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Abstract

In this paper, we introduce the concept of rule-based visualization for a computational steering collaboratory and show how
these rules can be used to steer the behaviors of the visualization subsystem. Rules define high-level policies and are used to
autonomically select and tune the visualization routines based on application requirements and available computing/network
resources. Such an autonomic management of the visualization subsystem can significantly improve the effectiveness of com-
putational steering collaboratories in wide-area Grid environments.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

A computational steering collaboratory is an en-
ironment in which geographically distributed scien-
ists can collaboratively investigate complex simula-
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tions using online remote visualization and comp
tional monitoring/steering techniques. Computatio
steering not only shortens the period between cha
to parameters and the viewing of the results, but ena
a what-if analysis, which makes cause–effect rela
ships more evident[1]. The ability to flexibly manip
ulate the visualization subsystem in a computati
steering collaboratory is important, as visualizatio
typically the basis for interactive monitoring, ste
ing and multi-user collaboratory. However, for lar
scale long-running simulations, it may not be feas
to download an entire data set or even one time
of the data set to a visualization platform. Theref
sometimes visualization routines are co-located a
simulation platform, and the methods must be sele
a priori, which may not be the most efficient.
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In this paper, we present a rule-based visualization
system. Rules are decoupled from the system and can
be externally injected to manage visualization behav-
iors at runtime, such as autonomically selecting the ap-
propriate visualization routines and methods, and ad-
justing the extraction threshold. For example, the scien-
tist may specify the rule “if the number of the extracted
regions is greater than 100, then increase the threshold
by 5”. This rule will inform the visualization system
to autonomically change the threshold under different
conditions. Further, if the scientist knows from moni-
toring the first 200 timesteps that the value “5” is not
appropriate, he/she can modify the rule at runtime and
the modified rule will be applied to the rest of the sim-
ulation. Rules can also be used to support collaborative
visualization in heterogeneous environments where the
collaborators’ resources and display capabilities may
differ. For example, rendering an isosurface with mil-
lions of polygons may be too computation/network-
intensive for a thin client like a PDA. Either the poly-
gons can be reduced using straightforward triangle dec-
imation techniques, or a more abstract feature-based
representation can be displayed[2]. Such autonomic
adaptations can be simply achieved using a rule such
as “if there are more than 10 K triangles, then display
a higher level of abstraction”.

The rule-based visualization subsystem presented
in this paper builds on Discover, which is a compu-
tational collaboratory for interactive Grid applications
and provides the infrastructure for enabling rules to be
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Virtue, Discover and CSE, only the first three have vi-
sualization functionality. Discover and Virtue support
WAN-based collaboration, where flexibility and effi-
ciency are critical. Vetter and Reed[7] propose a visu-
alization hierarchy for Virtue. Given a high-level per-
spective, users can selectively drill down to the lower
level for more detail of interest. Feature-based visu-
alization presented in this paper can also be used to
similarly drill down to different levels of feature detail.

The rule-based visualization presented in this paper
can be used for post-processing visualization, in which
the data set is downloaded to a special visualization
machine and is interactively interrogated using visual-
ization techniques, as well as for in situ visualization,
which runs with the simulation and bypass the need to
download the data, allowing the scientist to get a first
look at the data.

3. The Discover computational collaboratory

Discover is a virtual, interactive and collaborative
PSE that enables geographically distributed scientists
and engineers to collaboratively monitor, and control
high-performance parallel/distributed applications us-
ing web-based portals[3]. As shown inFig. 1, Discover
provides a 3-tier architecture composed of detachable
thin clients at the front-end, a peer-to-peer network of
servers in the middle, and the Distributed Interactive
Object Substrate (DIOS++)[8] at the back-end.
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ynamically and securely composed, injected into
pplication, and executed so as to autonomically a
nd optimize its behaviors[3]. In this paper, we inte
rate the rule mechanism into a feature-based visua

ion subsystem and demonstrate how this can be
o improve monitoring, steering and collaboration.

. Related work

Computational steering systems have been d
ped to explore models (e.g., VASE[4], Discover

3], CSE[5] and CUMULVS [6]), experiment algo
ithms (e.g., VASE) and optimize performance (e
UMULVS and Virtue[7]) [1]. However, few of the
xisting computational steering systems[3,5–7] sup-
ort multi-user collaboration. Among the collaborat
omputational steering systems such as CUMUL
DIOS++ enables rule-based autonomic adapta
nd control of distributed scientific applications. I
omposed of three key components: (1) autonomic
ects that extend computational objects with sen
to monitor the state of the objects), actuators (to m
fy the state of the objects), access policies (to c
rol accesses to sensors and actuators) and rule a
to enable rule-based autonomic self-managemen
echanisms for dynamically and securely compos
eploying, modifying and deleting rules; and (3) a h
rchical control network that is dynamically configu

o enable runtime accesses to and management
utonomic objects and their sensors, actuators, a
olicies and rules.

