
A Computational Infrastructure for Grid-based Asynchronous Parallel
Applications

Zhen Li and Manish Parashar
Electrical and Computer Engineering Department Rutgers University

94 Brett Road Piscataway, NJ 08854

E-mail: {zhljenny,parashar}@caip.rutgers.edu

1. Introduction

Grid computing, based on the aggregation of large numbers of
independent hardware, software and information resources span-
ning multiple organizations, is rapidly emerging as the dominant
paradigm for distributed problem solving for a wide range of ap-
plication domains. Complementary to Grid virtual organizations,
Desktop Grids [1] leverage Internet connected computers to sup-
port large computations. Desktop Grid systems have been success-
fully used to address large applications in science and engineer-
ing with significant computational requirements, including global
climate predication (Climatprediction.net), protein structure pre-
diction (Predictor@Home), search for extraterrestrial intelligence
(SETI@Home), gravitational wave detection (Einstein@Home),
and cosmic rays study (XtremWeb). While the successes of the
above applications do demonstrate the potential of Desktop Grids,
current implementations are limited to embarrassingly parallel ap-
plications based on the Bag-Of-Task paradigm, where the indi-
vidual tasks are independent and do not require inter-task com-
munications. As a result, these implementations cannot support
more general scientific and engineering applications, such as those
based on parallel iterative computations and replica exchange sim-
ulations, as the parallel formulations of these applications require
synchronization and inter-task communications. Parallel asynchronous
formulations of computation algorithms relax synchronization and
communication requirements, and can tolerate heterogeneous com-
putation powers and unreliable communication channels. These
formulations have been proposed to extend Desktop Grids beyond
embarrassingly parallel applications and support parallel applica-
tions, such as computing the lowest eigenvalue and eigenvector of
stochastic matrices for Google pageranks and solving linear sys-
tems.

Asynchronous parallel applications tend to be computation-
ally expensive and can benefit from the large numbers of pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

cessors and computational capacities offered by parallel and dis-
tributed computing systems and especially Desktop Grid environ-
ments. However, existing implementations either target tightly
coupled parallel systems or relatively small homogenous clusters.
General formulations of these applications require complex coor-
dination and communication patterns. Coupled with the complex-
ity of the Grid environment, including its scale, its heterogene-
ity in computational, storage and communication capabilities, its
dynamism and its unreliability, Grid-based parallel asynchronous
computation presents significant challenges.

Clearly, the complexity of developing Grid-based asynchronous
parallel applications must be abstracted from the application sci-
entists/engineers and effectively addressed by a computational in-
frastructure. Such an infrastructure should support dynamic com-
putation task management and efficient, robust and scalable inter-
task communications enable large scale application/system size.
This paper presents CometG, a decentralized computational in-
frastructure for Desktop Grid environments. It provides the ab-
stractions and mechanisms required by asynchronous parallel ap-
plications, including mechanisms for dynamic and anonymous task
distribution, task coordination and execution, decoupled commu-
nication and data exchange.

2. CometG Computational Infrastructure

CometG provides a global virtual shared space abstraction that
can be associatively accessed by all system entities without knowl-
edge of the physical locations of the hosts over which the space
is distributed. The architecture of CometG, shown in Figure 1,
consists of 3 key layers. The communication layer provides scal-
able content-based messaging services as well as channels for di-
rect communication, and manages system heterogeneity and dy-
namism. This layer guarantees that content-based messages, spec-
ified using flexible content descriptors, are served with bounded
cost. The components of this layer include a content-based rout-
ing engine and a 1-dimensional structured self-organizing overlay.
The routing engine [3] supports flexible content-based routing and
complex querying using partial keywords, wildcards, or ranges. It
also guarantees that all peer nodes with data elements that match
a query/message will be located. The overlay is composed of
peer nodes, which may be any node in the Desktop Grid sys-
tem (e.g., end-user computers, servers, or message relay nodes).
The coordination layer provides Linda-like [2] primitives and sup-

S
h
a
r
e
d
-
s
p
a
c
e

A
b
s
t
r
a
c
t
i
o
n
s

C
o
n
t
e
n
t
-
b
a
s
e
d

R
o
u
t
i
n
g

S
e
l
f
-
o
r
g
a
n
i
z
i
n
g

O
v
e
r
l
a
y

C
o
o
r
d
i
n
a
t
i
o
n

L
a
y
e
r

A
p
p
l
i
c
a
t
i
o
n

L
a
y
e
r

P

2
P

c

h

a
n

n

e
l

C
o
m
m
u
n
i
c
a
t
i
o
n

L
a
y
e
r

P
r
o
g
r
a
m
m
i
n
g

A
b
s
t
r
a
c
t
i
o
n
s

G
r
i
d

I
n
f
r
a
s
t
r
u
c
t
u
r
e

Figure 1. A conceptual overview of the
CometG infrastructure.

ports the tuple space coordination model. The components of this
layer include a tuple repository, matching engine, and message
dispatcher. The application layer provides abstractions required
by asynchronous computations, which are described below.

