Rule-based Monitoring and
Steering of Distributed Scientific
Applications

Hua Liu and Manish Parashar

The Applied Software Systems Laboratory Dept of Electrical and
Computer Engineering, Rutgers University, Piscataway, NJ 08854,
USA

Abstract: This paper presents the design, prototype implementation
and experimental evaluation of DIOS++4, an infrastructure for enabling
rule-based management and control of distributed scientific applications.
DIOS++ provides: (1) abstractions to enhance existing application ob-
jects with sensors and actuators for runtime interrogation and control, ac-
cess policies to control accesses to sensors/actuators and rule interfaces,
and rule agents to enable autonomic monitoring and steering, (2) a hierar-
chical control network that connects and manages the distributed sensors
and actuators, enables external discovery, interrogation, monitoring and
manipulation of these objects at runtime, and facilitates dynamical and
secure definition, modification, deletion and execution of rules for auto-
nomic application management and control. The framework is currently
being used to enable autonomic monitoring and control of a wide range of
scientific applications including oil reservoir, compressible turbulence and
numerical relativity simulations.

Keywords: Computational steering environment; rule; autonomic; agent.

Reference to this paper should be made as follows: Liu, H. and Parashar,
M. (xxxx) ‘Rule-based Monitoring and Steering of Distributed Scientific
Applications’, International Journal of High Performance Computing and
Networking, Vol. x, No. X, pp.XXxx—XXX.

Biographical notes: Hua Liu is Ph.D candidate in the Center for Ad-
vanced Information Processing, department of Electrical and Computer En-
gineering at Rutgers University. Her research interests include distributed
and parallel computing (Autonomic, Grid, peer-to-peer computing), high-
performance computing.

Manish Parashar is Associate Professor of Electrical and Computer En-
gineering at Rutgers University, where he is also director of the Applied
Software Systems Laboratory. He received a BE degree in Electronics and
Telecommunications from Bombay University, India, and MS and Ph.D.
degrees in Computer Engineering from Syracuse University. He has re-
ceived the NSF CAREER Award and the Enrico Fermi Scholarship from
Argonne National Laboratory. His current research interests include paral-
lel and distributed computing (including autonomic, Grid and peer-to-peer
computing) with applications to computational science and engineering,
networking and software engineering. Manish is a member of the executive
committee of the IEEE Computer Society Technical Committee on Paral-
lel Processing (TCPP), part of the IEEE Computer Society Distinguished
Visitor Program (2004-2006), and a member of ACM. He is also the co-
founder of the IEEE International Conference on Autonomic Computing
(ICAC). Manish has co-authored over 140 technical papers in international
journals and conferences, has co-authored/edited 6 books/proceedings, and
has contributed to several others in the area of computational science and
parallel and distributed computing. For more information please visit
http://www.caip.rutgers.edu/~ parashar/.

1 INTRODUCTION

High-performance parallel/distributed simulation
applications are playing an increasingly important
role in science and engineering and are rapidly be-
coming critical research modalities. These simula-
tions and the phenomena that they model are long
running, inherently complex and highly dynamic.
Therefore, the simulations must be capable of dy-
namically managing, adapting and optimizing their
behaviors to match the dynamics of the physics they
are modelling and the state of their execution envi-
ronment, so that they continue to meet their goals
and constraints. As a result, techniques and tools
for runtime interactive monitoring and steering have
been developed to address this requirement. Inter-
active monitoring enables the information about the
computation to be gathered on the fly, and interac-
tive steering enables the state and behaviors of the
computation to be changed on the fly. These systems
promote a deeper understanding and insight into the
behaviors of the simulations by supporting observa-
tion and experimentation of on-going applications [1].
Current systems include CAVEStudy [2], VASE [3],
CUMULVS [4], VIPER [5] and SCIRun [6].

However, as the scale and complexity of these sim-
ulations grow, traditional interactive monitoring and
steering by humans not only become tedious and
error-prone but infeasible. This has led to the in-
vestigation of the autonomic systems where the sim-
ulations can monitor and control themselves based
on the high-level rules defined by the users. This ap-
proach has been inspired by the strategies used by bi-
ological systems to deal with complexity, dynamism,
heterogeneity and uncertainty. The approach, re-
ferred to as autonomic computing [7], aims at real-
izing computing systems and applications capable of
managing themselves at runtime with minimal hu-
man interference. Therefore, users can be alleviated
from time- and effort-consuming runtime monitoring,
analyzing and steering routines via incorporating hu-
man knowledge with applications and steering sys-
tems to enable self-management.

In this paper we present the design, proto-
type implementation and experimental evaluation of

DIOS++, a framework to support the rule-based au-
tonomic monitoring and controlling of distributed
and parallel applications. DIOS++ enables high-
level rules/policies to be dynamically composed and
securely injected into applications at runtime, allow-
ing applications to manage and autonomically op-
timize their execution. Rules specify conditions to
be monitored and operations that should be exe-
cuted when certain conditions are detected. Rather
than continuously monitoring and steering the sim-
ulations, experts can define and deploy appropriate
rules that are automatically evaluated and executed
at runtime to manage the computation, apply run-
time corrections based on the observed state, and
optimize application execution.

DIOS++ provides: (1) abstractions to enhance ex-
isting application objects with sensors and actuators
for runtime interrogation and control, access poli-
cies to control accesses to sensors/actuators and rule
interfaces, and rule agents to enable rule-based au-
tonomic monitoring and steering, (2) a hierarchical
control network that connects and manages the dis-
tributed sensors and actuators, enables external dis-
covery, interrogation, monitoring and manipulation
of these objects at runtime, and facilitates dynami-
cal and secure definition, modification, deletion and
execution of rules for autonomic application manage-
ment and control. Rules can be dynamically com-
posed using sensors and actuators exported by ap-
plication objects. These rules are automatically de-
composed, deployed into the appropriate rule agents
using the control network, evaluated and executed by
the rule agents in a distributed and parallel manner.

