J Grid Computing (2006)
DOI 10.1007/510723-006-9033-9

ORIGINAL PAPER

A Decentralized Computational Infrastructure
for Grid-Based Parallel Asynchronous

Iterative Applications

Zhen Li - Manish Parashar

Received: 10 September 2005 / Accepted: 5 February 2006
© Springer 2006

Abstract Parallel asynchronous iterative algo-
rithms relax synchronization and communication
requirements, and can potentially extend Desktop
Grids beyond embarrassingly parallel applica-
tions to support a broader class of parallel iterative
applications. This paper presents the design and
implementation of CometG, a decentralized (peer-
to-peer) computational infrastructure that extends
Desktop Grid environments to support these ap-
plications. CometG provides a decentralized and
scalable tuple space, efficient communication and
coordination support, and application-level ab-
stractions that can be used to implement Desktop
Grid applications based on parallel asynchronous
iterative algorithms using the master-worker/BOT
paradigm. The deployment and evaluations of
CometG and a CometG-based application in a
wide-area environment using the PlanetLab [7] test
bed, as well as a campus network are presented.

Key words decentralized (peer-to-peer) tuple
space - Desktop Grids - parallel asynchronous
iterative algorithms

Z. Li (=) - M. Parashar

The Applied Software Systems Laboratory,
Department of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ 08854, USA
e-mail: zhljenny@caip.rutgers.edu

M. Parashar
e-mail: parashar@caip.rutgers.edu

Abbreviations
BOT bag of task
PDE partial differential equation

1. Introduction

Grid computing, based on the aggregation of large
numbers of independent hardware, software and
information resources spanning multiple organi-
zations, is rapidly emerging as the dominant
paradigm for distributed problem solving for a
wide range of application domains. Complemen-
tary to Grid virtual organizations, Desktop Grids
[25] leverage Internet connected computers to
support large computations. Desktop Grid sys-
tems have been successfully used to address large
applications in science and engineering with sig-
nificant computational requirements, including
global climate predication (Climatprediction.net)
[2], molecular sequence analysis (Folding@Home)
[3], protein structure prediction (Predictor@
Home) [5], search for extraterrestrial intelligence
(SETI@Home) [8], gravitational wave detection
(Einstein@Home), and cosmic rays study (Xtrem-
Web) [9].

While the successes of the above applications
do demonstrate the potential of Desktop Grids,
current implementations are limited to embarrass-
ingly parallel [38] applications based on the Bag-
Of-Task (BOT) paradigm, where the individual
tasks are independent and do not require inter-

@ Springer

J Grid Computing (2006)

task communications. As a result, these implemen-
tations cannot support more general scientific and
engineering applications, such as those based on
parallel iterative computations, as the parallel for-
mulations of these applications require synchro-
nization and inter-task communications. While
some Java-based platform independent commu-
nication libraries, such as mpiJava [4] and Java-
PVM [40] and been developed to support parallel
Grid applications, these libraries have targeted
relatively tightly coupled, similarly configured,
and simultaneously available Grid environments
such as multi-site inter-connected clusters [24, 29].
Consequently, supporting the synchronization and
communication requirements of general scientific
application in heterogeneous, dynamic and unre-
liable wide-area environment continues to present
significant difficulties.

Parallel asynchronous formulations of iterative
algorithms [17, 22] relax synchronization and
communication requirements, and can tolerate
heterogeneous computation powers and unreli-
able communication channels. These formulations
have been proposed to extend Desktop Grids
beyond embarrassingly parallel applications and
support parallel iterative applications, such as
computing the lowest eigenvalue and eigenvector
of stochastic matrices for Google pageranks [33]
and solving linear systems [18]. However, current
implementations of these algorithms are limited to
tightly coupled clusters and local area networks,
and scalable wide-area implementations remain a
challenge.

