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Abstract

In this paper, we introduce the concept of rule-based visualization for a computational steering collaboratory and show how
these rules can be used to steer the behaviors of the visualization subsystem. Rules define high-level policies and are used tc
autonomically select and tune the visualization routines based on application requirements and available computing/network
resources. Such an autonomic management of the visualization subsystem can significantly improve the effectiveness of com-
putational steering collaboratories in wide-area Grid environments.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A computational steering collaboratory is an en-
vironment in which geographically distributed scien-
tists can collaboratively investigate complex simula-
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tions using online remote visualization and computa-
tional monitoring/steering techniques. Computational
steering not only shortens the period between changes
to parameters and the viewing of the results, but enables
a what-if analysis, which makes cause—effect relation-
ships more evider{tl]. The ability to flexibly manip-
ulate the visualization subsystem in a computational
steering collaboratory is important, as visualization is
typically the basis for interactive monitoring, steer-
ing and multi-user collaboratory. However, for large-

opinions, findings and conclusions or recommendations expressed Scale long-running simulations, it may not be feasible
in this material are those of the author(s) and do not necessarily to download an entire data set or even one timestep
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of the data set to a visualization platform. Therefore,
sometimes visualization routines are co-located at the
simulation platform, and the methods must be selected
a priori, which may not be the most efficient.
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In this paper, we present a rule-based visualization Virtue, Discover and CSE, only the first three have vi-
system. Rules are decoupled from the system and cansualization functionality. Discover and Virtue support
be externally injected to manage visualization behav- WAN-based collaboration, where flexibility and effi-
iors at runtime, such as autonomically selecting the ap- ciency are critical. Vetter and Red] propose a visu-
propriate visualization routines and methods, and ad- alization hierarchy for Virtue. Given a high-level per-
justing the extraction threshold. For example, the scien- spective, users can selectively drill down to the lower
tist may specify the rule “if the number of the extracted level for more detail of interest. Feature-based visu-
regions is greater than 100, then increase the thresholdalization presented in this paper can also be used to
by 5”. This rule will inform the visualization system  similarly drill down to different levels of feature detail.
to autonomically change the threshold under different ~ The rule-based visualization presented in this paper
conditions. Further, if the scientist knows from moni- can be used for post-processing visualization, in which
toring the first 200 timesteps that the value “5” is not the data set is downloaded to a special visualization
appropriate, he/she can modify the rule at runtime and machine and is interactively interrogated using visual-
the modified rule will be applied to the rest of the sim- ization techniques, as well as for in situ visualization,
ulation. Rules can also be used to support collaborative which runs with the simulation and bypass the need to
visualization in heterogeneous environments where the download the data, allowing the scientist to get a first
collaborators’ resources and display capabilities may look at the data.
differ. For example, rendering an isosurface with mil-
lions of polygons may be too computation/network-
intensive for a thin client like a PDA. Either the poly- 3. The Discover computational collaboratory
gons can be reduced using straightforward triangle dec-
imation techniques, or a more abstract feature-based Discover is a virtual, interactive and collaborative
representation can be displayg]. Such autonomic  PSE that enables geographically distributed scientists
adaptations can be simply achieved using a rule suchand engineers to collaboratively monitor, and control
as “if there are more than 10K triangles, then display high-performance parallel/distributed applications us-
a higher level of abstraction”. ing web-based portal8]. As shown irFig. 1, Discover

The rule-based visualization subsystem presentedprovides a 3-tier architecture composed of detachable
in this paper builds on Discover, which is a compu- thin clients at the front-end, a peer-to-peer network of
tational collaboratory for interactive Grid applications servers in the middle, and the Distributed Interactive
and provides the infrastructure for enabling rules to be Object Substrate (DIOS+{3] at the back-end.
dynamically and securely composed, injected into the  DIOS++ enables rule-based autonomic adaptation
application, and executed so as to autonomically adaptand control of distributed scientific applications. It is
and optimize its behaviof8]. In this paper, we inte-  composed of three key components: (1) autonomic ob-
grate the rule mechanism into a feature-based visualiza-jects that extend computational objects with sensors
tion subsystem and demonstrate how this can be used(to monitor the state of the objects), actuators (to mod-
to improve monitoring, steering and collaboration. ify the state of the objects), access policies (to con-

trol accesses to sensors and actuators) and rule agents

(to enable rule-based autonomic self-management); (2)
2. Related work mechanisms for dynamically and securely composing,

deploying, modifying and deleting rules; and (3) a hier-

Computational steering systems have been devel- archical control network that is dynamically configured
oped to explore models (e.g., VASE], Discover to enable runtime accesses to and management of the
[3], CSE[5] and CUMULVS|[6]), experiment algo-  autonomic objects and their sensors, actuators, access
rithms (e.g., VASE) and optimize performance (e.g., policies and rules.