DIOS++ builds on the DIOS [8], a distributed ob-
ject substrate for interactively monitoring and steer-
ing parallel scientific simulations. DIOS++ extends
DIOS with an agent-based framework that enables
rule-based autonomic management. This alleviates
time- and effort-consuming interactive monitoring
and control and enables richer management behav-
iors. DIOS++ also provides an object-level access
control mechanisms. DIOS++4 is part of the Dis-
cover ! computational collaboratory. Discover en-
ables geographically distributed clients to collabora-

Lhttp://www.discoverportal.org

tively access, monitor and control Grid applications
using pervasive portals. It is currently being used to
enable interactive monitoring, steering and control of
a wide range of scientific applications, including oil
reservoir, compressible turbulence and numerical rel-
ativity simulations.

The rest of the paper is organized as follows: Sec-
tion 2 investigates related work. Section 3 introduces
the Discover collaboratory. Section 4 presents the
architecture and operations of DIOS++. Section 5
illustrates DIOS++ using an oil reservoir simulation
application. Section 6 presents the experimental eval-
uation. Section 7concludes the paper.

2 RELATED WORK

Related research efforts include techniques for in-
tegrating monitoring and steering capabilities with
applications, systems for collaborative (multi-
application) monitoring and steering, and autonomic
monitoring and steering. These efforts are briefly
described below.

2.1 Interactive Monitoring and Steer-
ing

Traditional debugging tools enable the tracking and
altering of program variables using checkpoints.
However, the overhead associated with these tools
makes them unfeasible for large, complex and long-
running applications. An alternate approach enables
runtime steering using standard I/O (e.g. files). Sys-
tems such as CAVEStudy [2] implement this ap-
proach. This approach however cannot support fine-
grained monitoring and steering.

Beazley and Lomdahl [9] demonstrated the use of a
lightweight method for steering very-large molecular-
dynamics simulations. They used a simplified wrap-
per interface generator (SWIG) that wraps existing
source code with scripting language interfaces to en-
able external monitoring and steering. Systems such
as VASE [3] also implement this approach. The
script is executed when the application encounters
the pre-defined breakpoints, resulting in monitoring

and steering behaviors. A key drawback of this ap-
proach is that the steering behaviors have to be de-
fined when the scripts are generated and cannot be
changed at runtime. This approach also requires the
knowledge of scripting languages.

Systems such as CUMULVS [4] and VIPER [5] use
program instrumentation to enable computational
steering. CUMULVS allows developers to declare
the variables or parameters that can be modified or
steered during the computation. VIPER similarly al-
lows developers to annotate application programs to
identify the data and input parameters for monitor-
ing and steering, and associate them with synchro-
nization points. When the application encounters a
synchronization point, a server is notified, which ex-
tracts the current state of the data and parameters.
However, CUMULVS and VIPER are limited in pro-
viding rich semantic steering, e.g., coordinated steer-
ing across modules.

As an improvement, problem solving environ-
ments, for example, SCIRun [6], provide mechanisms
(e.g., feedback loops, cancellation, direct lightweight
parameter changes, and retained state across mod-
ule firings) to enable modular and dataflow-oriented
systems to create a richer set of steerable parameters.
However, a key limitation of CUMULVS, VIPER and
SCIRun is that they only support monitoring and
steering through pre-defined variables or parameters.
These system cannot directly support functional or
algorithmic steering - it can only be achieved indi-
rectly through pre-defined variables, which increases
the programming complexity.

The Mirror Object Steering System (MOSS) pro-
vides a high-level model for steering applications.
The mirror objects, which are analogues to the ap-
plication objects used for monitoring and steering,
export application methods to the interaction sys-
tem through which steering actions are accomplished
[8]. We believe the high-level abstractions for interac-
tion and steering provide the most general approach
for enabling interactive applications. DIOS++ ex-
tends this approach to enable synchronous and asyn-
chronous, interactive and batch-processing monitor-
ing and steering with more semantics.

2.2 Multi-application and Collabora-
tive Monitoring and Steering

Systems such as Magellan [3] and CSE [3] allow users
to steer multiple applications simultaneously. Fur-
ther, CUMULVS [4] enables multiple users to collab-
oratively steer the same application. The OViD [10]
allows multiple users to observe and steer the same
application. However, it is not a collaborative sys-
tem, since data changes performed in one visualiza-
tion unit are not propagated to other visualization
units.

A key issue in these systems is consistency and cor-
rectness. Consistency guarantees that displays pre-
sented to the viewer represent some valid state of the
computation and that steering operations are applied
in a way that maintains the correctness of the com-
putation [11].

Computational steering systems address the con-
sistency concerns at different levels. Early steering
systems leave these concerns entirely up to the users,
or rely on the applications to provide necessary con-
sistency checks [11]. Systems that use scripts to con-
trol the execution of software modules, e.g., VASE [3],
limit interactions only to the invocation of modules,
with no control over their inner state. The VASE en-
sures consistency of steering actions through entirely
depending on users placing instrumentation at ‘safe’
points in the execution of the code [11]. The SCIRun
[6] supports both inter- and intra-module steering.
The consistency of intra-module steering depends on
the module implementation, while the consistency of
inter-module steering is achieved through cancella-
tion and re-execution. The MOSS system assumes
that objects encapsulate consistency concerns and
inter-object consistency concerns are handled by ap-
plications [11].

2.3 Autonomic Monitoring and Steer-
ing

Systems such as KX(Kinesthetics eXtreme) [12] and
Pathfinder [1] use mobile agents to support au-
tomated monitoring and steering. Mobile agents
present power and flexibility in the specification and
deployment of monitoring and steering commands [1].