This paper presents the design and implementa-
tion of CometG, a decentralized (peer-to-peer)
computational infrastructure that extends Desktop
Grid environments to support parallel asynchro-
nous iterative applications. CometG provides a
decentralized and scalable tuple space [27] that can
be associatively accessed by all peer nodes without
knowledge of the physical location of the tuples or
the identifiers of hosts over which the space is
distributed. The CometG tuple space is built on top
of a resilient self-organizing overlay, and provides
efficient and scalable communication and coordi-
nation abstractions. The communication abstrac-
tion provides associative content-based messaging
and manages system heterogeneity and dynamism,
and the coordination abstraction provides Linda-

@ Springer

like [19] coordination primitives. CometG also
provides application-level abstractions that can be
used to implement applications based on parallel
asynchronous iterative algorithms using the mas-
ter-worker/BOT paradigm.

This paper also presents the implementation of
a Grid-based PDE application using the CometG
computational infrastructure. The application
uses parallel asynchronous Jacobi iterations to
solve the heat distribution problem [17]. CometG
abstractions and mechanisms are used to con-
struct services for dynamic and anonymous task
distribution, task execution, decoupled communi-
cation and data exchange required by the appli-
cation. CometG and the PDE application have
been deployed on a wide-area environment using
the PlanetLab [7] test bed, as well a campus
network at Rutgers University. An experimental
evaluation using these deployments is presented.
The evaluations demonstrate both, the efficiency/
scalability of CometG and its ability to support
wide-area deployments of Desktop Grid applica-
tions based on parallel asynchronous iterative
algorithms.

The rest of the paper is organized as follows.
Section 2 presents a brief introduction to parallel
asynchronous iterative algorithms and applica-
tions, outlines requirements for their implementa-
tions in Desktop Grid environments, and describes
related work. Section 3 presents CometG and
describes its design and implementation. In
Section 4, the implementation and operation of
a parallel asynchronous iterative application
using CometG is described. Section 5 presents
an experimental evaluation on a campus network
at Rutgers as well as a wide-area (using Planet-
Lab) test bed. Section 6 presents concluding
remarks.

2. Parallel Iterative Computations
in Grid Environments

2.1. Parallel Asynchronous Iterative Algorithms
and Applications

Iterative algorithms are generally of the form:
A+ = £(*), k= 0,1,.., where x¥ is given, x* is an
n-dimensional vector, and f is a function from

J Grid Computing (2006)

R" — R". The sequence x* generated by the above
iteration converges to some x*, and if f is con-
tinuous then x*is a fixed point of f. These
algorithms are typically parallelized using the
block-decomposition paradigm, where the x* is
decomposed as m components and f is partition-
ed conformally. The entire problem can be solved
in parallel by m processors and the iteration vec-
tor at each step is x* = [xf,x4,...,xX], each com-
ponent of which can be processed by a single
processor.

Iterative algorithms can be categorized as
synchronous or asynchronous based on their
requirements for global data synchronization.
Synchronous iterative algorithms have an implicit
barrier at the end of each iteration step, and
require that all communications be completed
and all messages become available before the next
iteration starts. Asynchronous iterative algorithms
relax this requirement for global synchronization,
and allow processors to continue computing using
only partial information from other processors.
This allows these algorithms to tolerate variances
in computational power and communication de-
lay, which are typical in Grid environments. Note
that, as expected, the convergence of asynchro-
nous iterative algorithms is delayed due to the
unsynchronized data. However, in spite of this,
these algorithms have the potential of outperform-
ing synchronous algorithms as they avoid synchro-
nization overheads, which can be significant in
Grid environments.

Potential applications of parallel asynchronous
iterative computation span a range of scientific
and engineering disciplines, such as high-perfor-
mance linear algebra and optimization problems.
Examples include: (1) Computation of eigen-sys-
tems, which are used in the study of nuclear re-
actor dynamics, dynamic finite element analysis
of structural models, and the next generation
particle accelerators [41]; (2) solution of large
sparse linear systems of equations obtained from
the discretization of partial differential equations
(PDE) [26], which are used for aircraft simula-
tion, computer graphics, weather prediction, fluid
flow, gravitational fields, and electromagnetic
field description; and (3) variational inequalities
that can be viewed as generalization of both
constrained optimization problems and systems

of equations, which are used as models for equi-
librium studies ranging from economics to traffic
engineering [17].

