
:

ORIGINAL PAPER

A Decentralized Computational Infrastructure
for Grid-Based Parallel Asynchronous
Iterative Applications

Zhen Li & Manish Parashar

Received: 10 September 2005 /Accepted: 5 February 2006
Springer 2006

Abstract Parallel asynchronous iterative algo-

rithms relax synchronization and communication

requirements, and can potentially extend Desktop

Grids beyond embarrassingly parallel applica-

tions to support a broader class of parallel iterative

applications. This paper presents the design and

implementation of CometG, a decentralized (peer-

to-peer) computational infrastructure that extends

Desktop Grid environments to support these ap-

plications. CometG provides a decentralized and

scalable tuple space, efficient communication and

coordination support, and application-level ab-

stractions that can be used to implement Desktop

Grid applications based on parallel asynchronous

iterative algorithms using the master-worker/BOT

paradigm. The deployment and evaluations of

CometG and a CometG-based application in a

wide-area environment using the PlanetLab [7] test

bed, as well as a campus network are presented.

Key words decentralized (peer-to-peer) tuple

space . Desktop Grids . parallel asynchronous

iterative algorithms

35Abbreviations

BOT bag of task

PDE partial differential equation

1. Introduction

Grid computing, based on the aggregation of large

numbers of independent hardware, software and

information resources spanning multiple organi-

zations, is rapidly emerging as the dominant

paradigm for distributed problem solving for a

wide range of application domains. Complemen-

tary to Grid virtual organizations, Desktop Grids

[25] leverage Internet connected computers to

support large computations. Desktop Grid sys-

tems have been successfully used to address large

applications in science and engineering with sig-

nificant computational requirements, including

global climate predication (Climatprediction.net)

[2], molecular sequence analysis (Folding@Home)

[3], protein structure prediction (Predictor@

Home) [5], search for extraterrestrial intelligence

(SETI@Home) [8], gravitational wave detection

(Einstein@Home), and cosmic rays study (Xtrem-

Web) [9].

While the successes of the above applications

do demonstrate the potential of Desktop Grids,

current implementations are limited to embarrass-

ingly parallel [38] applications based on the Bag-

Of-Task (BOT) paradigm, where the individual

tasks are independent and do not require inter-

J Grid Computing (2006) 0:0–0

DOI 10.1007/s10723-006-9033-9

Z. Li (BI) :M. Parashar
The Applied Software Systems Laboratory,
Department of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ 08854, USA
e-mail: zhljenny@caip.rutgers.edu

M. Parashar
e-mail: parashar@caip.rutgers.edu

task communications. As a result, these implemen-

tations cannot support more general scientific and

engineering applications, such as those based on

parallel iterative computations, as the parallel for-

mulations of these applications require synchro-

nization and inter-task communications. While

some Java-based platform independent commu-

nication libraries, such as mpiJava [4] and Java-

PVM [40] and been developed to support parallel

Grid applications, these libraries have targeted

relatively tightly coupled, similarly configured,

and simultaneously available Grid environments

such as multi-site inter-connected clusters [24, 29].

Consequently, supporting the synchronization and

communication requirements of general scientific

application in heterogeneous, dynamic and unre-

liable wide-area environment continues to present

significant difficulties.

Parallel asynchronous formulations of iterative

algorithms [17, 22] relax synchronization and

communication requirements, and can tolerate

heterogeneous computation powers and unreli-

able communication channels. These formulations

have been proposed to extend Desktop Grids

beyond embarrassingly parallel applications and

support parallel iterative applications, such as

computing the lowest eigenvalue and eigenvector

of stochastic matrices for Google pageranks [33]

and solving linear systems [18]. However, current

implementations of these algorithms are limited to

tightly coupled clusters and local area networks,

and scalable wide-area implementations remain a

challenge.

This paper presents the design and implementa-

tion of CometG, a decentralized (peer-to-peer)

computational infrastructure that extends Desktop

Grid environments to support parallel asynchro-

nous iterative applications. CometG provides a

decentralized and scalable tuple space [27] that can

be associatively accessed by all peer nodes without

knowledge of the physical location of the tuples or

the identifiers of hosts over which the space is

distributed. The CometG tuple space is built on top

of a resilient self-organizing overlay, and provides

efficient and scalable communication and coordi-

nation abstractions. The communication abstrac-

tion provides associative content-based messaging

and manages system heterogeneity and dynamism,

and the coordination abstraction provides Linda-

like [19] coordination primitives. CometG also

provides application-level abstractions that can be

used to implement applications based on parallel

asynchronous iterative algorithms using the mas-

ter-worker/BOT paradigm.

This paper also presents the implementation of

a Grid-based PDE application using the CometG

computational infrastructure. The application

uses parallel asynchronous Jacobi iterations to

solve the heat distribution problem [17]. CometG

abstractions and mechanisms are used to con-

struct services for dynamic and anonymous task

distribution, task execution, decoupled communi-

cation and data exchange required by the appli-

cation. CometG and the PDE application have

been deployed on a wide-area environment using

the PlanetLab [7] test bed, as well a campus

network at Rutgers University. An experimental

evaluation using these deployments is presented.

The evaluations demonstrate both, the efficiency/

scalability of CometG and its ability to support

wide-area deployments of Desktop Grid applica-

tions based on parallel asynchronous iterative

algorithms.

The rest of the paper is organized as follows.

Section 2 presents a brief introduction to parallel

asynchronous iterative algorithms and applica-

tions, outlines requirements for their implementa-

tions in Desktop Grid environments, and describes

related work. Section 3 presents CometG and

describes its design and implementation. In

Section 4, the implementation and operation of

a parallel asynchronous iterative application

using CometG is described. Section 5 presents

an experimental evaluation on a campus network

at Rutgers as well as a wide-area (using Planet-

Lab) test bed. Section 6 presents concluding

remarks.

2. Parallel Iterative Computations
in Grid Environments

2.1. Parallel Asynchronous Iterative Algorithms

and Applications

Iterative algorithms are generally of the form:

xkþ1 ¼ f ðxkÞ; k ¼ 0; 1; : : , where x0 is given, xk is an

n-dimensional vector, and f is a function from

J Grid Computing (2006)

Rn ! Rn. The sequence xk generated by the above

iteration converges to some x*, and if f is con-

tinuous then x* is a fixed point of f . These

algorithms are typically parallelized using the

block-decomposition paradigm, where the xk is

decomposed as m components and f is partition-

ed conformally. The entire problem can be solved

in parallel by m processors and the iteration vec-

tor at each step is xk ¼ ½xk
1; x

k
2;:::; x

k
m�, each com-

ponent of which can be processed by a single

processor.

Iterative algorithms can be categorized as

synchronous or asynchronous based on their

requirements for global data synchronization.

Synchronous iterative algorithms have an implicit

barrier at the end of each iteration step, and

require that all communications be completed

and all messages become available before the next

iteration starts. Asynchronous iterative algorithms

relax this requirement for global synchronization,

and allow processors to continue computing using

only partial information from other processors.

This allows these algorithms to tolerate variances

in computational power and communication de-

lay, which are typical in Grid environments. Note

that, as expected, the convergence of asynchro-

nous iterative algorithms is delayed due to the

unsynchronized data. However, in spite of this,

these algorithms have the potential of outperform-

ing synchronous algorithms as they avoid synchro-

nization overheads, which can be significant in

Grid environments.