For example, they are capable of executing orthogo-
nally to the main computation of target applications
in a decentralized style. Besides, mobile agents can
be deployed locally with application modules, which
reduces the latency when reacting to local conditions
and provides corresponding actions. As another ex-
ample, mobile agents can be customized to make use
of application-specific information, permitting effi-
cient solutions. However, to support the execution
of mobile agents, virtual machines or milieus are re-
quired at all ‘stops’. The virtual machine/mulieu
serves as the hosting environment for mobile agents,
providing a library of operations for agents to per-
form monitoring and steering actions, supporting
agents’ communication, migration and agent schedul-
ing. The requirements of the hosting environment
make it hard to be implemented. Besides, the be-
haviors of those mobile agents are restricted for se-
curity purpose. Possible security problems include
masquerading, denial of service, unauthorized access,
eavesdropping, alteration, repudiation [13].

An alternate approach to enable autonomic man-
agement is based on high-level rules/policies. Sys-
tems such as Autopilot [14] implement this approach.
Rules/policies can be automatically activated when
their conditions are fulfilled. Therefore, users can be
relieved from continuous interactive monitoring and
steering. Further, rules/policies can help the system
scalability by reducing overall dataflow from sensors,
help dynamically activate or deactivate sensors and
actuators, and also enable coordinated actuator con-
trols. In this approach, management behaviors are
described and deployed to managed objects as rules
in plain text format. These rules can be accepted
and understood by objects developed independently
and spanning different security domains, provided
they agree on the syntax and semantics of the rules.
Further, objects can easily customize rule execution,
since rules only specify policy (i.e., ‘what to do’) and
the objects implement mechanisms (i.e., ‘how to do
it’). This is in contrast with the mobile agent ap-
proach, where management behaviors are deployed
to managed objects as executable code, which can-
not be easily customized and may present security
risks (may be malicious). To implement the rule-
based approach, managed objects need to provide or

be integrated with rule interpretation and execution
mechanisms, which may increase the complexity of
object development. Another disadvantage is that
the rule-based approach may have larger overheads,
since the rules need to be interpreted. However, this
overhead can be reduced using a ‘rule compiler’ to
compile and customize rules into executable code for
direct execution.

The rule-based approach, unlike the mobile agent
approach, can be applied to applications developed
by multiple parties and spanning multiple security
domains. DIOS++ takes the rule-based approach
as we believe that scientific applications are evolv-
ing from single-user monolithic codes to the integra-
tion and assembly of componentized units developed
independently by multiple parties [15].

2.4 Autonomic Monitoring and Steer-
ing with DIOS++4

Rule-based autonomic monitoring and steering en-
hance computational steering of long-term, com-
plex, computation- and resource-intensive applica-
tions with the capability of monitoring themselves
and making corresponding actions automatically
based on user-defined high-level rules. This may in-
clude automatically on the fly requesting/modifying
program state, stalling program execution, calibrat-
ing runtime behaviors of applications, exploring new
computational solutions for problems that are not yet
well understood, adapting programs to the current
computational environments, etc.

DIOS++ achieves autonomic management and
control by integrating the agent-based approach with
rule-based approach to strengthen the flexibility of
agents with high-level rules that incorporate hu-
man knowledge. Key research issues addressed by
DIOS++ include:

e Integrating monitoring and steering functional-
ities with applications: To realize the exter-
nal monitoring and steering capacity, a small
amount of modification to the applications’
source code is required. The objects to be
monitored and steered must explicitly expose
sensors and actuators. The sensors and ac-

tuators include variables/parameters and func-
tions/methods.

Applications written in procedural languages
need to transform their data structures to ob-
jects using, for example, a C++ wrapper. Al-
though this requires some application modifica-
tion, the wrappers are only required for those
data-structures that have to be made interactive
and the effort required is far less than rewriting
the entire application to be interactive.

Rich monitoring and steering capabilities:
both intra-object (direct lightweight parameter
changes) and inter-object (the adjustment of in-
put parameters to objects) monitoring/steering
are supported. Besides, synchronous monitor-
ing/steering (the realtime responses to users’
monitoring/steering requests) and asynchronous
monitoring/steering (the monitoring/steering
behaviors are specified in rules, which will be
executed automatically when conditions are sat-
isfied) are enabled.

Consistency: Consistency of intra-object steer-
ing behaviors depends on the actuator con-
straints specified in the rules which are embed-
ded inside the objects. Those constraints will
automatically restrict steering behaviors within
a valid range. To support inter-object consis-
tency, the lifetime of an application is divided
into iterations of computation and interaction.
Steering behaviors are completed in one iteration
and will automatically become effective from the
next iteration. Further, a simple locking mecha-
nism is used to ensure that applications remain
in a consistent state during collaborative inter-
actions.

Collaboration: Users can form or join collabora-
tion groups and interact with one or more ap-
plications based on their capabilities, which is
supported by DISCOVER server [16]. Users in
one collaboration group can selectively receive
or broadcast application information, and dis-
able their collaboration capacity so that their
requests/responses are not broadcasted to the
entire collaboration group.

3 DISCOVER COLLABORATORY

The Discover collaboratory (shown in figure 1) pro-
vides a virtual, interactive and collaborative PSE
that enables geographically distributed scientists
and engineers to collaboratively monitor and control
high-performance parallel/distributed applications.
It consists of the Discover server as the front-end
and DIOS++ architecture as the back-end. Clients
can connect to, collaboratively interact with reg-
istered applications, and execute rule operations
using the portals. Applications register, expose sen-
sors/actuators, receive synchronous monitoring and
steering behaviors as well as asynchronous behaviors
based on rules through DIOS++ architecture.

Distributed Discover Server

Collaboration
Group

Interaction server Application

Private Key, .

MDS, SSL

Master Serviet
(RMI/sockets/HTTP)

Policy Rule-Base

Applicationt
Viz Plot

Desktop PC

Applicaton Interaction Serviet

Application2

Mobile client

Collaboration
Group

Gateway and
Rule engine

CORBA /RMI /IIOP

Visualization

Chat,
Whiteboard,
Collaborative,
Visualization...