Note that while there has been significant work
on parallel asynchronous iterative computations in
recent years, these efforts have focused on algo-
rithmic and implementation issues such as con-
vergence rate, termination detection, and load
balancing [11, 12, 15-17]. The research presented
in this paper leverages these efforts and focuses on
the development and execution of applications
based on these algorithms on Desktop Grid envi-
ronments with Internet-scale connectivity.

2.2. Requirements for Grid-Based Parallel
Asynchronous Iterative Algorithms
and Applications

Parallel asynchronous iterative applications can
definitely benefit from the potentially large num-
bers of processors available on Grid. However,
developing and executing Grid-based implemen-
tations requires addressing the complexity of the
Grid environment, including its heterogeneity in
computational, storage and communication capa-
bilities, its dynamism and its unreliability. Clear-
ly, this complexity must be abstracted from the
application scientists/engineers and effectively
addressed by a computational infrastructure.
Such an infrastructure should support dynamic
and anonymous task management, allowing ap-
plication execution to be independent of system
configuration and promoting the simplicity and
convenience of the BOT paradigm. Further, it
should provide appropriate coordination and
communication mechanisms to support dynamic
dependencies and interactions.

Specifically, Section 2 the task coordination
and communication mechanisms should be: (1)
asynchronous to enable decoupled (in time and
space) and dynamic task allocation and inter-
processor communication; (2) associative to allow
interactions to be anonymous and based on con-
tent rather than defined in terms of addresses or
names of end-points’, since maintaining common
knowledge about names and addresses in dynam-
ic Grid environments is infeasible and can pose
security risks [18]; (3) scalable to address increas-

@ Springer

J Grid Computing (2006)

ing system size (number of nodes) and applica-
tion problem size; and (4) failure-resilient to
reduce the loss of application computational
effort when system or application failures occur.
The tuple space paradigm, which supports an
asynchronous associative communication model
and provides simple programming abstractions,
presents an attractive approach for addressing the
issues outlined above.

2.3. The Tuple Space Paradigm

The tuple space paradigm, made popular by Linda
[23], addresses many of the requirements outlined
above. Its key features include: asynchronous
communication that decouples senders and re-
ceivers in space and time; an associative multicast
medium through which multiple receivers can
read a tuple written by a single sender using
pattern-matching mechanisms instead of names
and locations; and a small set of operators (write,
read, and remove) providing a simple and uni-
form interface to the tuple space. Additionally,
resilience to process failures can be simply pro-
vided by a stable tuple space [14] where failed
processes can be recovered on any host. Further,
tuple spaces naturally support BOT solutions for
parallel applications using the master worker
model — the master inserts task tuples into the
space and collects result tuples, and the workers
extract task tuples from the space and insert result
tuples. While sufficiently scalable distributed tuple
space implementation, where the tuple retrieval
performance is proportional to at least the loga-
rithm of the system size [30], can effectively
address the requirements outlined above, such
implementations in Grid environments remain a
challenge.

The original Linda model must be enhanced
and customized to support asynchronous iterative
algorithms. First, tuple insertion and retrieval are
unordered and non-deterministic. As a result, the
programmer must implement “latest version”
retrieval semantics (e.g., by adding a sequence
number field to the tuple) and guarantee process-
ing of all tasks (e.g., by using a global counter
tuple). Second, associative communications imple-
mented using the pattern-matching mechanism
are inherently inefficient for large data transfers

@ Springer

[35]. This inefficiency is further amplified if the
tuple delivery requires multiple routing steps as
large message sizes increase transmission time as
well as probability of failure at each step.

2.4. Related Work

Related research efforts that focus on supporting
asynchronous parallel applications in peer-to-peer
systems include P? [31], Jace [13], and parallel
iterative computing using associative broadcast
[18]. P*proposes a peer-to-peer network platform
for high performance parallel computing in an
Internet-based environment. It uses a distributed
file system for inter-process communication and
synchronization. Scalability in Pis achieved using
dynamic load balancing between computing
nodes, P2P communication and dynamically
changing sets of manager nodes. However, the P?
network implementation is still ongoing research
to the best of our knowledge.