Potential applications of parallel asynchronous

iterative computation span a range of scientific

and engineering disciplines, such as high-perfor-

mance linear algebra and optimization problems.

Examples include: (1) Computation of eigen-sys-

tems, which are used in the study of nuclear re-

actor dynamics, dynamic finite element analysis

of structural models, and the next generation

particle accelerators [41]; (2) solution of large

sparse linear systems of equations obtained from

the discretization of partial differential equations

(PDE) [26], which are used for aircraft simula-

tion, computer graphics, weather prediction, fluid

flow, gravitational fields, and electromagnetic

field description; and (3) variational inequalities

that can be viewed as generalization of both

constrained optimization problems and systems

of equations, which are used as models for equi-

librium studies ranging from economics to traffic

engineering [17].

Note that while there has been significant work

on parallel asynchronous iterative computations in

recent years, these efforts have focused on algo-

rithmic and implementation issues such as con-

vergence rate, termination detection, and load

balancing [11, 12, 15–17]. The research presented

in this paper leverages these efforts and focuses on

the development and execution of applications

based on these algorithms on Desktop Grid envi-

ronments with Internet-scale connectivity.

2.2. Requirements for Grid-Based Parallel

Asynchronous Iterative Algorithms

and Applications

Parallel asynchronous iterative applications can

definitely benefit from the potentially large num-

bers of processors available on Grid. However,

developing and executing Grid-based implemen-

tations requires addressing the complexity of the

Grid environment, including its heterogeneity in

computational, storage and communication capa-

bilities, its dynamism and its unreliability. Clear-

ly, this complexity must be abstracted from the

application scientists/engineers and effectively

addressed by a computational infrastructure.

Such an infrastructure should support dynamic

and anonymous task management, allowing ap-

plication execution to be independent of system

configuration and promoting the simplicity and

convenience of the BOT paradigm. Further, it

should provide appropriate coordination and

communication mechanisms to support dynamic

dependencies and interactions.

Specifically, Section 2 the task coordination

and communication mechanisms should be: (1)

asynchronous to enable decoupled (in time and

space) and dynamic task allocation and inter-

processor communication; (2) associative to allow

interactions to be anonymous and based on con-

tent rather than defined in terms of addresses or

names of end-points_, since maintaining common

knowledge about names and addresses in dynam-

ic Grid environments is infeasible and can pose

security risks [18]; (3) scalable to address increas-

J Grid Computing (2006)

ing system size (number of nodes) and applica-

tion problem size; and (4) failure-resilient to

reduce the loss of application computational

effort when system or application failures occur.

The tuple space paradigm, which supports an

asynchronous associative communication model

and provides simple programming abstractions,

presents an attractive approach for addressing the

issues outlined above.

2.3. The Tuple Space Paradigm

The tuple space paradigm, made popular by Linda

[23], addresses many of the requirements outlined

above. Its key features include: asynchronous

communication that decouples senders and re-

ceivers in space and time; an associative multicast

medium through which multiple receivers can

read a tuple written by a single sender using

pattern-matching mechanisms instead of names

and locations; and a small set of operators (write,

read, and remove) providing a simple and uni-

form interface to the tuple space. Additionally,

resilience to process failures can be simply pro-

vided by a stable tuple space [14] where failed

processes can be recovered on any host. Further,

tuple spaces naturally support BOT solutions for

parallel applications using the master worker

model – the master inserts task tuples into the

space and collects result tuples, and the workers

extract task tuples from the space and insert result

tuples. While sufficiently scalable distributed tuple

space implementation, where the tuple retrieval

performance is proportional to at least the loga-

rithm of the system size [30], can effectively

address the requirements outlined above, such

implementations in Grid environments remain a

challenge.

The original Linda model must be enhanced

and customized to support asynchronous iterative

algorithms. First, tuple insertion and retrieval are

unordered and non-deterministic. As a result, the

programmer must implement Blatest version’’

retrieval semantics (e.g., by adding a sequence

number field to the tuple) and guarantee process-

ing of all tasks (e.g., by using a global counter

tuple). Second, associative communications imple-

mented using the pattern-matching mechanism

are inherently inefficient for large data transfers

[35]. This inefficiency is further amplified if the

tuple delivery requires multiple routing steps as

large message sizes increase transmission time as

well as probability of failure at each step.

2.4. Related Work

Related research efforts that focus on supporting

asynchronous parallel applications in peer-to-peer

systems include P3 [31], Jace [13], and parallel

iterative computing using associative broadcast

[18]. P3 proposes a peer-to-peer network platform

for high performance parallel computing in an

Internet-based environment. It uses a distributed

file system for inter-process communication and

synchronization. Scalability in P3is achieved using

dynamic load balancing between computing

nodes, P2P communication and dynamically

changing sets of manager nodes. However, the P3

network implementation is still ongoing research

to the best of our knowledge.

Jace [13], is a Java based distributed program-

ming environment designed specifically for dis-

tributed asynchronous iterative computations. It

provides a parallel virtual machine to implement

computing tasks using message passing. However,

it does not allow nodes to dynamically join and/or

leave the system, and the application data is stat-

ically partitioned across and stored at the partici-

pating nodes. Further, fault-tolerance issues are

not addressed by Jace.

Parallel iterative computing using associative

broadcast [18] is most closely related to the re-

search presented in this paper. In [18], the pro-

gramming models and implementation issues

for executing parallel computations on Desktop

Grids are discussed, and combining associative

interactions with parallel asynchronous iterative

algorithms are proposed as an effective approach.

Specifically, asynchronous data communications

between the parallel computation tasks is achieved

using the associative broadcast mechanism. The

implementation of associative broadcast, however,

does not currently address scalability to Grid envi-

ronments. Further, this system does not support

dynamic task distribution. CometG implements a

scalable tuple space to support the associative com-

munication model, and also provides support for

dynamic task distribution and fault-tolerance.

J Grid Computing (2006)

3. A Decentralized Computational

Infrastructure for Grid-Based Asynchronous

Iterative Computations

The CometG computational infrastructure pre-

sented in this paper builds on a scalable, decen-

tralized tuple space [27] that spans the nodes of

the Desktop Grid. The tuple space is essentially a

global virtual shared-space constructed from the

semantic information space used by entities for

coordination and communication. This informa-

tion space is deterministically mapped, using a

locality preserving mapping, onto the dynamic set

of peer nodes in the Grid system. The resulting

structure is a locality preserving semantic distrib-

uted hash table (DHT) built on top of a self-

organizing structured overlay.

A schematic overview of the CometG archi-

tecture is shown in Figure 1 and consists of three

key layers. The communication layer provides

scalable content-based messaging services as well

as channels for direct communication, and man-

ages system heterogeneity and dynamism. The

coordination layer provides Linda-like primitives

and supports the tuple space coordination model.

The application layer provides abstractions and

services for asynchronous iterative computations,

which are implemented using the communication

and coordination layers.