Session Archival
Database Handler

Desktop PG
Autonomic
objects

Authentication /S ecurity

Interaction & Steering

Interaction and Collaboration Portals
HTTP/Secure HTTP/ Secure Sockets

Deskiop PC

Application2

Mobile clie

Figure 1: Discover Collaboratory Architecture.

The Discover server builds on a traditional web
server and extends its functionality to handle real-
time application information and client requests with
“handlers” servlets that provide interaction, collabo-
ration and rule services. The Discover server provides
each registered client with a unique client-id, and
each registered application with a unique application-
id. The client-id along with an application-id (corre-
sponding to the application to which the client is con-
nected) is used to identify each session. To start inter-
action behaviors, users must be authenticated by the
authentication handler, which builds a customized
interaction interface for each valid client to match
his/her access capabilities. This ensures that the
client can only access, interact with and steer appli-

cations in an authorized way. One thing needs to be
noted is the Discover capability to avoid the situation
in which multiple clients try to steer the same vari-
able/parameter/operation. In Discover, clients must
explicitly request and release locks before and after
their steering behaviors. In the back-end DIOS++
architecture, the similar lock mechanism is used to
avoid multiple rule agents invoking the same steer-
ing access points simultaneously. Rules with high
priority will lock those steering points when the con-
ditions specified in the rules are satisfied. The locks
are released when rules with higher priority disable
the rules or the conditions are no longer fulfilled.

Discover enables multiple users to collaboratively
interact with and steer applications. All clients con-
nected to a particular application form a collabora-
tion group by default. Global updates (e.g. current
application status) are automatically broadcasted to
this group. The clients can selectively broadcast ap-
plication information to the group. Also, they can
select the type of information that they are inter-
ested in. Finally, clients can disable all collabora-
tion so that their requrests/responses are not broad-
casted to the entire collaboration group. In addition,
each application on the client portal is provided with
chat and whiteboard tools to further assist collabo-
ration. Detailed description of the Discover server is
presented in [16].

4 DIOS++ ARCHITECTURE

DIOS++ is composed of 3 key components: (1)
autonomic objects that extend computational
objects with sensors to monitor the state of the
objects, actuators to modify the state, access policies
to control accesses to sensors/actuators and rule
interfaces, and rule agents to enable rule-based au-
tonomic monitoring and steering, (2) a hierarchical
control network that is dynamically configured to
enable runtime access to and management of the
autonomic objects including their sensors, actuators,
access policies and rules, and to enable dynamical
and secure definition, modification, deletion and
execution of rules.

4.1 Autonomic Object

In addition to its functional interfaces, an autonomic
object (shown in figure 2) exports three interfaces:
(1) a control interface, which defines sensors and ac-
tuators to allow the object’s state to be externally
monitored and controlled, (2) an access interface,
which controls access to the sensors/actuators and
rule interfaces, and describes users’ access privileges
based on their roles and the object’s state, and (3) a
rule interface, which contains rules used to autonom-
ically monitor and control the object, and provides
methods for adding, modifying and deleting rules.
Rule operations are handled by the rule agent em-
bedded within the autonomic object. These inter-
faces and the rule agent are described in the follow-
ing sections. A sample object that generates a list of
random integers (RandomList) is used as a running
example. The number of integers and their range are
allowed to be set at runtime.

Sensor Actuator
Rule Agent
n invocation invocation
Control interface
Comzt;}zté?nal Access interface [Rule Agent 8 |
Rule interface | Ll I

Internal
state

Access Contextual
policies

Autonomic object events

Figure 2: An autonomic object.

4.1.1 Control Interface

The control interface specifies the sensors and actu-
ators exported by an object. Sensors provide meth-
ods for viewing the current state of an object, and
actuators provide methods for processing commands
to modify the object’s state. For example, a Ran-
domList object provides sensors to query the cur-
rent length of the list or the maximum value in the
list, and an actuator for deleting the current list.
Note that sensors and actuators must be co-located
in memory with the computational objects and must
have access to their internal state, since computa-
tional objects may be distributed across multiple pro-
cessors and can be dynamically created, deleted, mi-
grated and redistributed.

DIOS++ provides programming abstraction to en-
able application developers to define and deploy sen-
sors and actuators. This is achieved by deriving com-
putational objects from a virtual base object pro-
vided by DIOS++. The derived objects can then
selectively overload the base object methods to spec-
ify their sensors and actuators. This process requires
minimal modification to the original computational
objects and has been successfully used by DIOS++
to support interactive steering.

4.1.2 Access Interface

The access interface addresses security and applica-
tion integrity. It controls the accesses to an object’s
sensors/actuators and rule interfaces, and constrains
them to the authorized users. The role-based access
control model is used, where users are mapped to
roles and each role is granted specific access privi-
leges defined by access policies.

The DIOS++ defines three roles: owner, mem-
ber, and guest. Each user is assigned a role based
on her/his credentials. The owner can define/modify
access policies, and enable or disable external access
to sensors/actuators and rule interfaces. The polices
define which roles can access a sensor, actuator and
rule interface, and in what way. Access polices can
be defined statically during object creation using the
DIOS++ APIs, or can be injected dynamically by
the owner at runtime via secure Discover portals.
Objects can dynamically change their access policies
based on their current state without affecting other
objects. Therefore, a user may be denied of access in
one object, but his/her privileges are not changed in
another object.