Discover is currently operational and is being u
o provide interaction capabilities to a number of
ntific and engineering applications. Furthermore
iscover middleware substrate provides interoper
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Fig. 1. The architecture of the Discover computational collaboratory.

ity between Discover interaction and collaboration ser-
vices and Globus Grid services.

4. Feature extraction and feature tracking

Feature-based visualization allows scientists to ex-
tract regions of interests (the features), and then visual-
ize, track and quantify the evolution of these features.
In this work, we show how feature-based visualization
can be effectively used in a rule-based computational
steering collaboratory.

Features are tracked from one timestep to the next
to capture how the features evolve[2]. Feature track-
ing allows events to be catalogued and enables complex
queries to be performed on the data set. Queries include
data-mining-type exploration, such as “how many new
regions appear in timestepti?” or “in which timesteps
do large regions merge?”. The framework of feature-
based visualization is shown inFig. 2. The first step in
feature-based framework is defining the feature of in-
terests. There are many different definitions and we uti-
lize the most basic one here, i.e., features are defined as
connected regions which satisfy some thresholds (such
as isosurfaces or volume rendering)[2]. After the fea-

tures are extracted, the feature attributes, such as iso-
surface, mass, volume and centroid, can be computed.
The features can also be abstracted using a simpler
shape. One such reduced representation is an ellipsoid
that provides an iconic abstraction to blob-like regions
[9], as shown inFig. 2. Other types of abstractions in-
clude more line-like regions such as skeletons[10] and
vortex cores[11], and critical points/curves for vector

Fig. 2. A feature-based visualization.
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fields[12]. For scalar fields, contour trees[13] can also
provide an abstraction.

In previous work, feature extraction and tracking
has been implemented as a post-process distributed vi-
sualization routine[14]. In this paper, we build upon
this distributed routine and demonstrate an integrated
approach within Discover using the rule-based mech-
anism. This allows scientists to control aspects of the
feature extraction process for greater flexibility. In our
previous version, the visualization parameters had to
be set at the start of the simulation, but they can now
be autonomically controlled during the simulation.

5. Rule-based autonomic visualization

Ftrack, the feature-based visualization system inte-
grated with Discover, is capable of autonomic beha-

Rule1: IF getNumCells()>10K

THEN {setEllipsoidFitting(true); setIsosurface(false) }

ELSE {setEllipsoidFitting(false); setIsosurface(true) }

Rule2: IF isPDA()==TRUE

THEN {setEllipsoidFitting(true); setIsosurface(false) }

viors based on the rules defined by users at run-
time. The rules are categorized as: (1)steering rules
that enable intra-function management, e.g., chang-
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This rule informsFtrack to highlight time tracking
when the number of features is very small (3 in this ex-
ample), otherwise highlight refinement levels. This rule
is composed of one sensor,getAverageNumberofFea-
tures, and two actuators,useLevelHighlightingScheme
anduseTimeHighlightingScheme, exposed byFtrack.

Configuration rule. Scientists may choose to vary
the visualization routines based on the comput-
ing/network resources available at the time of visual-
ization. For example, when the number of grid cells in
the data set exceeds a threshold, the scientist at a thin
client may want to display ellipsoids instead of isosur-
faces, which is specified as Rule1 below. The scientist
can modify Rule1 at runtime to change 10–50 K or
switch THEN and ELSE statements. If the scientist is
working on a PDA, which typically has poor graphics
resolution as well as limited memory capacity, Rule2
can be defined to dynamically modify the visualization
behavior.

6. Rule-based visualization using Discover
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ng the runtime behaviors of the visualization fu
ions by dynamically altering their parameters
2) configuration rulesthat enable inter-function ma
gement, e.g., organizing the visualization capa

ties by selecting the appropriate routines to
xecuted. Examples of rules and the related
ors, actuators applicable toFtrack are presente
elow.
Steering rule. The rule for choosing an approp

te threshold mentioned inSection 1is an exampl
f steering rule. Another example given here is a

or changing the color schemes. The level-highligh
olor scheme gives each level a different hue and
igns different saturation to each feature. The ti
ighlighting color scheme assigns different hues to

eature at different timesteps.
IF getAverageNumberofFeatures()<3 THEN
 evelHighlightingScheme()

useTimeHighlightingScheme()

The visualization subsystem,Ftrack, which per-
orms the distributed feature extraction and track
s designed as a DIOS++ object. As shown inFig. 3,
heFtrackobject consists of three actors, each ma
ng a part of the visualization task.
Feature extractorextracts the features of inte

st, and computes the geometry attributes (e.g.,
urface) and quantification attributes (e.g., volu
ass, tensor) for each feature. Furthermore, it can

ulate global statistics such as the average nu
f features, the variation in the number of featu
tc.
Feature trackertracks the extracted features. T

nput is the feature information from feature extrac
nd the steering commands defined by the users v
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Fig. 3. Ftrack within Discover/DIOS++.

portals or by the rule engine. The output is the tracking
information represented as a set of graphs.