Jace [13], is a Java based distributed program-
ming environment designed specifically for dis-
tributed asynchronous iterative computations. It
provides a parallel virtual machine to implement
computing tasks using message passing. However,
it does not allow nodes to dynamically join and/or
leave the system, and the application data is stat-
ically partitioned across and stored at the partici-
pating nodes. Further, fault-tolerance issues are
not addressed by Jace.

Parallel iterative computing using associative
broadcast [18] is most closely related to the re-
search presented in this paper. In [18], the pro-
gramming models and implementation issues
for executing parallel computations on Desktop
Grids are discussed, and combining associative
interactions with parallel asynchronous iterative
algorithms are proposed as an effective approach.
Specifically, asynchronous data communications
between the parallel computation tasks is achieved
using the associative broadcast mechanism. The
implementation of associative broadcast, however,
does not currently address scalability to Grid envi-
ronments. Further, this system does not support
dynamic task distribution. CometG implements a
scalable tuple space to support the associative com-
munication model, and also provides support for
dynamic task distribution and fault-tolerance.

J Grid Computing (2006)

3. A Decentralized Computational
Infrastructure for Grid-Based Asynchronous
Iterative Computations

The CometG computational infrastructure pre-
sented in this paper builds on a scalable, decen-
tralized tuple space [27] that spans the nodes of
the Desktop Grid. The tuple space is essentially a
global virtual shared-space constructed from the
semantic information space used by entities for
coordination and communication. This informa-
tion space is deterministically mapped, using a
locality preserving mapping, onto the dynamic set
of peer nodes in the Grid system. The resulting
structure is a locality preserving semantic distrib-
uted hash table (DHT) built on top of a self-
organizing structured overlay.

A schematic overview of the CometG archi-
tecture is shown in Figure 1 and consists of three
key layers. The communication layer provides
scalable content-based messaging services as well
as channels for direct communication, and man-
ages system heterogeneity and dynamism. The
coordination layer provides Linda-like primitives
and supports the tuple space coordination model.
The application layer provides abstractions and
services for asynchronous iterative computations,
which are implemented using the communication
and coordination layers.

3.1. Tuples and Tuple Distribution

As mentioned above, the CometG tuple space is a
global virtual semantic shared-space constructed
from the semantic information space used by
entities for coordination and communication. A

Application Master/ Worker
Layer BOT Programming Abstractions

Coordination Repository, Matching Engine
Layer Message dispatcher

Content-based Routing
Communication Associative Messaging

Layer

| Direct Comm Channel |

Self-organizing Overlay

Grid Infrastructure

Figure 1. A schematic overview of CometG

Template

—)

t*

task keyword1

keyword1

Figure 2. Example of tuples, templates and the semantic
information space in CometG

tuple in CometG is associated with k& keywords
that are selected from its tag and fields. Using
these keywords, a tuple can be viewed as a point
in a k-dimensional (kD) space where each key-
word represents an axis of the space. The possible
sets of keywords used to describe tuples collec-
tively define the semantic information space. A
template can similarly be associated with key-
words, however, in this case it may include partial
keywords, wildcards, or ranges. Figure 2 illus-
trates examples of tuples and templates in a 2D
semantic space. A tuple described by complete
keywords is mapped to a point in the information
space. A template described by partial keywords
and wildcards identifies a region in the informa-
tion space. In CometG, it is assumed that the infor-
mation space is known to participating nodes.