4.1.3 Rule Interface

The DIOS++ framework uses user-defined rules to
enable autonomic management and control of appli-
cations. The rule interface contains rules that de-
fine actions to be executed when specified conditions
are satisfied, and provides methods for dynamically
defining/modifying/deleting rules. The conditions
and actions are defined in terms of the control inter-
face, e.g., sensors and actuators provided by the ob-

ject. A rule consists of 3 parts: (1) the condition part,
defined by the keyword “IF” and composed of con-
ditions which are conjoined by logical relationships
(AND, OR, NOT, etc.), (2) the then action part,
defined by the keyword “THEN” and composed of
operations that are executed when the corresponding
condition is true, and (3) the else action part, defined
by the keyword “ELSE” and composed of operations
to be executed when condition is not fulfilled.

For example, consider the RandomList object with
2 sensors: (1) getLength() to get the current length
of the list and (2) getMazValue() to get the maximal
value in the list, and 1 actuator append(length, maz,
min) that creates a list of size length with random
integers between maz and min, and appends it to
the current list.

IF RandomList.getLength()<10
AND RandomList.getMaxValue()<=50
THEN RandomList.append(10, 50, 0)

Note that rules are separated from the application
logic. And rules can be created, deleted and modi-
fied at runtime orthogonal to the application execu-
tion. This provides the flexibility of allowing users to
on the fly monitor and adjust the application execu-
tion without stopping and restarting the application.
Rules are handled by rule agents and the rule engine,
which are part of the control network (described in
the following sections) and are responsible for storing,
evaluating and executing rules.

4.1.4 Rule Agent

There is a rule agent embedded within each auto-
nomic object. The rule agent receives rules from the
rule engine through rule interfaces, authorizes and
authenticates the user who defines the rules, evalu-
ates and executes the rules based on the internal and
contextual state to dynamically monitor and steer its
host object via invoking sensors and actuators. Mul-
tiple rule agents may coordinate with each other to
provide collaborative steering behaviors on multiple
autonomic objects. Rule agents and the rule engine
will be discussed in section 4.2.

T Discover
i RA portal

Computational node i

- DISCOVER 5
RA |
e plas)
portal
=]

DISCOVER
Computational node portal

)

~~ control network

LS

Figure 3: The DIOS++ control network.

4.2 Control Network

The DIOS++ control network (see Figure 3 in which
the Discover collaboratory consists of the control net-
work as the back end, the Discover server and portals
as the front-end) is a hierarchical structure consisting
of the rule engine and Gateway, and computational
nodes. It is automatically configured at runtime us-
ing the underlying messaging environment (e.g. MPI)
and the available processors.

The lowest level of the control network hierarchy
consists of computational nodes. Each node main-
tains a local object registry containing references to
all autonomic objects currently active and registered.
At the next level of hierarchy, the Gateway repre-
sents a management proxy for the entire application.
It combines the registries exported by the nodes and
manages a registry of the interaction interfaces (sen-
sors and actuators) for all the objects in the applica-
tion. It also maintains a list of access policies related
to each exported interface and coordinates the dy-
namic injection of rules. The Gateway interacts with
external interaction servers or brokers such as those
provided by Discover.

Co-located with Gateway, the rule engine accepts
and maintains the rules for the application. It de-
composes these rules and distributes them to the
corresponding rule agents, collects rule execution re-
sults from rule agents and reports them to the users.
Each rule agent executes its rules based on an exe-
cution script, and reports the rule execution results
to the rule engine. The execution script is defined
by the rule engine to specify the rule execution se-
quence and the rule agent’s runtime behaviors. The

specification and execution of scripts and the coor-
dination between the rule engine and rule agents are
illustrated in the following sections.

In DIOS++, rules are evaluated and executed by
rule agents in a parallel and distributed fashion.
The decomposition of rules, collection of rule ex-
ecution results, and management of rule execution
are assumed by the rule engine. This central-control
and distributed-execution mechanism has the follow-
ing advantages: (1) Rule execution which can be
compute-intensive is done in parallel by rule agents.
This reduces the rule execution time as compared to
a sequential rule execution. (2) A rule agent’s behav-
ior is based on script that is defined and modified at
runtime by the rule engine, allowing it to adapt to
the current execution environment and the rules to
be executed.

The operation of the control network is explained
below using an example. Consider a simple applica-
tion that generates a list of integers and then sorts
them. This application contains two objects: (1)
RandomList that provides a list of random integers,
and (2) SortSelector that provides several sorting al-
gorithms (bubble sort, quick sort, etc.) to sort inte-
gers.

4.2.1 Initialization

During initialization, the application uses the
DIOS++ APIs to create and register its objects, and
export its interfaces and access policies to the local
computational node. Each node exports these speci-
fications of all its objects to the Gateway. The Gate-
way then updates its registry. Since the rule engine
is co-located with Gateway, it has access to the Gate-
way’s registry. The Gateway interacts with the exter-
nal access environment (Discover servers in our pro-
totype) and coordinates accesses to the application’s
sensor/actuators, policies and rules.

4.2.2 Interaction and Rule Operation

The lifetime of an application is divided into iter-
ations of computation and interaction. Users’ re-
quests (realtime interaction requests or rule operation
requests) received at computation iterations will be

queued for execution in the next interaction iteration.
Steering actions are completed in one interaction it-
eration and will automatically become effective from
the next computation iteration.

At runtime the Gateway may receive incoming in-
teraction or rule requests from users. The Gateway
first checks the user’s privileges based on her/his
role, and refuses any invalid access. It then trans-
fers valid interaction requests to corresponding ob-
jects and transfers valid rule requests to the rule en-
gine. Finally, the responses to the user’s requests or
the rule execution results are combined, collated and
forwarded to the user. Once again we use the exam-
ple to describe this process.

Rule definition: Suppose RandomlList exports 2
sensors: getLength() and getList(). SortSelector ex-
ports no sensors, and 2 actuators: sequentialSort()
and quickSort(). The owner can access all these
interfaces. Members can only access getLength()
and getList() in RandomList, and sequentialSort() in
SortSelector. Guests can only access getLength() in
RandomList.