The application layer of CometG provides coordination space
abstractions and programming modules to support master-worker
parallel formulations of asynchronous computations. Specifically,
two coordination spaces, TaskSpace and BorderSpace, are pro-
vided. TaskSpace stores task tuples representing application tasks.
BorderSpace allows the workers exchanging data tuples between
tasks. The programming modules include master and worker mod-
ules. A master module is responsible for partitioning applica-
tion data, generating tasks, collecting results, and terminating the
application when it completes. A worker module contains the
application-specific computational component associated with a
retrieved task. Workers use the tuple space abstractions to retrieve
tasks and exchange borders.

CometG supports large application/system scales using mul-
tiple coordination groups. A coordination group includes appli-
cation specified coordination spaces, and groups of masters and
workers. A group can support multiple applications with logically
separate shared spaces. An application can span multiple groups,
each of which would handle a part of the application. An applica-
tion is hierarchically partitioned, first across coordination groups,
and then across masters within each coordination group. Task with
communication dependencies should be mapped to the same coor-
dination group if possible, as communications across groups can
be expensive. Workers within a coordination group communicate
using the shared BorderSpace. Masters within and across coordi-
nation groups communicate using direct communication channels.

CometG provides application level fault tolerance mechanisms
to address the unreliability inherent in Grid environments. These
mechanisms assume a fail-stop failure model and timed commu-
nication behavior. Under these assumptions, possible failures in-
clude inter task communication failure, worker failure, master fail-
ure, and task loss. Inter task communication failures can be simply
handled using timeout, due to the resilient nature of asynchronous
algorithms. Master failures are handled using checkpoint-restart.
The runtime system periodically checkpoints the local state of each
master, including its task table and intermediate results, to a stable
storage. Users are currently responsible for detecting the failure of
a master node and can recover its state from the stable storage and
resume the computation. Finally, worker failures and task loss are
handled using timeout-regeneration, a retrieval-submission proto-
col, and a garbage-collection mechanism [4].

Two prototype applications have been built using CometG: (1)
parallel asynchronous iterative computations and (2) asynchronous

formulation of replica exchange simulations. Parallel asynchronous
formulations of iterative algorithms relax synchronization and com-
munication requirements, and can tolerate heterogeneous compu-
tation powers and unreliable communication channels. Potential
applications of parallel asynchronous iterative computation span
a range of scientific and engineering disciplines, such as solving
partial differential equation (PDE), high-performance linear alge-
bra, and optimization problems. A PDE application has been de-
veloped using CometG and deployed on PlanetLab using more
than 200 machines [4]. Replica exchange is an effective sampling
algorithm that has been proposed in various disciplines, such as
bimolecular simulations where it allows for efficient crossing of
high energy barriers that separate thermodynamically stable states.
CometG extends the asynchronous formulation of replica exchange
to Desktop Grid environments. CometG-based replica exchange
allows computation units on different nodes to negotiate and per-
form exchanges in a decoupled, dynamic and asynchronous man-
ner, which effectively addresses environment dynamism and im-
proves simulation efficiency.

3. Conclusion and Future Work

This paper presented the CometG decentralized computational
infrastructure that extends Desktop Grid environments to robustly
support asynchronous parallel computations. CometG provides
scalable communication/coordination mechanisms and program-
ming abstractions to support parallel asynchronous iterative com-
putations and replica exchange simulations. The current CometG
system can effectively support hundreds of workers. Its scalability
can be further improved to thousands or even millions of workers
using two enhancements: (1) separating the space nodes from end
nodes, where the space nodes provide coordination services and
the end nodes host the workers; (2) employing relatively powerful
peers, i.e., super-peers, with larger memory capacity and network
bandwidth, as space nodes. These enhancements are currently be-
ing explored.

4. Acknowledgments

The research presented in this paper is supported in part by
National Science Foundation via grants numbers CNS 0305495,
CNS 0426354, IIS 0430826 and ANI 0335244, and by Department
of Energy via the grant number DE-FG02-06ER54857.

5. References

[1] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and A.
Chien, Characterizing and Evaluating Desktop Grids:
An Empirical Study, In Proceedings of the IPDPS, 2004.

[2] N. Carriero and D. Gelernter, Linda in context,
Communications of the ACM, 32(4):444-458, 1989.

[3] C. Schmidt and M. Parashar, Enabling Flexible Queries
with Guarantees in P2P Systems, IEEE Internet
Computing, Special issue on Information Dissemination
on the Web, 8(3), June 2004.

[4] Z. Li, A scalable, Decentralized Coordination
Infrastructure for Grid Environments, Ph.D. Thesis,
Rutgers University, May 2007.