In CometG, a tuple is implemented as a simple
XML string, where the first element is the tuple’s
tag and is followed by an ordered list of elements
containing the tuple’s fields. Each field has a
name followed by its value. The tag, field name,
and value must be data value for a tuple and may
contain wildcard (‘*”) for a template tuple. This
lightweight format is flexible enough to repre-
sent information for a wide range of applications
and can support rich matching relationships [37].
It is suitable for efficient information exchange
in distributed and heterogeneous environments.
A tuple is retrieved if it exactly or approximate-
ly matches the template [27]. Figure 3 show an
example of tuples that match exactly. The task
tuple in Figure 3(a), tagged “Task,” has fields
BlockID, TotalBlocks, Partition, Solver, Precision,
Maxlteration, MasterNetName and DataPort with
values 5, 10, strips, Jacobi, 0.0001, Inf, foo.cs.bar. edu,
9914, respectively, and can be retrieved using the
template in Figure 3(b).

The CometG decentralized tuple space is es-
sentially an associative Distributed Hash Table

@ Springer

J Grid Computing (2006)

<Task>
<BlockID> 5 </BlockID>

Figure 3. An example

of a tuple and a template:
(a) A task tuple. (b) A
task template

</MasterNetName>

<DataPort> 9914 </DataPort>

</Task>

(a)

(DHT). The nodes in the Desktop Grid form a
one-dimensional self-organizing overlay. The Hil-
bert Space Filling Curve (SFC) [28] is used to
construct the index space of the DHT from the
information space, and to map tuples/templates
from the information space to peer indices in the
one-dimensional overlay. The Hilbert SFC is a
locality preserving continuous and recursive map-
ping from a k-dimensional space to a one-di-
mensional space. It is locality preserving in that
points that are close on the curve are mapped
from points that are close in the k-dimensional
space. The Hilbert curve readily extends to any
number of dimensions. Further, its locality pre-
serving and recursive nature enables the index
space to maintain content locality and efficiently
resolve content-based lookups [34]. The SFC-
based index space is mapped to the overlay such
that each node in the overlay stores the keys that
map to the segment of the curve between itself and
its predecessor node. A tuple described by com-
plete keywords and mapped to a point in the
information space is located on at most one node.
A template described by partial keywords, wild-
cards, or ranges and defining a region in the in-
formation space may be mapped to a collection of
segments on the SFC and correspondingly, to a set
of nodes in the overlay. While the CometG
architecture can support scalable tuple distribu-
tion, failure of nodes can result in tuple loss. This is
addressed by the CometG application layer using
timeout regeneration and checkpointing-restart
mechanisms, as described in Section 3.4.

3.2. The Communication Layer

The CometG communication layer provides an
associative communication service and guarantees

@ Springer

<TotalBlocks> 10 </TotalBlocks>
<Partition> strips </Partition>
<Solver> Jacobi </Solver>
<Precision> 0.0001 </Precision>
<MaxIteration> Inf </MaxIteration>
<MasterNetName> foo.cs.bar.edu

<Task>
<BlockID> * </BlockID>
<TotalBlocks> * </TotalBlocks>
<Partition> * </Partition>
<Solver> * </Solver>
<Precision>* </Precision>
<MaxIteration> * </MaxIteration>
<MasterNetName> * </MasterNetName>
<DataPort> * </DataPort>

</Task>

(b)

that content-based messages, specified using flex-
ible content descriptors, are served with bounded
cost. This layer also provides a direct communica-
tion channel to efficiently support large volume
data transfers between peer nodes. The commu-
nication channel is implemented using a thread
pool mechanism and TCP/IP sockets.

The major components of the associative mes-
saging service include a content-based routing
engine and the one-dimensional structured self-
organizing overlay. The routing engine imple-
ments the Hilbert SFC mapping and supports
flexible content-based routing and complex que-
rying using partial keywords, wildcards, or ranges.
It also guarantees that all peer nodes with data
elements that match a query/message will be
located. The routing engine has a single operator
for associative messaging, post(keys, data), where
keys form the semantic selector and data is the
message payload. The overlay is composed of
peer nodes, which may be any node in the Desk-
top Grid system (e.g., end-user computers, serv-
ers, or message relay nodes). The peer nodes can
join or leave the network at any time. While the
CometG architecture is based on a structured
overlay, it is not tied to any specific overlay to-
pology. In the current implementation, we use
Chord [36], which has a ring topology, primarily
due to its guaranteed performance, efficient
adaptation as nodes join and leave the system,
and the simplicity of its implementation. In
principle, this overlay could be replaced by other
structured overlays. The overlay provides the
lookup (identifier) operator. Given an identifier,
this operation locates the node that is responsible
for it, i.e., the node with an identifier that is the
closest identifier greater than or equal to the
queried identifier. The lookup algorithm in
Chord enables the efficient data routing with cost

J Grid Computing (2006)

bounded at O(Log N) [36], where N is the num-
ber of nodes in the system.