Using DIOS++, users can view, add, delete, mod-
ify and temporarily disable rules at runtime using a
graphical rule interface integrated with the Discover
portal. An application’s sensors, actuators and rules
are exported to the Discover server and can be se-
curely accessed by authorized users (based on access
control polices) via the portal. Authorized users can
compose rules using the sensors and actuators. Note
that rules may be defined for individual objects, or
for the entire application and span multiple objects.
Users specify a priority for each rule, which is then
used to resolve rule conflicts.

Rule deployment: Consider the following rules de-

fined by a user. Let Rulel have a higher priority than
Rule2:

Rulel: IF RandomList.getLength()<100
THEN RandomList.getList()

ELSE RandomList.getLength()

IF RandomList.getLength()<50

THEN SortSelector.sequentialSort()
ELSE SortSelector.quickSort ()

Rule2:

Rulel is an object rule, which means that the rule
only applies to one object. Rule2 is an application

rule, which means that the rule can affect several
objects. When the Gateway receives the two rules,
it will first check the user’s privileges. If the rules
are defined by member users, Rule2 will be rejected
since member users do not have the privilege to access
quickSort() interface in SortSelector.

The Gateway transfers valid rules to the rule en-
gine. The rule engine dynamically decomposes the
rules and inject them into corresponding rule agents.
It then composes a script for each agent, which de-
fines the rule agent’s lifetime and rule execution se-
quence based on rule priorities. For example, the
script for the rule agent in RandomlList may spec-
ify that this agent will terminate itself when it has
no rules, and Rulel is executed first. Note that this
script is extensible.

In the case of an object rule, the rule engine just in-
jects the object rule into its corresponding rule agent.
In the case of an application rule, the rule engine will
first decompose the rule into triggers and then inject
triggers into corresponding agents. The application
rule ‘Rule2’ is decomposed into 3 triggers: (1) SortS-
elector.sequentialSort(), (2) SortSelector.quickSort(),
and (3) RandomList.getLength() < 50. These trig-
gers are injected into corresponding agents as shown
in Figure 4. The left figure shows the rule engine de-
ploys an object rule to its corresponding rule agent,
and the right one shows the rule engine decomposes
an application rule into triggers and injects triggers
to corresponding rule agents.

l_'l Rule engine

Rule interface

IF getLength ()<100
THEN getList ()
ELSE getLength ()

‘Sorter’ st
Trigger1: sequentialSort ()
Trigger2: quickSort ()

Trigger3: getLength ()<50

Rule engine
IF Trigger3
THEN Triggert

ELSE Trigger2

Rule interface

|

Rule interface

L]

‘List!

Figure 4: Rule deployment.

Rule execution and conflicts resolution: During in-
teraction iterations, the rule engine fires all the rule
agents at the same time, and then those rule agents
work in parallel. Rule agents execute object rules and
return the results to the rule engine. The rule engine
then reports them to the user. Rule agents also exe-

10

cute triggers, which are part of application rules, and
report corresponding results to the rule engine. The
rule engine collects the required trigger results, eval-
uates condition combinations, and then issues corre-
sponding actions to be executed in parallel by rule
agents if the conditions are fulfilled. Application rule
results are also reported to the user.

While typical rule execution is straightforward (ac-
tions are issued when their required conditions are
fulfilled), the application dynamics and user interac-
tions make things unpredictable. As a result, rule
conflicts must be detected at runtime. In DIOS++,
rule conflicts are detected at runtime and are han-
dled by grouping rules based on their priority and dis-
abling the conflicting rules with lower priorities. This
is done by locking the required sensors/actuators.
For example, suppose that a user defines two rules
for the object instance RandomList. Rule3 requires
setting the minimal integer value to 5 when the list
length is less than 100 and larger than 50, and Rule4
requires the minimal value to be 6 when the list
length is larger than 30 and less than 70. Rule3 has
higher priority than Rule4. The two rules conflict
with each other, for example, when the list length is
60.

Rule3: IF RandomList.getLength()>50
AND RandomList.getLength()<100
THEN RandomList.setMinInt() = 5
Rule4: IF RandomList.getLength()>30

AND RandomList.getLength()<70
THEN RandomList.setMinInt() = 6

The script asks the rule agent to fire Rule3 first.
After Rule3 is executed, the interface of setMinInt()
is locked during the period when the length is less
than 100 and larger than 50. When Rule4 is issued, it
cannot be executed as the required interface is locked.
The interface will be unlocked when the length value
is not within the range of 50 to 100.

The rule execution model is being enhanced (see
[17]) to handle conflicts among rules with the same
priority and between newly added rules and existing
rules, using a three-phase model. Specifically, the
rule conflicts are resolved by relaxing the rule condi-
tions until a non-empty intersection between the ac-
tions of conflicting rules is found. Users define the

condition relaxation strategies and the model exe-
cutes these strategies during rule enforcement pro-
cess.

5 AN ILLUSTRATIVE EXAMPLE

In this section, we use the oil reservoir simulation
application [18] to illustrate the ideas described in
section 4. The application optimizes the placement
and operation of oil wells to maximize overall
revenue. The application consists of the instances
of distributed multi-model, multi-block reservoir
simulation components provided by the IPARS,
simulated annealing based optimization services
provided by the VFSA, economic modelling services,
real-time services providing current economic data
(e.g. oil prices), historical data archives, and experts
(scientists, engineers) connected via collaborative
portals. In the initialization period, experts config-
ure and launch the IPARS factory and the VFSA
optimization service. In the iterative optimization
phase, the TPARS factory gets initial guess from
the VFSA and launches an TPARS instance, which
uses the Economic Model along with current market
parameters to estimate the current revenue. This
revenue is normalized and then communicated to
the VFSA service, which in turn uses this value to
generate an updated guess of the well parameters
and sends this to the IPARS Factory. The IPARS
Factory now configures a new instance of TPARS
with the updated well parameters and deploys it.
This process continues until the required terminating
condition is reached (e.g. revenue stabilizes).