3.1. Tuples and Tuple Distribution

As mentioned above, the CometG tuple space is a

global virtual semantic shared-space constructed

from the semantic information space used by

entities for coordination and communication. A

tuple in CometG is associated with k keywords

that are selected from its tag and fields. Using

these keywords, a tuple can be viewed as a point

in a k-dimensional (kD) space where each key-

word represents an axis of the space. The possible

sets of keywords used to describe tuples collec-

tively define the semantic information space. A

template can similarly be associated with key-

words, however, in this case it may include partial

keywords, wildcards, or ranges. Figure 2 illus-

trates examples of tuples and templates in a 2D

semantic space. A tuple described by complete

keywords is mapped to a point in the information

space. A template described by partial keywords

and wildcards identifies a region in the informa-

tion space. In CometG, it is assumed that the infor-

mation space is known to participating nodes.

In CometG, a tuple is implemented as a simple

XML string, where the first element is the tuple_s

tag and is followed by an ordered list of elements

containing the tuple_s fields. Each field has a

name followed by its value. The tag, field name,

and value must be data value for a tuple and may

contain wildcard (F*_) for a template tuple. This

lightweight format is flexible enough to repre-

sent information for a wide range of applications

and can support rich matching relationships [37].

It is suitable for efficient information exchange

in distributed and heterogeneous environments.

A tuple is retrieved if it exactly or approximate-

ly matches the template [27]. Figure 3 show an

example of tuples that match exactly. The task

tuple in Figure 3(a), tagged BTask,’’ has fields

BlockID, TotalBlocks, Partition, Solver, Precision,

MaxIteration, MasterNetName and DataPort with

values5,10, strips,Jacobi,0.0001, Inf, foo.cs.bar. edu,

9914, respectively, and can be retrieved using the

template in Figure 3(b).

The CometG decentralized tuple space is es-

sentially an associative Distributed Hash Table

Master/ Worker
BOT Programming Abstractions

Repository, Matching Engine
Message dispatcher

Content-based Routing
Associative Messaging

Self-organizing Overlay

Grid Infrastructure

Coordination
Layer

Application
Layer

Communication
Layer

D
ir

ec
t C

om
m

 C
ha

nn
el

Figure 1. A schematic overview of CometG

Template
(t*,*)

t*task

Jacobi

Tuple

keyword1

ke
yw

or
d2

ke
yw

or
d2

keyword1

Figure 2. Example of tuples, templates and the semantic
information space in CometG

J Grid Computing (2006)

(DHT). The nodes in the Desktop Grid form a

one-dimensional self-organizing overlay. The Hil-

bert Space Filling Curve (SFC) [28] is used to

construct the index space of the DHT from the

information space, and to map tuples/templates

from the information space to peer indices in the

one-dimensional overlay. The Hilbert SFC is a

locality preserving continuous and recursive map-

ping from a k-dimensional space to a one-di-

mensional space. It is locality preserving in that

points that are close on the curve are mapped

from points that are close in the k-dimensional

space. The Hilbert curve readily extends to any

number of dimensions. Further, its locality pre-

serving and recursive nature enables the index

space to maintain content locality and efficiently

resolve content-based lookups [34]. The SFC-

based index space is mapped to the overlay such

that each node in the overlay stores the keys that

map to the segment of the curve between itself and

its predecessor node. A tuple described by com-

plete keywords and mapped to a point in the

information space is located on at most one node.

A template described by partial keywords, wild-

cards, or ranges and defining a region in the in-

formation space may be mapped to a collection of

segments on the SFC and correspondingly, to a set

of nodes in the overlay. While the CometG

architecture can support scalable tuple distribu-

tion, failure of nodes can result in tuple loss. This is

addressed by the CometG application layer using

timeout regeneration and checkpointing-restart

mechanisms, as described in Section 3.4.

3.2. The Communication Layer

The CometG communication layer provides an

associative communication service and guarantees

that content-based messages, specified using flex-

ible content descriptors, are served with bounded

cost. This layer also provides a direct communica-

tion channel to efficiently support large volume

data transfers between peer nodes. The commu-

nication channel is implemented using a thread

pool mechanism and TCP/IP sockets.

The major components of the associative mes-

saging service include a content-based routing

engine and the one-dimensional structured self-

organizing overlay. The routing engine imple-

ments the Hilbert SFC mapping and supports

flexible content-based routing and complex que-

rying using partial keywords, wildcards, or ranges.

It also guarantees that all peer nodes with data

elements that match a query/message will be

located. The routing engine has a single operator

for associative messaging, post(keys, data), where

keys form the semantic selector and data is the

message payload. The overlay is composed of

peer nodes, which may be any node in the Desk-

top Grid system (e.g., end-user computers, serv-

ers, or message relay nodes). The peer nodes can

join or leave the network at any time. While the

CometG architecture is based on a structured

overlay, it is not tied to any specific overlay to-

pology. In the current implementation, we use

Chord [36], which has a ring topology, primarily

due to its guaranteed performance, efficient

adaptation as nodes join and leave the system,

and the simplicity of its implementation. In

principle, this overlay could be replaced by other

structured overlays. The overlay provides the

lookup(identifier) operator. Given an identifier,

this operation locates the node that is responsible

for it, i.e., the node with an identifier that is the

closest identifier greater than or equal to the

queried identifier. The lookup algorithm in

Chord enables the efficient data routing with cost

(a) (b)

<Task>
<BlockID> 5 </BlockID>
<TotalBlocks> 10 </TotalBlocks>
<Partition> strips </Partition>
<Solver> Jacobi </Solver>
<Precision> 0.0001 </Precision>
<MaxIteration> Inf </MaxIteration>
<MasterNetName> foo.cs.bar.edu
</MasterNetName>
<DataPort> 9914 </DataPort>

</Task>

<Task>
 <BlockID> * </BlockID>
 <TotalBlocks> * </TotalBlocks>
 <Partition> * </Partition>
 <Solver> * </Solver>
 < >* </
 <MaxIteration> * </MaxIteration>
 <MasterNetName> * </MasterNetName>
 <DataPort> * </DataPort>

</Task>

Precision Precision>

Figure 3. An example
of a tuple and a template:
(a) A task tuple. (b) A
task template

J Grid Computing (2006)

bounded at O(Log N) [36], where N is the num-

ber of nodes in the system.

3.3. The Coordination Layer

The coordination layer provides the following

primitives to support the tuple space coordination

model.

– Out(ts, t): A non-blocking operation that inserts
tuple t into space ts.

– In(ts, t , timeout): A blocking operation that

removes a tuple t matching template t from

the space ts and returns it. If no matching

tuple is found, the calling process blocks until

a matching tuple is inserted or the specified

timeout expires. In the latter case, null is

returned.
– Rd(ts, t , timeout): A blocking operation that

returns a tuple t matching template t from the

space ts. If no matching tuple is found, the

calling process blocks until a matching tuple

is inserted or the specified timeout expires. In

the latter case, null is returned. This method

performs exactly like the In operation except

that the tuple is not removed from the space.

The main components of the coordination

layer include a data repository for storing tuples

and templates, a local matching engine, and a

message dispatcher that interfaces with the com-

munication layer to translate the Out, Rd and

In coordination primitives to content-based rout-

ing operations at communication layer and vice

versa. As mentioned above, tuples are represented

as simple XML strings as they provide small-sized

flexible formats that are suitable for efficient

information exchange in distributed heteroge-

neous environments. The data repository stores

XML string tuples as DOM level 2 objects [39].