Visualizer includes various visualization modules
supported by the feature extractor and feature tracker.
It utilizes the results from the other two actors to create
visualizations of the features (e.g., an isosurface ren-
dering displaying quantification) and sends the images
and/or data to the Discover portals.

The control port exposes sensors and actuators to
allow the state of the visualization subsystem to be ex-
ternally monitored and controlled by users. Theaccess
portcontrols access to these sensors/actuators based on
users’ privileges and capabilities. Therule port con-
tains the rules evaluated and executed by the rule agent
(RA) to autonomically monitor, adapt and control the
Ftrack object. The rule-based visualization process is
summarized below.

Initialization and interaction. During initialization,
the application uses the DIOS++ APIs to register its
objects, export their sensors/actuators, functional in-
terfaces and access policies to the local computational
nodes, and further to the Gateway, which then updates
its registry. The rule engine is co-located with Gate-
way, and thus has access to the Gateway’s registry.
The Gateway interacts with the external access envi-
ronment and coordinates accesses to the application’s
sensors/actuators, policies and rules as a broker.

At runtime, the Gateway may receive incoming in-
teraction or rule requests from users. The Gateway first
checks the user’s privileges based on the user’s role,
a alid
i ards
v gine
a y, and
i ple-
m

Ftrackinvokes the sensors and functional interfaces ex-
posed by computational objects to get real-time data,
performs feature-tracking computations based on the
rules and sends the visualization data to the portals for
display.

Rule deployment and execution. The rule engine dy-
namically creates rule agents forFtrackand other ob-
jects if they do not already exist. It then composes a
script for each agent that defines the rule agent’s life-
time and rule execution sequence based on rule priori-
ties.

While typical rule execution is straightforward (ac-
tions are issued when their required conditions are ful-
filled), the application dynamics and user interactions
make things unpredictable. As a result, rule conflicts
must be detected at runtime. In DIOS++, rule conflicts
are detected at runtime and are handled by simply dis-
abling the conflicting rules with lower priorities. This
is done by locking the required sensors/actuators. For
example, configuration rules Rule1 and Rule2 conflict
if getNumCells()is less than 10 K whileisPDA() is
TRUE. Assuming Rule1 has higher priority, the script
will inform the rule agent to fire Rule1 first. After Rule1
is executed, interfacessetEllipsoidFitting()andsetIso-

F ution
m

nd refuses any invalid access. It then forwards v
nteraction requests to destination objects and forw
alid rule requests to the rule engine. The rule en
nalyzes the rules, decomposes them if necessar

njects them to the corresponding objects. In our im
entation, visualization rules are injected intoFtrack.
ig. 4. Runtime overheads introduced in the minimal rule exec
ode.
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Fig. 5. Left: Comparison of computation and rule deployment time. Right: Comparison of computation, object rule execution and application
rule execution time.

surface()are locked during the period when getNum-
Cells() is less than 10 K. When Rule2 is issued, it cannot
be executed as its required interfaces are locked. The
two interfaces will be unlocked whengetNumCells()
becomes greater than 10 K. By modifying the rules in
the rule base through the Discover portal, the scientist
can increase the priority of Rule2 higher than that of
Rule1 so that the visualization subsystem always dis-
plays ellipsoids ifisPDA() is TRUE.

7. Experiments and evaluation

This section summarizes experimental evalua-
tions using the IPARS reservoir simulation on
a 32-node beowulf cluster. IPARS is a Fortran-
based parallel/distributed reservoir simulator. Using
DIOS++/Discover and Ftrack, engineers can interac-
tively feed in rules to dynamically determine the param-
eters such as water/gas injection rates and well bottom
hole pressure, and visualize the water/oil ratio or the
oil production rate.

Experiment 1(Fig. 4). This experiment measures the
runtime overhead introduced to the application in the
minimal rule execution mode. In this mode, the appli-
cation autonomically updates the rule engine,Ftrack,
Discover server and its connected clients with current
state of autonomic objects and rules, and explicit in-
teraction and rule execution are disabled. The appli-
cation’s runtime with and without DIOS++/Ftrack are
p er-
h ure-
m

-
p time
f ns,

a new rule is injected into the DIOS++ and deployed
by the rule engine to the destination objects. It shows
that the rule deployment time is much less than the
computation time in each iteration.

Experiment 3(Fig. 5, right). This experiment com-
pares the computation time, object rule execution time
and application rule execution time for successive ap-
plication iterations. Object rules only affect one object,
while application rules may manage several objects.
Therefore, application rules are more expensive than
object rules.

8. Conclusion

This paper presented a rule-based visualization sys-
tem that improves the flexibility of visualization in
a WAN-based computational steering collaboratory.
Rules can be used to steer in situ visualization and aid
in data mining. In a heterogeneous environment, rules
can help the scientists specify the type of interaction
and visualization desired based on system capabilities.
The rule-based visualization system built on the Dis-
cover/DIOS++ computational collaboratory. An exper-
imental evaluation of Discover/DIOS++ was presented
in the paper.
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