The TPARS instance exposes its input parameters
(well parameters) for external modification, and also
makes its internal physical models changeable from
outside. Similarly, the VFSA exposes its input pa-
rameters (the revenue) for external modification, and
makes its internal probability value (This value is
used to determine whether to accept the new model
whose energy is larger than the initiate state) change-
able from outside.

DIOS++ provides intra-object steering through di-
rectly modifying parameters exported by objects. For
instance, modification of the probability value of the

11

VESA will increase or decrease the process time to
find a global minimum. Through testing on the prob-
ability value for several iterations, the VFSA can
determine the best value for optimization. Consis-
tency of intra-object steering behaviors is guaranteed
through the actuator constraints specified in the rules
which are embedded inside the objects. Those con-
straints will automatically restrict steering behaviors
within a valid range. For instance, a constraint is de-
fined to prevent the probability value from falling out
of the range between 0 and 1. When a user tries to
set the probability to an invalid value, the constrain
will reject the request and send an error message to
the user.

IF probability <O OR probability>1
THEN exception(VFSA, probability, error_message)

DIOS++ provides inter-object steering through
modifying the input parameters to the objects, which
are similar to intra-object steering. Let us examine
a more complex case that combines intra- and inter-
object monitoring and steering. Suppose IPARS pro-
vides two algorithms, algorithms1 that generates a re-
sult with higher precision but is resource-consuming,
and algorithm?2 that generates a result with lower
precision but consumes less resources. IPARS be-
gins with algorithm2 and then use algorithm1 when
the revenue approaches some pre-defined threshold to
achieve the best performance in terms of precision un-
der the condition of limited computational resources.
The rules are specified as follows:

IF VFSA.revenue < threshold THEN IPARS.algorithm2()
ELSE IPARS.algorithmi()

This rule is decomposed into sen-
sorl “VESA.revenue < threshold”, actua-
torl “IPARS.algorithm2()” and actuator2

“IPARS.algorithm1()”. the sensorl is injected
into the VFSA rule agent; The actuatorl and
actuator2 are injected into the TPARS rule agent.
When sensorl is triggered, IPARS rule agent will be
notified and corresponding actuatorl or actuator2
will be executed. This complex monitoring/steering
behavior is performed locally within the VFSA and
TIPARS, without the supervision from the rule engine.

After defined and submitted to the system, the rules
will be automatically evaluated and executed to
configure the IPARS without human intervene.

Intra- and inter-object monitoring/steering can be
synchronous and asynchronous. Synchronous mon-
itoring/steering is a one-time behavior (an exam-
ple could be the modification of probability value in
VFSA); while asynchronous monitoring/steering re-
quires to set up a series of requests and commands
which will be executed in a batch when specified con-
ditions are fulfilled (an example could be the complex
case discussed above). Rule agents ensure that re-
quests and commands within one rule are executed
as one atomic operation.

It is assumed that a typical application proceeds
through interaction and computation phases alter-
nately, and an interaction phase occurs after one or
more steps (iterations) of computation. Modification
happens at iteration N will become effective at iter-
ation N+1. Rules are evaluated at each interaction
iteration and fired when the conditions are satisfied.
Similarly, rule execution results will be effective from
the next iteration. Monitoring/steering requests ar-
rive at computation iteration will be queued and pro-
cessed at the next interaction iteration. The maxi-
mum number of requests to be serviced in an inter-
action session is a programmable parameter and can
be changed to vary the degree of interaction being
handled by the application.

6 EXPERIMENTAL EVALUATION

DIOS++ has been implemented as a C++ library.
This section summarizes an experimental evaluation
of the DIOS library using the IPARS reservoir
simulator framework on a 32 node beowulf cluster.
IPARS is a Fortran-based framework for developing
parallel /distributed reservoir simulators. Using
DIOS++/Discover, engineers can interactively feed
in parameters such as water/gas injection rates and
well bottom hole pressure, and observe the water/oil
ratio or the oil production rate. The evaluation
consists of 3 experiments:

Experiment 1 (Figure 5): This experiment mea-

12

1600 @ without
S 1400 DIOS++
8 1200 | with
@ 1000 DIOS++
'g 800
S 600
g 400
% 200

0 number of
1 2 4 8 16 32 processors

Figure 5: Minimal overhead.

sures the runtime overhead introduced to the appli-
cation in DIOS++ minimal rule execution mode. In
this experiment, the application automatically up-
dates the Discover server and its connected clients
with current state of autonomic objects and rules.
Explicit interaction and rule execution are disabled
during the experiment. The application’s runtime
with and without DIOS++ are plotted Figure 5.
It can be seen that the runtime overhead due to
DIOS++ is very small and within the error of mea-
surements.

120000 @ computation
100000 +— time
R 80000
2 T B rule
S 60000 -H deployment
E time
~— 40000 -+
[0
E 20000 H
0 number of

1 2 3 4 iterations

Figure 6: Rule deployment overhead.

Experiment 2 (Figure 6): This experiment com-
pares computation time and the average rule deploy-
ment time for successive iterations. In this experi-
ment, we deployed object rules in the first and third
iterations, and application rules in the second and
fourth iterations. The experiment shows that ob-
ject rules need less deployment time than application
rules. This is true since the rule engine only has to
inject object rules to corresponding rule agents, while
it has to decompose application rules to triggers, and
inject triggers to corresponding rule agents. Since in
most cases, rules are deployed at startup and runtime

injection is relatively rare, the impact of the rule de-
ployment overhead is not significant.

120000

@ computation
time

100000

@ obj rule exec
time

Oapp rule
exec time

number of

3 iterations

Figure 7: Rule execution overhead.