Further, it employs a hash structure to perform

pattern-matching in constant time in memory.

The tuple distribution and retrieval operations

are implemented using the content-based messag-

ing abstraction and mechanisms provided by the

communication layer. Using the keywords as-

sociated with a tuple, a tuple is routed to the ap-

propriate peer node in the overlay, and a template

tuple is routed to the set of peer nodes that con-

tain matching tuples. The tuple insertion and re-

trieval processes are illustrated in Figures 4 and 5,

respectively.

The exact tuple/template matching process

consists of the following steps. (1) Keywords are

extracted from the tuple or template and used to

generate keys for the post operation. The payload

of the message includes the tuple data and the

coordination operation. (2) The routing engine

uses the SFC mapping to identify the indices cor-

responding to the keys and the corresponding

peer id. (3) The overlay lookup operation is used

to route the tuple/template to the appropriate peer

node. The Out operation returns after receiving a

response from the destination peer to guarantee

tuple delivery. In the case of exact Rd and In

operations, templates are routed to the appropri-

ate peer node in a similar manner. The In and Rd

operations block until a matching tuple is returned

by the destination or a timeout occurs. Tuple and

template insertion are guaranteed using acknowl-

edgements and timeout-retry mechanisms.

The approximate retrieval process is similar.

A retrieval request may be sent to multiple

nodes in this case, and each of them may return a

matching tuple. However, the In and Rd oper-

0

13

29
40

51 7
0

13

29
40

51 7Tuple

2

1

SFC index

7

(a) (b) (c)

Figure 4. Example of tuple insertion in CometG: (a) a tuple is represented in a 2D keyword space, as the point (2, 1); (b) the
point (2, 1) is mapped to index 7 using the Hilbert SFC; (c) the tuple is inserted at node 13 (the successor of SFC index 7)

J Grid Computing (2006)

ations are implemented differently. In case of Rd,

the first tuple that is returned is accepted and

forwarded to the application, and subsequent

tuples returned are ignored. In case of an In

operation, one of the matching tuple must be

deleted and this is coordinated by the requesting

node. For each matching tuple found, the node

with the matching tuple sends it to the requesting

node and waits for a delete confirmation. The

requesting node responds with a delete confirma-

tion to the first matching tuple that it receives and

responds with an ignore message to all other

returned tuples.

3.4. The Application Layer

The CometG application layer provides coordina-

tion space abstractions and programming modules

to support master-worker/BOT parallel formula-

tions of asynchronous iterative computations.

Specifically, two customized coordination spaces,

TaskSpace and BorderSpace, are defined and im-

plemented separately. TaskSpace stores task

tuples representing application tasks and specify-

ing the masters that are responsible for the tasks.

This space implements First-In-First-Out (FIFO)

semantics for tuple and template operations, and

provides a queue abstraction for task distribution

and management. An example of a task tuple is

shown in Figure 3. BorderSpace is used for

exchanging border data tuples between neighbor-

ing tasks. This space enforces over-write seman-

tics during tuple insertion, where tuples in the

space always store the latest content, resulting the

latest messaging semantics. A border tuple has a

border id field and an associated binary data

block. The data block is not used for content-

based distribution, lookup, and pattern-matching.

The programming modules include masters

and workers. A worker module contains an ap-

plication-specific computational component that

can locally compute a retrieved task. The worker

uses the tuple space abstractions to retrieve tasks

and exchange borders. Task retrieval consists of

two steps – removing a task description from

the TaskSpace and downloading the task data

from the corresponding master. A master module

is responsible for partitioning the application

data, generating tasks, collecting results, and

terminating the application when it completes.

CometG provides single master mode as well as

multiple master mode. In multiple master mode,

hierarchical or decentralized termination algo-

rithms [12] are supported based on the organiza-

tion of the masters. A master module has five

components:

– The configuration manager thread, which reads
the application configuration (including whether
it is a single or a member of multiple master
organization) and the data partitioning strategy.

– The task generator thread, which generates
application tasks based on the partitioning
strategy, encapsulates task descriptions as tuples
and inserts the task tuples into TaskSpace.

– The data transfer thread, which uses the direct
communication channel to process requests for
task data retrieval and for result submission
from workers, as well as coordination messages
(e.g., Fconvergence_ message) between masters.

– The terminator thread, which checks for conver-
gence among tasks that the master is responsible
for, monitors convergence messages from other
masters, and terminates when overall conver-
gence is achieved.

4 7

0

13

33

47

51

40

Matching data

4

0

3

(*, 4)

Template
0

Template

(a) (b) (c)

Figure 5. Example of tuple
retrieval in CometG: (a) the
template defines a rectangu-
lar region in the 2D space
consisting of three clusters;
(b) the nodes that store the
clusters are queried; (c)
results of the query are sent
to the requesting node

J Grid Computing (2006)

– The task monitor, which maintains a table of
tasks the master is responsible for, and records
the current state of the tasks in this table. The
state of a task can be generated, retrieved,
computing, submitting or completed.

3.5. Supporting Large Application/System Scales

CometG supports large application/system scales

using multiple coordination groups. A coordina-

tion group includes one TaskSpace, one Border-

Space, and a group of masters and workers. A

group can support multiple applications with

logically separate semantic spaces. An applica-

tion can also span multiple groups, each of which

handles a part of the application. The application

is hierarchically partitioned, first across coordina-

tion groups, and then across masters within each

coordination group. Tasks with communication

dependencies should be mapped to the same

coordination group if possible as communications

across groups can be expensive. Workers within

a coordination group communicate using the

shared BorderSpace. Masters within and across

coordination group communicate using direct

communication channels.

Using coordination groups thus distributes the

load of TaskSpace and reduces the size of

BorderSpace, effectively improving the scalability

of the system. Nevertheless, it may not always be

possible to partition the application to eliminate

inter-group communications. However, as the

number of these communications is relatively

small, these communications can simply be ig-

nored in the case of asynchronous applications.

While ignoring them will affect convergence, we

have observed that the improvement in overall

application performance using this approach out-

weighs these effects. In cases where the number

of inter-group communications is large, or when

task dependencies are complex, data exchange

can be coordinated through a single node in each

group [32].

3.6. Addressing the Unreliability of the Grid

The CometG computational infrastructure pro-

vides application level fault tolerance mecha-

nisms to address the unreliability inherent in

Grid environments. These mechanisms assume a

fail-stop failure model and timed communication

behavior [20, 21]. Under these assumptions,

possible failures include border tuple communi-

cation failure, master failure, and task loss. These

failures are addressed below:

Border tuple communication failures are sim-

ply handled by Rd timeouts, due to the resilient

nature of asynchronous algorithms. Master fail-

ures are handled using checkpoint-restart. The

runtime system periodically checkpoints the local

state of each master, including its task table and

current intermediate results, to a stable storage.