3.3. The Coordination Layer

The coordination layer provides the following
primitives to support the tuple space coordination
model.

Out(ts, t): A non-blocking operation that inserts
tuple ¢ into space fs.

In(ts, 7, timeout): A blocking operation that
removes a tuple ¢ matching template 7 from
the space #s and returns it. If no matching
tuple is found, the calling process blocks until
a matching tuple is inserted or the specified
timeout expires. In the latter case, null is
returned.

Rd(ts, T,timeout): A blocking operation that
returns a tuple + matching template 7 from the
space ts. If no matching tuple is found, the
calling process blocks until a matching tuple
is inserted or the specified timeout expires. In
the latter case, null is returned. This method
performs exactly like the In operation except
that the tuple is not removed from the space.

The main components of the coordination
layer include a data repository for storing tuples
and templates, a local matching engine, and a
message dispatcher that interfaces with the com-
munication layer to translate the Out, Rd and
In coordination primitives to content-based rout-
ing operations at communication layer and vice
versa. As mentioned above, tuples are represented
as simple XML strings as they provide small-sized
flexible formats that are suitable for efficient
information exchange in distributed heteroge-

neous environments. The data repository stores
XML string tuples as DOM level 2 objects [39].
Further, it employs a hash structure to perform
pattern-matching in constant time in memory.

The tuple distribution and retrieval operations
are implemented using the content-based messag-
ing abstraction and mechanisms provided by the
communication layer. Using the keywords as-
sociated with a tuple, a tuple is routed to the ap-
propriate peer node in the overlay, and a template
tuple is routed to the set of peer nodes that con-
tain matching tuples. The tuple insertion and re-
trieval processes are illustrated in Figures 4 and 5,
respectively.

The exact tuple/template matching process
consists of the following steps. (1) Keywords are
extracted from the tuple or template and used to
generate keys for the post operation. The payload
of the message includes the tuple data and the
coordination operation. (2) The routing engine
uses the SFC mapping to identify the indices cor-
responding to the keys and the corresponding
peer id. (3) The overlay lookup operation is used
to route the tuple/template to the appropriate peer
node. The Out operation returns after receiving a
response from the destination peer to guarantee
tuple delivery. In the case of exact Rd and In
operations, templates are routed to the appropri-
ate peer node in a similar manner. The /n and Rd
operations block until a matching tuple is returned
by the destination or a timeout occurs. Tuple and
template insertion are guaranteed using acknowl-
edgements and timeout-retry mechanisms.

The approximate retrieval process is similar.
A retrieval request may be sent to multiple
nodes in this case, and each of them may return a
matching tuple. However, the In and Rd oper-

F S V'S
mlmlmien 0
Tlple TSEHHTEE 51
Sl SR
> =i JL
" Il — 13
B [t
1;':'H _ﬂé] rlm 40
. > HH == > 29
2
SFC index

(@) (b)

(©

Figure 4. Example of tuple insertion in CometG: (a) a tuple is represented in a 2D keyword space, as the point (2, 1); (b) the
point (2, 1) is mapped to index 7 using the Hilbert SFC; (c) the tuple is inserted at node 13 (the successor of SFC index 7)

) Springer

J Grid Computing (2006)

Figure 5. Example of tuple
retrieval in CometG: (a) the
template defines a rectangu-
lar region in the 2D space
consisting of three clusters;
(b) the nodes that store the
clusters are queried; (c)
results of the query are sent
to the requesting node

Template
(*! 4)

(a)

ations are implemented differently. In case of Rd,
the first tuple that is returned is accepted and
forwarded to the application, and subsequent
tuples returned are ignored. In case of an In
operation, one of the matching tuple must be
deleted and this is coordinated by the requesting
node. For each matching tuple found, the node
with the matching tuple sends it to the requesting
node and waits for a delete confirmation. The
requesting node responds with a delete confirma-
tion to the first matching tuple that it receives and
responds with an ignore message to all other
returned tuples.