Experiment 3 (Figure 7): This experiment com-
pares computation time, average object rule exe-
cution time and average application rule execution
time for successive iterations. The experiment shows
that application rules require longer execution time
than object rules, since the rule engine has to col-
lect results from all the triggers, check whether the
conditions are fulfilled and invoke corresponding ac-
tions. The execution of both application rules and ob-
ject rules involves querying sensors, evaluating con-
ditions, resolving conflicts, and invoking actuators.
Sensor queries, conditional evaluation and actuator
invocation can be done in parallel. As a result, these
overheads are not significantly impacted by the size
of the rule base. However, conflict resolution over-
head does increase with the size of the rule base. We
are currently exploring more efficient conflict reso-
lution algorithms that can improve the performance
and scalability of the rule framework.

7 SUMMARY AND CONCLUSION

This paper presented the design, prototype imple-
mentation and experimental evaluation of DIOS++,
a framework for supporting the rule-based man-
agement and control of distributed scientific
applications. DIOS++ extends computational
objects with control, access and rule interfaces, and
embedded rule agents to allow secure external mon-
itoring and steering behaviors with rich semantics.
DIOS++ enables a synchronous management via
direct interactions between users and application
sensors/actuators as well as asynchronous and

13

automatic management via user defined rules.

Rules can be defined, modified and deleted at run-
time. They are evaluated and executed in a dis-
tributed and parallel manner by rule agents embed-
ded within autonomic objects, to automatically ad-
just the runtime behaviors of applications. Besides,
these rules are defined in a simple “IF-THEN-ELSE”
format and can be used with many different appli-
cations. The experimental evaluation presented in
the paper demonstrates that DIOS++ overheads are
small and the framework is scalable.

DIOS++ is currently being used, along with DIS-
COVER, to enable autonomic monitoring and control
of a wide range of scientific applications, including oil
reservoir, compressible turbulence and numerical rel-
ativity simulations.

ACKNOWLEDGEMENTS

The research presented in this paper is supported
in part by the National Science Foundation through
grants ACI 9984357, EIA 0103674, EIA 0120934,
ANT 0335244, CNS 0305495, CNS 0426354 and IIS
0430826.

REFERENCES

1 B. Kohn, E. Kraemer, D. Hart, and D. Miller, ‘An
agent-based approach to dynamic monitoring and
steering of distributed computations’, Proceedings of
TASTED, Las Vegas, Nevada, 2000.

L. Renambot, H. E. Bal, D. Germans, and H. J.
Spoelder, ‘Cavestudy: an infrastructure for com-
putational steering in virtual reality environments’,
Proceedings of the Ninth IEEE International Sympo-
sium on High Performance Distributed Computing,
Pittsburgh, PA, 2000, pp. 5761.

J. D. Mulder, ‘Computational steering with
parametrized geometric objects’, Ph.D. dissertation,
Universiteit van Amsterdam, 1998.

G. A. Geist, J. A. Kohl, and P. M. Papadopoulos,
‘Cumulvs: Providing fault-tolerance, visualization
and steering of parallel applications’, Proceedings of
Environment and Tools for Parallel Scientific Com-
puting Workshop, Lyon, France, 1996.

10

11

12

13

14

15

16

S. Rathmayer and M. Lenke, ‘A tool for on-line
visualization and interactive steering of parallel
hpc applications’, Proceedings of 11th International
Parallel Processing Symposium (IPPS’97), Geneva,
Switzerland, 1997.

S. Parker and C. Johnson, ‘An integrated prob-
lem solving environment: The scirun computational
steering environment’, Proceedings of HICCS-31,
1998.

J. O. Kephart and D. M. Chess, ‘The vision of au-
tonomic computing’, Computer magazine, Vol. 36,
No. 1, pp. 4152, 2003.

R. Muralidhar and M. Parashar, ‘A distributed ob-
ject infrastructure for interaction and steering’, Con-
currency and Computation: Practice and Fxperi-
ence, 2003.

D. Beazley and P. Lomdahl, ‘Controlling the data
glut in large-scale molecular-dynamics simulations’,
Computers in Physics, Vol. 11, No. 3, pp. 230238,
1997.

S. Rathmayer, ‘Visualization and computational
steering in heterogeneous computing environments’,
Proceedings of Euro-Par 2000 - Parallel Process-
ing: 6th International Euro-Par Conference, Mu-
nich, Germany, 2000.

D. Hart and E. Kraemer, ‘Consistency considera-
tions in the interactive steering of computations’,
international journal of parallel and distributed net-
works and systems, 1999.

G. Valetto and G. Kaiser, ‘Using process technol-
ogy to control and coordinate software adaptation’,
Proceedings of the 25th international conference on
Software engineering, 2003.

S. Fischmeister, ‘Mobile code paradigms’, 2002,
http://library.mobrien.com/downloads/mobile
agent.ppt.

J. S. Vetter and D. A. Reed, ‘Real-time performance
monitoring, adaptive control, and interactive steer-
ing of computational grids’, The International Jour-
nal of High Performance Computing Applications,
Vol. 14, Nno. 4, pp. 357366, 2000.

B. A. Allan and et al., ‘The CCA core specification
in a distributed memory SPMD framework’, Con-
currency Computation, Vol. 14, No. 5, pp. 323345,
2002.

V. Mann, V. Matossian, R. Muralidhar, and M.
Parashar, ‘Discover: An environment for web-based
interaction and steering of high-performance scien-
tific applications’, Concurrency and Computation:

14

17

18

Practice and Ezperience, Vol. 13, No. 8-9, p. 737
754, 2001.

H. Liu, ‘A programming framework for autonomic
grid applications’, 2004, Ph.D. proposal, CAIP, Rut-
gers University, NJ, USA.

V. Matossian and M. Parashar, ‘Autonomic opti-
mization of an oil reservoir using decentralized ser-
vices’, Proceedings of the 1st International Work-
shop on Heterogeneous and Adaptive Computing
Challenges for Large Applications in Distributed
Environments (CLADE 2003), Seattle, WA, USA,
2003.