Users are currently responsible for the detecting

the failure of a master node. When a master fails,

users can recover its state from the stable storage

and resume the computation. Finally, task loss is

handled using timeout-regeneration and a re-

trieval–submission protocol. It is well known that

detecting this kind of failure in tuple spaces is

very difficult because there can be multiple rea-

sons for the failure, including TaskSpace crashes,

message losses, communication link failures, fail-

ures of workers with unfinished tasks, etc. In

CometG, the loss of un-retrieved and retrieved

tasks, are handled separately as follows.

Un-retrieved task loss occurs only when the

relevant TaskSpace node crashes since task tuple

insertions are guaranteed. Masters can detect this

failure using a keep-alive mechanism, and can

handle it by regenerating unfinished tasks. The

regenerated tasks will be deterministically routed

to an operational TaskSpace node on the DHT

due to the resilience of the overlay (e.g., the

Chord routing around failure functionality [36]).

Retrieved task loss is detected using the task

tables at the masters. Each task in the table is

associated with a timer which is initialized when

the task is retrieved by a worker. If the results for

a task are not returned before the timer expires,

the task is considered as lost. The master regen-

erates the lost task and updates the task table.

The value of the task timer depends on the com-

putational requirements of the specific applica-

tion as well as the current performance of the

system. In CometG, this value is dynamically de-

termined based on a user specified threshold and

the observed maximum task processing time,

J Grid Computing (2006)

which is the time interval from when a task is

retrieved to when the corresponding results are

returned.

Note that task regeneration can lead to the

problem of duplicated tasks where the same task

may be allocated to multiple workers. This can be

addressed using a simple retrieval–submission

protocol where the master refuses all data trans-

fer requests and result submissions for a task that

it has tagged as completed in its task table.

3.7. System Implementation and Operation

The current prototype of CometG has been imple-

mented on Project JXTA [6], a platform indepen-

dent peer-to-peer framework. The JXTA platform

provides a virtual network for applications, which

can cross barriers such as firewalls/NATs to estab-

lish peer communities spanning any part of the

physical network. JXTA peers can discover peer

resources, communicate with each other, and self-

organize into peergroups. A JXTA peergroup

provides a scoping mechanism, using which mes-

sages are only propagated among group members.

JXTA also provides security features that can be

used by applications.

Each CometG node operates as a JXTA peer

identified by a JxtaID. Each node in CometG can

support multiple masters and/or workers associ-

ated with different applications. Further, Com-

etG coordination groups are implemented as

JXTA peergroups. Nodes in CometG organize

using JXTA Discovery Protocol to form the ring

overlay. The overlay lookup operator of the

CometG communication layer maps the logical

overlay peer identifier to the node"s JxtaID, and

uses the JXTA Resolver Protocol for communi-

cation. The implementation of the CometG tuple

space primitives are illustrated in Figure 6.

3.8. System Operation

The overall operation of CometG consists of two

phases: bootstrap and running. The bootstrap

phase is used to setup a coordination group.

During this phase, peer nodes join the CometG

JXTA peergroup and exchange messages with

the rest of the group. Each joining peer attempts

to discover an existing peer in the system and to

construct the overlay and setup its routing table.

It also sends discovery messages to the group. If

the message is unanswered after a pre-defined

time interval (in the order of seconds), the peer

assumes that it is the first one in the system. If a

peer responds to the message, the joining peer

queries this bootstrapping peer according to the

join protocol of the overlay, and updates routing

tables in the overlay to reflect the join.

The running phase consists of stabilization and

user modes. In the stabilization mode peer nodes

manage the structure of the overlay. In this mode,

peer nodes respond to periodic queries from

other peers to ensure that routing tables are up-

to-date and to verify that other peer nodes in the

group have not failed or left the system. In the

user mode, peer nodes participate in user appli-

cations. In this mode, application developers can

configure the system, setup application parame-

ters such as coordination groups, relevant seman-

tic spaces, master configurations, and initiate the

master processes.

4. Grid-Based Parallel Asynchronous Iterative

Applications Using CometG

This section illustrates the use of the CometG com-

putational infrastructure to implement and execute

a Grid-based PDE application. The application

uses parallel asynchronous Jacobi iterations for

Out(ts,t)

post(keys,data)

lookup(overlayID,
 query)

Coordination Layer

Content-based Routing

Self-organizing Overlay

sendQuery(JxtaID,queryMsg)

queryResponse

postResponse

Insert in
repository

JXTA Substrate

In/Rd(ts,t,timeout)
(wait until
tuple returned or
timeout)

post(keys,data)

lookup(overlayID,
 query)

Coordination Layer

Content-based Routing

Self-organizing Overlay

sendQuery(JxtaID,queryMsg)

postResponse

Search in
repository

JXTA Substrate

Returned
tuple

(a) (b)

Figure 6. CometG tuple
space operation: (a) Tuple
distribution using the Out
operator. (b) Exact tuple
retrieval using the In/Rd
operator

J Grid Computing (2006)

solving the heat distribution problem [17]. In this

illustrative application, the temperature at the

edges of a square sheet are known, and the

temperature at a point in the interior surface of

the sheet is computed based on the temperatures

around it. The square sheet is discretized as a two-

dimensional Grid and represented as a two-

dimensional array of points. In each iteration, the

value of each point in the interior of the array is

computed as an average of four points around it.

The computation is repeated until the stop crite-

rion is satisfied, i.e., the difference in temperature

values at a point between iterations is less than a

prescribed threshold, or the bound on the number

of iterations is reached.

Assuming that the application uses strip parti-

tioning, the Grid points are divided into blocks of

rows. Each block defines a task and is processed

by one worker. Since each point needs its four

immediate neighbors, each worker needs to

exchange data in the rows at the top and bottom

of the block with workers processing neighboring

blocks. The workers assigned the top most and

bottom most rows are exceptions and need to ex-

change data in only one row. A conceptual

overview of the CometG based implementation

of this application is shown in Figure 7. Flow

charts for the operation of master and worker

nodes are presented in Figure 8, and are de-

scribed below.

Once a worker is initiated, it repeats the fol-

lowing steps until explicitly terminated: (1) Ex-

tract a task tuple from TaskSpace, (2) read the

required top and/or bottom border rows from

BorderSpace, (3) locally compute temperature,

(4) insert updated border rows into BorderSpace,

(5) repeat steps (2)–(4) until the stop criterion

specified in the task tuple is reached, and (6) send

results to the master corresponding to the task

using a direct communication channel.

When the master is launched, it uses user

inputs to configure the application (e.g., setup

the number of coordination group and master

organization, etc.) and initiates the BorderSpace.

If a single master is used, that master is respon-

sible for the entire Grid. The master first partitions

the Grid into blocks and inserts corresponding

tasks into TaskSpace. When a task is assigned to a

worker, the worker obtains task data from the

master using the direct communication channel.

When the task completes, the work submits the

results to the master also using the direct com-

munication channel. After all its tasks have

completed, the master checks if the stop criterion

is satisfied by the computed data, since the

overall application may not satisfy the stop

criterion even though each task locally satisfies

its stop criterion. If the overall stop criterion is

not satisfied, the master repartitions the Grid to

create new tasks and inserts them into TaskSpace.

O
ut

In

Rd

Task3

In

Task3

Out

Each Grid point is the average of the
four neighbors. The border data is
exchanged through BorderSpace

Task tuples are extracted from
TaskSpace. Data is transferred
through direct comm channel.

