communication among peer servers produces latencies that are comparable to directly accesses to remote servers 

using HTTP over a wide area network, while enabling scalability, higher availability and an enhanced set of services 

and applications for the users. 

The use of these commodity technologies however is not without its disadvantages and limitations. While the 

use of HTTP for client-server interactions provides ubiquitous pervasive access through standard web browsers, it 

necessitates a poll and pull mechanism for fetching the data from the server instead of a push mechanism (as HTTP 

is a request-response protocol). The poll and pull mechanism makes it necessary to maintain buffers for each client 

at the server in order to support slower clients.  Such a poll and pull mechanism may be unsuitable for large virtual 

reality collaborative environments where 3D data is involved, as it presents both memory and performance 

overheads. Similarly the use of CORBA as the middleware technology causes the middleware to give up control 

over its transport and communication policies and reduces performance when compared to a lower level socket 

based system. Furthermore, in our experience, the current commercial CORBA ORBs leave much to be desired, 

especially in the areas of high performance and interoperability. 



 

22 

8 CONCLUSION AND FUTURE WORK 
This paper presented the design implementation, and operation of a middleware substrate that enables a peer-to-

peer integration of and global collaborative access to multiple, geographically distributed instances of the 

DISCOVER collaboratory. The substrate builds on the CORBA distributed object technology and enables dynamic 

application/service discovery, remote authentication and access control, coordinated interactions for collaborative 

interaction and steering. An experimental evaluation of the middleware substrate and a retrospective evaluation of 

the design were also presented. The performance of the middleware substrate over a wide area network validated the 

middleware design and justified the use of CORBA/IIOP for inter-server communication. The DISCOVER 

middleware architecture is currently operational and provides collaborative interaction and steering capabilities to 

remote distributed scientific and engineering simulations, including oil reservoir simulations, computational fluid 

dynamics and numerical relativity. The DISCOVER server network currently includes deployments at CSM, 

University of Texas at Austin, and is being expanded to include CACR, California Institute of Technology.  

The key contribution of this paper is the design of a middleware substrate that enables interoperability between 

multiple, geographically distributed and independently administered and managed instances of an entire 

collaboratory. The primary aim of the substrate was to provide global access to and enable sharing of 

services/applications across these instances with acceptable performance.  We believe that this is the first step 

towards enabling overall interoperability among collaboratories on the Grid. The DISCOVER middleware is a 

prototype implementation of this design providing services such as resource discovery, request dispatching, status 

monitoring, and remote authentication. Interoperability in this implementation is achieved by sharing interfaces 

defined in CORBA IDL. We are currently working on integrating these IDLs into an open source ORB (such as 

JacORB [42] or MICO[43]) as standard CORBA services to enable true interoperability. We are also experimenting 

with interoperability using other protocols and technologies and are investigating XML based protocols such as 

SOAP and peer-to-peer initiatives such as JXTA [44].  In a related effort we used the middleware substrate to enable 

interoperability between DISCOVER and the CORBA CoG Kit3[16] that provides access to Globus [46] Grid 

services. As a result users can combine and compose the services provided by the two collaboratories. For example, 

a user can now use services provided by the CORBA CoG Kit to discover available resources on the Grid, to 

allocate required resources and to run an applications on these resources, and use DISCOVER to connect to and 

collaboratively monitor, interact with, and steering the application. We are currently evaluating this implementation. 
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