CUMULVS and Virtue[7]) [1]. However, few of the Discover is currently operational and is being used
existing computational steering systef3s6—7] sup- to provide interaction capabilities to a number of sci-
port multi-user collaboration. Among the collaborative entific and engineering applications. Furthermore, the
computational steering systems such as CUMULVS, Discover middleware substrate provides interoperabil-
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Fig. 1. The architecture of the Discover computational collaboratory.

vices and Globus Grid services.

4. Feature extraction and feature tracking

can be effectively used in a rule-based computational

steering collaboratory.
Features are tracked from one timestep to the next

to capture how the features evolj&j. Feature track-

ing allows events to be catalogued and enables complex
queriesto be performed on the data set. Queries include
data-mining-type exploration, such as “how many new
regions appear in timestef?” or “in which timesteps

do large regions merge?”. The framework of feature-
based visualization is shown ifig. 2 The first step in
feature-based framework is defining the feature of in-
terests. There are many different definitions and we uti-
lize the most basic one here, i.e., features are defined as

55

tures are extracted, the feature attributes, such as iso-

surface, mass, volume and centroid, can be computed.
The features can also be abstracted using a simpler
shape. One such reduced representation is an ellipsoid

that provides an iconic abstraction to blob-like regions

[9], as shown irFig. 2 Other types of abstractions in-
Feature-based visualization allows scientists to ex- clude more line-like regions such as skeletfr§ and
tract regions of interests (the features), and then visual- vortex coreq11], and critical points/curves for vector
ize, track and quantify the evolution of these features.
In this work, we show how feature-based visualization

connected regions which satisfy some thresholds (such
as isosurfaces or volume renderinfg). After the fea-
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Fig. 2. A feature-based visualization.
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fields[12]. For scalar fields, contour trefs3] can also This rule informsFtrack to highlight time tracking
provide an abstraction. when the number of features is very small (3 in this ex-

In previous work, feature extraction and tracking ample), otherwise highlight refinementlevels. Thisrule
has been implemented as a post-process distributed vi-is composed of one sensgetAverageNumberofFea-
sualization routing14]. In this paper, we build upon  tures and two actuatorsiseLevelHighlightingScheme
this distributed routine and demonstrate an integrated anduseTimeHighlightingSchemexposed by-track.
approach within Discover using the rule-based mech-  Configuration rule Scientists may choose to vary
anism. This allows scientists to control aspects of the the visualization routines based on the comput-
feature extraction process for greater flexibility. In our ing/network resources available at the time of visual-
previous version, the visualization parameters had to ization. For example, when the number of grid cells in
be set at the start of the simulation, but they can now the data set exceeds a threshold, the scientist at a thin
be autonomically controlled during the simulation. client may want to display ellipsoids instead of isosur-
faces, which is specified as Rulel below. The scientist
can modify Rulel at runtime to change 10-50K or
switch THEN and ELSE statements. If the scientist is
working on a PDA, which typically has poor graphics
resolution as well as limited memory capacity, Rule2
can be defined to dynamically modify the visualization
behavior.

5. Rule-based autonomic visualization

Ftrack, the feature-based visualization system inte-
grated with Discover, is capable of autonomic beha-

Rulel: IF getNumCells()>10K

THEN {setEllipsoidFitting(true); setlsosurface(false) }

ELSE {setEllipsoidFitting(false); setlsosurface(true) }
Rule2: IF isPDA()==TRUE

THEN {setEllipsoidFitting(true); setlsosurface(false) }

viors based on the rules defined by users at run-
time. The rules are categorized as: §i¢ering rules
that enable intra-function management, e.g., chang- ) o _
ing the runtime behaviors of the visualization func-  The visualization subsystenftrack which per-
tions by dynamically altering their parameters and forms the distributed feature extraction and tracking,

(2) configuration ruleghat enable inter-function man- 1S designed as a DIOS++ object. As showrFig. 3
agement, e.g., organizing the visualization capabil- _theFtrackobject c_onS|§ts (_)f three actors, each manag-
ities by selecting the appropriate routines to be INgapartofthe visualization task. _
executed. Examples of rules and the related sen- Feature extractorextracts the features of inter-

6. Rule-based visualization using Discover

sors, actuators applicable tetrack are presented
below.

Steering rule The rule for choosing an appropri-
ate threshold mentioned iBection lis an example
of steering rule. Another example given here is a rule
for changing the color schemes. The level-highlighting
color scheme gives each level a different hue and as-
signs different saturation to each feature. The time-
highlighting color scheme assigns different hues to the
feature at different timesteps.

est, and computes the geometry attributes (e.qg., iso-
surface) and quantification attributes (e.g., volume,
mass, tensor) for each feature. Furthermore, it can cal-
culate global statistics such as the average number
of features, the variation in the number of features,
etc.