Task 1

Task 2 top

Task2 bottom

O
ut

In

TaskSpace

Rd

Task2 top

Task3

Task2 top

Worker

BorderSpacer

In

Task3

Out

Master

Worker

Task3 top

Task3 bottom

Task 2

Worker
D

at
a

Figure 7. CometG-based
implementation of the heat
distribution problem using
parallel asynchronous
Jacobi iterations

J Grid Computing (2006)

This process constitutes one global application

iteration, and is repeated until the overall stop

criterion is satisfied, at which point, the master

terminates the application.

If multiple masters are used, the user must

define the organization of the masters, e.g., a

hierarchical structure [13], and the termination

detection algorithm to be used. The Grid is uni-

formly partitioned across the masters in this case,

and each master locally partitions its sub-Grid

into blocks and inserts corresponding tasks into

TaskSpace. The operation at each master then

proceeds as in the single master case described

above. When a master detects local termination, it

coordinates with the other masters to establish

global convergence. In case of a hierarchical

master organization, it sends a Fconverge_ message

up the hierarchy to the root node. If the master

stays in a Fconverged_ state, no further messages

are sent, otherwise, a Fdiverge_ message is sent to

the root. The root node checks the messages

received from all the masters end of each iteration,

and if all of them are in the converged state for a

specified number of iterations, it broadcasts a

Fstop_ message to the masters, which causes them

to terminate the application.

5. Experimental Evaluation

CometG and the PDE application have been de-

ployed on a wide-area environment using Planet-

Lab [7] test bed, as well as a campus network at

Rutgers. The objective of the experiments pre-

sented in this section is to evaluate and demon-

strate system performance and scalability, its

ability to tolerate faults, and its ability to support

wide-area deployments of parallel asynchronous

iterative applications. The experiments use a

horizontal block partitioning strategy and vary

the size of the problem as listed in Table 1. In

the multiple master mode, a hierarchical organi-

zation of the masters was used and measurements

were made at the root node. The different

experiments and the results obtained are de-

scribed below.

Master?

Init Master

Insert Tasks

Collect
Results

Finished?

End

Yes

No

Init Worker

Extract A
Task Tuple

Retrieve
Task Data

Get Border
Tuples

Local
Computation

Insert Border
Tuples

Finished?

Transfer Result
to Master

Ye
s

No

Yes

Configure
Master Structure

Coordinate Master
Convergence

End

Finished?

No

Worker?

Start

Yes

Yes

Insert Tasks

Collect Results
Yes

No

Single
Master?

Figure 8. Operation of mas-
ter and worker nodes for the
CometG-based implementa-
tion of the heat distribution
problem

J Grid Computing (2006)

5.1. Experiments Using the Campus Network

at Rutgers

These experiments were conducted on a Grid

consisting of 70 heterogeneous Linux-based com-

puters on the Rutgers campus network. Each

machine was a peer node in CometG overlay and

the machines formed a single CometG group.

The first set of experiments evaluated the

costs of basic tuple insertion and exact retrieval

operations. The tuples in the experiments were

fixed at 200 bytes, which is roughly equal to the

size of a task tuple. A ping-pong like process was

used in the experiments, in which an application

process inserted a tuple into the space using the

Out operator, read the same tuple using the Rd

operator, and deleted it using the In operator. In

these experiments, the Out and exact matching

Rd /In operations used a 3D information space.

For an Out operation, the measured time corre-

sponded to the time interval between when the

tuple was posted into the space and when the

response from the destination was received, i.e.,

the time between Post and PostResponse in

Figure 6(a). For a Rd/In operation, the measured

time was the time interval between when the

template was posted into the space and when the

matching tuple was returned to the application,

assuming that a matching tuple existed in the

space, i.e., the time between Post and receiving

the tuple in Figure 6(b). This time included the

time for routing the template, matching tuples in

the repository, and returning the matching tuple.

Note that the time for in-memory template match-

ing is very small compared to the communication

time for this ping-pong test.

The average performance of the operators were

measured for different system sizes. Figure 9 plots

the average measured performance and shows

that the system scales well with increasing num-

ber of peer nodes. When the number of peer nodes

increases 32 times, i.e., from 2 to 64, the average

round trip time increases only about 1.5 times.

This is due to the logarithmic complexity of the

routing algorithm used by the Chord overlay. Rd

and In operations exhibit similar performance, as

seen in the figure. Further, increasing the size of

border tuples can cause message transmission

delays. However, as expected, the message rout-

ing time remains the dominant factor as the

system size increases. Note that the JXTA 2.3

Resolver Protocol used to implement CometG

has been shown to effectively transfer message of

size up to 128 KB [10], which is sufficient for

supporting border tuple communications for the

current application.

The next set of experiments measured overall

application performance using a problem of size

3,000 � 3,000 Grid points and precision thresholds

2 4 8 16 24 32 40 48 56 64
20

40

60

80

100

120

140

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Nodes

Out
Rd
In

Figure 9. Average time for
Out, In, and Rd operations
for increasing system sizes
on the Rutgers campus
network

Table 1 Problem sizes used in the experimental evaluation

Problem size Partitions Block size Border tuple size

2,000 � 2,000 100 0.32 M 16.026 K

3,000 � 3,000 100 0.7 M 24.026 K

8,000 � 2,000 200 0.64 M 16.026 K

J Grid Computing (2006)

of 10�3 , 10�5 , and 10�7 . The Grid was partitioned

into 100 blocks and uniformly distributed across

10 master nodes. The masters were organized as a

hierarchy with one root using the algorithm in

[13]. All other nodes served as worker nodes,

each hosting two worker instances. The total

execution time is plotted in Figure 10. In this

plot, the X-axis represents the number of workers

plotted using a logarithmic scale with base 10.

The plots show the overall application perfor-

mance improvements and demonstrate that, as

expected, the improvements are more significant

when there is more computation (e.g., when the

precision threshold is smaller).

The third experiment demonstrates the

CometG fault tolerance mechanisms for hand-

ling task losses due to worker dynamism. The ex-

periment was conducted on 32 machines and

used a problem of size 2,000 � 2,000 Grid points

and a precision threshold of 10�5. The Grid was

partitioned into 100 tasks distributed across

four master nodes. The user defined task timeout

threshhold was set to 50 s. All the other nodes

served as workers and hosted multiple worker

instances. Tuple losses were simulated by having

workers that have retrieved a task tuple fail with a

probability of 25%. A global monitor process was

used to calculate the number of alive workers

in the system each time worker was started or

failed. In the experiment, 20 workers were initially

started on randomly selected nodes. As the ap-

plication progressed, workers failed and the lost

task tuples were regenerated. Meanwhile, 20 new

workers were started at 285 and 439 s after the

start of the application, at the rate of one worker

every 3s. The results of this experiment are

plotted in Figure 11. Figure 11(a) plots the fluc-

tuations in the number of workers during the

lifetime of the application. Of the 100 total tasks

in the application, 22% were regenerated once

and 3% were regenerated twice due to worker

failures. Figure 11(b) illustrates the life-cycles of

tasks including timeouts and the resulting task

regenerations. For clarity, this figure only shows a

subset of tasks with id between 80 and 90. Plots

for other tasks are similar.