3.4. The Application Layer

The CometG application layer provides coordina-
tion space abstractions and programming modules
to support master-worker/BOT parallel formula-
tions of asynchronous iterative computations.
Specifically, two customized coordination spaces,
TaskSpace and BorderSpace, are defined and im-
plemented separately. TaskSpace stores task
tuples representing application tasks and specify-
ing the masters that are responsible for the tasks.
This space implements First-In-First-Out (FIFO)
semantics for tuple and template operations, and
provides a queue abstraction for task distribution
and management. An example of a task tuple is
shown in Figure 3. BorderSpace is used for
exchanging border data tuples between neighbor-
ing tasks. This space enforces over-write seman-
tics during tuple insertion, where tuples in the
space always store the latest content, resulting the
latest messaging semantics. A border tuple has a
border id field and an associated binary data

@ Springer

-8 ~
N
\
13
e
N
'} A~
N
l ~
33 /,’
= T Matching data
Template

(b) (©)

block. The data block is not used for content-
based distribution, lookup, and pattern-matching.

The programming modules include masters
and workers. A worker module contains an ap-
plication-specific computational component that
can locally compute a retrieved task. The worker
uses the tuple space abstractions to retrieve tasks
and exchange borders. Task retrieval consists of
two steps — removing a task description from
the TaskSpace and downloading the task data
from the corresponding master. A master module
is responsible for partitioning the application
data, generating tasks, collecting results, and
terminating the application when it completes.
CometG provides single master mode as well as
multiple master mode. In multiple master mode,
hierarchical or decentralized termination algo-
rithms [12] are supported based on the organiza-
tion of the masters. A master module has five
components:

— The configuration manager thread, which reads
the application configuration (including whether
it is a single or a member of multiple master
organization) and the data partitioning strategy.

— The task generator thread, which generates
application tasks based on the partitioning
strategy, encapsulates task descriptions as tuples
and inserts the task tuples into TaskSpace.

— The data transfer thread, which uses the direct
communication channel to process requests for
task data retrieval and for result submission
from workers, as well as coordination messages
(e.g., ‘convergence’ message) between masters.

— The terminator thread, which checks for conver-
gence among tasks that the master is responsible
for, monitors convergence messages from other
masters, and terminates when overall conver-
gence is achieved.

J Grid Computing (2006)

— The task monitor, which maintains a table of
tasks the master is responsible for, and records
the current state of the tasks in this table. The
state of a task can be generated, retrieved,
computing, submitting or completed.

3.5. Supporting Large Application/System Scales

CometG supports large application/system scales
using multiple coordination groups. A coordina-
tion group includes one TaskSpace, one Border-
Space, and a group of masters and workers. A
group can support multiple applications with
logically separate semantic spaces. An applica-
tion can also span multiple groups, each of which
handles a part of the application. The application
is hierarchically partitioned, first across coordina-
tion groups, and then across masters within each
coordination group. Tasks with communication
dependencies should be mapped to the same
coordination group if possible as communications
across groups can be expensive. Workers within
a coordination group communicate using the
shared BorderSpace. Masters within and across
coordination group communicate using direct
communication channels.

Using coordination groups thus distributes the
load of TaskSpace and reduces the size of
BorderSpace, effectively improving the scalability
of the system. Nevertheless, it may not always be
possible to partition the application to eliminate
inter-group communications. However, as the
number of these communications is relatively
small, these communications can simply be ig-
nored in the case of asynchronous applications.
While ignoring them will affect convergence, we
have observed that the improvement in overall
application performance using this approach out-
weighs these effects. In cases where the number
of inter-group communications is large, or when
task dependencies are complex, data exchange
can be coordinated through a single node in each
group [32].