Feature trackertracks the extracted features. The
input is the feature information from feature extractor
and the steering commands defined by the users via the

IF getAverageNumberofFeatures()<3 THEN useLevelHighlightingScheme()
ELSE useTimeHighlightingScheme()
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Fig. 3. Ftrack within Discover/DIOS++.

portals or by the rule engine. The output is the tracking Ftrackinvokes the sensors and functional interfaces ex-
information represented as a set of graphs. posed by computational objects to get real-time data,
Visualizerincludes various visualization modules performs feature-tracking computations based on the
supported by the feature extractor and feature tracker. rules and sends the visualization data to the portals for
It utilizes the results from the other two actors to create display.
visualizations of the features (e.g., an isosurface ren-  Rule deployment and executidrne rule engine dy-
dering displaying quantification) and sends the images namically creates rule agents fétrack and other ob-
and/or data to the Discover portals. jects if they do not already exist. It then composes a
The control port exposes sensors and actuators to script for each agent that defines the rule agent’s life-
allow the state of the visualization subsystem to be ex- time and rule execution sequence based on rule priori-
ternally monitored and controlled by users. Boeess ties.
portcontrols access to these sensors/actuators based on While typical rule execution is straightforward (ac-
users’ privileges and capabilities. Thale port con- tions are issued when their required conditions are ful-
tains the rules evaluated and executed by the rule agenffilled), the application dynamics and user interactions
(RA) to autonomically monitor, adapt and control the make things unpredictable. As a result, rule conflicts
Ftrack object. The rule-based visualization process is must be detected at runtime. In DIOS++, rule conflicts
summarized below. are detected at runtime and are handled by simply dis-
Initialization and interaction During initialization, abling the conflicting rules with lower priorities. This
the application uses the DIOS++ APIs to register its is done by locking the required sensors/actuators. For
objects, export their sensors/actuators, functional in- example, configuration rules Rule1 and Rule2 conflict
terfaces and access policies to the local computationalif getNumCells()s less than 10K whileasPDA() is
nodes, and further to the Gateway, which then updates TRUE. Assuming Rulel has higher priority, the script
its registry. The rule engine is co-located with Gate- willinform the rule agentto fire Rulel first. After Rulel
way, and thus has access to the Gateway’s registry.is executed, interfacestEllipsoidFitting(Jandsetlso-
The Gateway interacts with the external access envi-

ronment and coordinates accesses to the application’s 1600 T

sensors/actuators, policies and rules as a broker. § 1400+ DIOS++
At runtime, the Gateway may receive incoming in- élggg: 'g‘l‘oth

teraction or rule requests from users. The Gateway first % 8004

checks the user’s privileges based on the user’s role, £ 600

and refuses any invalid access. It then forwards valid % 400+

interaction requests to destination objects and forwards 208:

valid rule requests to the rule engine. The rule engine S i & f i 8 ;x‘;‘;g;gfs

analyzes the rules, decomposes them if necessary, and

injects Fhem FO the_ co_rresponding (_)b_jECtS- m ourimple- Fig. 4. Runtime overheads introduced in the minimal rule execution
mentation, visualization rules are injected ifrtoack. mode.
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Fig. 5. Left: Comparison of computation and rule deployment time. Right: Comparison of computation, object rule execution and application
rule execution time.

surface()are locked during the period when getNum- a new rule is injected into the DIOS++ and deployed
Cells()islessthan 10 K. When Rule2isissued, itcannot by the rule engine to the destination objects. It shows
be executed as its required interfaces are locked. Thethat the rule deployment time is much less than the
two interfaces will be unlocked whegetNumcCells() computation time in each iteration.
becomes greater than 10 K. By modifying the rules in Experiment 3Fig. 5, right). This experiment com-
the rule base through the Discover portal, the scientist pares the computation time, object rule execution time
can increase the priority of Rule2 higher than that of and application rule execution time for successive ap-
Rulel so that the visualization subsystem always dis- plication iterations. Object rules only affect one object,
plays ellipsoids iisPDA()is TRUE. while application rules may manage several objects.
Therefore, application rules are more expensive than
object rules.
7. Experiments and evaluation

This section summarizes experimental evalua-
tions using the IPARS reservoir simulation on
a 32-node beowulf cluster. IPARS is a Fortran-
based par_allel/dlstrlbuted reservoir S|mulator._ UsiNg tam that improves the flexibility of visualization in
DIOSH/ D_|scover and Ftra_ck, engineers can INterac- 5 \waN-based computational steering collaboratory.
tivelyfeedinrulesto dynqrmca!ly determine the param- Rules can be used to steer in situ visualization and aid
eters such as water/gas injection rates and well bottom in data mining. In a heterogeneous environment, rules

hple pressure, and visualize the water/oil ratio or the can help the scientists specify the type of interaction

oil Erodu_ctlon ralt:e_. Thi . h and visualization desired based on system capabilities.
_xpenment:( '9'4)' Is experiment m_eas_ure;t € The rule-based visualization system built on the Dis-

runtime overhead introduced to the application in the cover/DIOS++ computational collaboratory. An exper-

m|q|mal rule exgcunon mode. In this mode., the appli- imental evaluation of Discover/DIOS++ was presented
cation autonomically updates the rule engiRrack, in the paper

Discover server and its connected clients with current
state of autonomic objects and rules, and explicit in-
teraction and rule execution are disabled. The appli-
cation’s runtime with and without DIOS++/Ftrack are References
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