5.2. Experiments Using the PlanetLab

Wide-Area Test Bed

This section presents the experiment on the wide-

area PlanetLab [7] test bed. PlanetLab is a large

scale heterogeneous distributed environment

composed of inter-connected sites on a global

scale. The goal of the experiment is to demonstrate

the ability of CometG to support application even

in an unreliable and highly dynamic environments

such as PlanetLab, which essentially represents an

extreme case for a Desktop Grid environment.

The CometG is currently deployed on 234 ma-

chines on PlanetLab, which have been used in the

experiment presented below. In the experiment,

each machine ran an instance of the CometG

stack, randomly joined the CometG overlay dur-

ing bootstrap phase, and served as a master or

worker node with one worker instance per node.

1 4 8 20 50 90 120

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Workers

Precision = 10–3

Precision = 10–5

Precision = 10–7

Figure 10. Overall applica-
tion execution time for a
problem size of 3,000 � 3,000
and 100 partitions on the
Rutgers campus network

J Grid Computing (2006)

The experiment used a problem of size 8,000 �
2,000 and a precision of 10�5. The problem was

partitioned into 200 tasks, which were uniformly

distributed and across four CometG coordination

groups. Each group had about 60 peer nodes, in

which five nodes acted as masters and others

served as workers. The task timeout threshhold

was set to 500 s and the border tuple read timeout

was set to 100 s. The experiment was conducted

on December 9, 2006, and lasted more than 3 h,

including the infrastructure setup, bootstrap, ap-

plication deployment, configuration, and exe-

cution. The application terminated after two

global iterations, during which multiple worker

nodes left the system or failed and were handled

by the CometG fault tolerance mechanisms. One

master in coordination group 3 also failed and

was restarted manually. The task tables of all

the masters were collected and summarized in

Figures 12 and 13. Figure 12 separately plots the

retrieval, computation, and result submission

times for all the tasks for each of the two global

iterations. The X-axis in these plots represents

the task id, and the Y-axis represents the execu-

50 100 150 200
0

50

100

150

(1) Retrival Time

T
im

e
(s

ec
)

50 100 150 200
0

50

100

150

(2) Computation Time

50 100 150 200
0

50

100

150

(3) Result Submission Time

50 100 150 200
0

50

100

150

(4) Retrival Time

T
im

e
(s

ec
)

50 100 150 200
0

50

100

150

(5) Computation Time

50 100 150 200
0

50

100

150

(6) Result Submission Time

Figure 12. Execution time of each CometG phase on PlanetLab using a problem size of 8,000 � 2,000 and 200 tasks.
(1)–(3) Phases of the first global iteration. (4)–(5) Phases of the second global iteration

Figure 11. Evaluation of CometG fault tolerance mechanisms for tolerating loss of task tuples. (a) Fluctuations in the
number of worker due to failures. (b) Life-cycles of tasks 80 through 90

J Grid Computing (2006)

tion time of each phase. Note that the computa-

tion time for the second iteration is significantly

smaller and the first, as expected. Figure 13 plots

the total execution time for each iteration. The

X-axis once again represents the task id. The

variation in the execution time for different tasks

illustrates the heterogeneity of the workers and

the PlanetLab test bed. These experiments dem-

onstrate that CometG system can effectively

support parallel asynchronous iterative applica-

tions on an extreme case of a wide-area Desktop

Grid environment with very high heterogeneity,

dynamism, and uncertainty.

The experimental results presented in this

section demonstrate both, the efficiency/scalabil-

ity of CometG and its ability to support wide-area

deployments of Desktop Grid applications based

on parallel asynchronous iterative algorithms.

6. Conclusion

Desktop Grids leverage Internet connected com-

puters and have been successfully used to tackle

large applications in science and engineering with

significant computational requirements. However,

current Desktop Grid systems have been limited

to embarrassingly parallel applications since indi-

vidual tasks in these applications are independent

and do not require inter-task synchronization and

communications, which can present significant

challenges in heterogeneous, dynamic and unre-

liable Grid environments. Parallel asynchronous

iterative computations relax these synchroniza-

tion and communication requirements and can

tolerate heterogeneous computational capabilities

and unreliable communication channels, and are

emerging as promising approaches for enabling

large scale computation problems on Desktop

Grids.

This paper presented the design and implemen-

tation of CometG, a decentralized (peer-to-peer)

computational infrastructure that effectively ex-

tends Desktop Grid environments to support

parallel asynchronous iterative applications. Com-

etG provides a decentralized scalable tuple space,

efficient communication and coordination, and

application-level abstractions that can be used to

implement Desktop Grid applications based on

parallel asynchronous iterative algorithms using

the master-worker/BOT paradigm. The deploy-

ment and evaluation of CometG and a CometG-

based application in a wide-area environment

using PlanetLab test bed, as well as a campus

network were presented. The evaluations demon-

strated both, the efficiency/scalability of CometG

and its ability to support wide-area deployments

of applications based on parallel asynchronous

iterative algorithms.

Currently, CometG can effectively support co-

ordination groups consisting of tens to hundreds

of peers. Further, each peer can run multiple

instances of masters and/or workers. The scal-

ability of CometG can be potentially extended to

thousands or even millions of nodes with the

following enhancements: (1) Separating the space

nodes from end nodes, where the space nodes

provide coordination services and the end nodes

host the application program modules; (2)

employing relatively powerful peers, i.e., super-

peers, with larger memory capacity and network

bandwidth, as space nodes and master nodes; and

(3) using high-throughput task dispatch implemen-

tations such as the task servers popularly used by

current Desktop Grid projects [1, 9] to support

millions of users.

50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

(1)
Tim

e (
se

c)
50 100 150 200

0

50

100

150

200

250

300

350

400

450

500

(2)

Tim
e (

se
c)

Figure 13. Overall execution
time for two global iterations
on PlanetLab using a prob-
lem size of 8,000 � 2,000 and
200 tasks. (1) Total execu-
tion time of the first global
iteration. (2) Total execution
time of the second global
iteration

J Grid Computing (2006)

Acknowledgements The research presented in this paper
is supported in part by the National Science Foundation
via grants numbers ACI 9984357, EIA 0103674, EIA
0120934, ANI 0335244, CNS 0305495, CNS 0426354 and
IIS 0430826.

References

1. FBoinc._ http://boinc.berkeley.edu/
2. FClimatprediction.net._ http://climateapps2.oucs.ox.

ac.uk/cpdnboinc/download_main.php
3. FFolding@Home._ http://folding.stanford.edu/
4. FmpiJava._ http://www.hpjava.org/mpiJava.html
5. FPredictor@Home._ http://predictor.scripps.edu/
6. FProject JXTA._ http://www.jxta.org
7. FProject PlanetLab._ http://www.planet-lab.org
8. FSETI@Home._ http://setiathome.ssl.berkeley.edu/
9. FXtremWeb._ http://xw.lri.fr:4330/XtremWeb/

10. Antoniu, G., Hatcher, P., Jan, M., Noblet, D.P.:
Evaluation of JXTA communication layers. In: Pro-
ceedings of the Fifth International Workshop on
Global and Peer-to-Peer Computing (2005)

11. Bahi, J., Contassot-Vivier, S., Couturier, R.: Dynamic
load balancing and efficient load estimators for asyn-
chronous iterative algorithms. IEEE Trans. Parallel
Distrib. Syst. 16(4), 289–299 (2005)

12. Bahi, J., Contassot-Vivier, S., Couturier, R. Vernier,
F.: A decentralized convergence detection algorithm
for asynchronous parallel iterative algorithms. IEEE
Trans. Parallel Distrib. Syst. 16(1), 4–13 (2005)

13. Bahi, J.M., Domas, S., Mazouzi, K.: Combination of
Java and asynchronism for the Grid: a comparative
study based on a parallel power method. In: Proceed-
ings of 18th International Parallel and Distributed
Processing Symposium (2004)

14. Bakken, D.E., Schlichting, R.D.: Supporting fault-
tolerant parallel programming in Linda. IEEE Trans.
Parallel Distrib. Syst. 6(3), 287–302 (1995)

15. Baudet, G.M.: Asynchronous iterative methods for
multiprocessors. J. ACM 25(2), 226–244 (1978)

16. Bertsekas, D.P., Tsitsiklis, J.N.: Convergence rate and
termination of asynchronous iterative algorithms. In:
Proceedings of the 3rd International Conference on
Supercomputing, pp. 461–470 (1989)

17. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distribut-
ed computation: Numerical methods. Athena Scientific
(1997)

18. Browne,J.C.,Yalamanchi,M.,Kane,K.,Sankaralingam,
K.: General parallel computations on desktop grid and
P2P systems. In: Proceedings of the 7th Workshop on
Workshop on Languages, Compilers, and Run-time
Support for Scalable Systems, pp. 1–8 (2004)

19. Carriero, N., Gelernter, D.: Linda in context.
Commun. ACM 32(4), 444 – 459 (1989)

20. Cristian, F.: Understanding fault-tolerant distributed
systems. Commun. ACM 34(2), 56–78 (1991)

21. Cristian, F., Fetzer, C.: The timed asynchronous dis-
tributed system model. IEEE Trans. Parallel Distrib.
Syst. 10(6), 642–657 (1999)

22. Frommer, A., Szyld, D.: On asynchronous iterations.
J. Comput. Appl. Math. 123(1), 201–216 (2000)

23. Gelernter, D.: Generative communication in Linda.
ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)

24. Huet, F., Caromel, D., Bal, H.E.: A high performance
Java middleware with a real application. In: Proceed-
ings of the Supercomputing Conference (2004)

25. Kondo, D., Taufer, M., Brooks, C., Casanova, H.,
Chien, A.: Characterizing and evaluating Desktop
Grids: an empirical study. In: Proceedings of the In-
ternational Parallel and Distributed Processing Sym-
posium (2004)

26. Kreyszig, E.: Advanced Engineering Mathematics.
Wiley (1998)

27. Li, Z., Parashar, M.: Comet: a scalable coordination
space for decentralized distributed environments. In:
Proceedings of the 2nd International Workshop on Hot
Topics in Peer-to-Peer Systems, pp. 104–112 (2005)

28. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.:
Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Trans. Knowl. Data Eng.
13(1), 124–141 (2001)

29. Nieuwpoort, R.V., Maassen, J., Kielmann, T., Bal,
H.E.: Satin: simple and efficient Java-based Grid pro-
gramming. Scalable Computing: Practice and Experi-
ence 6(3), 19–32 (2005)

30. Obreiter, P.: Extending truple spaces towards a mid-
dleware for eCommerce. Thesis, University of Karls-
ruhe (2000)

31. Oliveira, L., Lopes, L., Silva, F.: P3: parallel peer-to-
peer an internet parallel programming environment. In:
Proceedings of the Workshop on Web Engineering and
Peer-to-Peer Computing (2002)

32. Plaat, A.: Optimizing parallel applications for wide-
area clusters. In: Proceedings of the 12th. International
Parallel Processing Symposium, p. 784 (1998)

33. Sankaralingam, K., Yalamanchi, M., Sethumadhavan,
S., Browne, J.C.: Pagerank computation and keyword
search on distributed systems and P2P networks. J.
Grid Computing 1(3), 291–307 (2003)

34. Schmidt, C., Parashar, M.: Enabling flexible queries
with guarantees in P2P systems. IEEE Internet
Computing, Special issue on Information Dissemina-
tion on the Web (3), 19–26 (2004)

35. Sterck, H.D., Markel, R.S., Phol, T., Rüde, U.: A
lightweight Java taskspaces framework for scientific
computing on computational Grids. In: Proceedings of
the ACM symposium on Applied computing, pp. 1024–
1030 (2003)

36. Stoica, I., Morris, R., Karger, D., Kaashoek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer look-
up service for internet applications. In: Proceedings of
the ACM SIGCOMM Conference (2001)

37. Tolksdorf, R., Glaubitz, D.: Coordinating web-based
systems with documents in XMLSpaces. In: Proceed-
ings of the 6th International Conference on Coopera-
tive Information Systems (2001)

38. Wilkinson, B., Allen, M.: Parallel programming: Tech-
niques and applications using networked workstations
and parallel computers. Prentice Hall (2004)

39. World Wide Web Consortium. Document Object Model

J Grid Computing (2006)

http://boinc.berkeley.edu/
http://climateapps2.oucs.ox.ac.uk/cpdnboinc/download_main.php
http://climateapps2.oucs.ox.ac.uk/cpdnboinc/download_main.php
http://folding.stanford.edu/
http://www.hpjava.org/mpiJava.html
http://predictor.scripps.edu/
http://www.jxta.org
http://www.planet-lab.org
http://setiathome.ssl.berkeley.edu/
http://xw.lri.fr:4330/XtremWeb/

(DOM) Level 2 Core Specification. W3C Recom-
mendation (2000). http://www.w3.org/TR/DOM-Level-
2-Core

40. Yalamanchilli, N., Cohen, W.W.: Communication
performance of Java-based parallel virtual machines.

Concurrency – Practice and Experience 10(11–13), 1189–
1196 (1998)

41. Zhang, Y., Li, X.S., Marques, O.: Towards an auto-
matic and application-based eigensolver selection. In:
LACSI Symposium (2005) accepted

J Grid Computing (2006)

http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core

	A Decentralized Computational Infrastructure �for Grid-Based Parallel Asynchronous �Iterative Applications
	Abstract
	Introduction
	Parallel Iterative Computations �in Grid Environments
	Parallel Asynchronous Iterative Algorithms and Applications
	Requirements for Grid-Based Parallel Asynchronous Iterative Algorithms �and Applications
	The Tuple Space Paradigm
	Related Work

	A Decentralized Computational Infrastructure for Grid-Based Asynchronous Iterative Computations
	Tuples and Tuple Distribution

	Sec8
	Outline placeholder
	The Communication Layer

	Sec9
	Outline placeholder
	The Coordination Layer
	The Application Layer
	Supporting Large Application/System Scales
	Addressing the Unreliability of the Grid
	System Implementation and Operation
	System Operation

	Grid-Based Parallel Asynchronous Iterative Applications Using CometG
	Experimental Evaluation
	Experiments Using the Campus Network �at Rutgers
	Experiments Using the PlanetLab �Wide-Area Test Bed

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