3.6. Addressing the Unreliability of the Grid

The CometG computational infrastructure pro-
vides application level fault tolerance mecha-
nisms to address the unreliability inherent in

Grid environments. These mechanisms assume a
fail-stop failure model and timed communication
behavior [20, 21]. Under these assumptions,
possible failures include border tuple communi-
cation failure, master failure, and task loss. These
failures are addressed below:

Border tuple communication failures are sim-
ply handled by Rd timeouts, due to the resilient
nature of asynchronous algorithms. Master fail-
ures are handled using checkpoint-restart. The
runtime system periodically checkpoints the local
state of each master, including its task table and
current intermediate results, to a stable storage.
Users are currently responsible for the detecting
the failure of a master node. When a master fails,
users can recover its state from the stable storage
and resume the computation. Finally, task loss is
handled using timeout-regeneration and a re-
trieval-submission protocol. It is well known that
detecting this kind of failure in tuple spaces is
very difficult because there can be multiple rea-
sons for the failure, including TaskSpace crashes,
message losses, communication link failures, fail-
ures of workers with unfinished tasks, etc. In
CometG, the loss of un-retrieved and retrieved
tasks, are handled separately as follows.

Un-retrieved task loss occurs only when the
relevant TaskSpace node crashes since task tuple
insertions are guaranteed. Masters can detect this
failure using a keep-alive mechanism, and can
handle it by regenerating unfinished tasks. The
regenerated tasks will be deterministically routed
to an operational TaskSpace node on the DHT
due to the resilience of the overlay (e.g., the
Chord routing around failure functionality [36]).

Retrieved task loss is detected using the task
tables at the masters. Each task in the table is
associated with a timer which is initialized when
the task is retrieved by a worker. If the results for
a task are not returned before the timer expires,
the task is considered as lost. The master regen-
erates the lost task and updates the task table.
The value of the task timer depends on the com-
putational requirements of the specific applica-
tion as well as the current performance of the
system. In CometG, this value is dynamically de-
termined based on a user specified threshold and
the observed maximum task processing time,

@ Springer

J Grid Computing (2006)

which is the time interval from when a task is
retrieved to when the corresponding results are
returned.

Note that task regeneration can lead to the
problem of duplicated tasks where the same task
may be allocated to multiple workers. This can be
addressed using a simple retrieval-submission
protocol where the master refuses all data trans-
fer requests and result submissions for a task that
it has tagged as completed in its task table.

3.7. System Implementation and Operation

The current prototype of CometG has been imple-
mented on Project JXTA [6], a platform indepen-
dent peer-to-peer framework. The JXTA platform
provides a virtual network for applications, which
can cross barriers such as firewalls/NATS to estab-
lish peer communities spanning any part of the
physical network. JXTA peers can discover peer
resources, communicate with each other, and self-
organize into peergroups. A JXTA peergroup
provides a scoping mechanism, using which mes-
sages are only propagated among group members.
JXTA also provides security features that can be
used by applications.

Each CometG node operates as a JXTA peer
identified by a JxtaID. Each node in CometG can
support multiple masters and/or workers associ-
ated with different applications. Further, Com-
etG coordination groups are implemented as
JXTA peergroups. Nodes in CometG organize
using JXTA Discovery Protocol to form the ring
overlay. The overlay lookup operator of the
CometG communication layer maps the logical
overlay peer identifier to the node's JxtalD, and
uses the JXTA Resolver Protocol for communi-
cation. The implementation of the CometG tuple
space primitives are illustrated in Figure 6.

Figure 6. CometG tuple
space operation: (a) Tuple
distribution using the Out
operator. (b) Exact tuple

Insert in
repository Coordination Layer

Content-based Routing l

lOut(ts,t)

post (keys,data)

query)

3.8. System Operation

The overall operation of CometG consists of two
phases: bootstrap and running. The bootstrap
phase is used to setup a coordination group.
During this phase, peer nodes join the CometG
JXTA peergroup and exchange messages with
the rest of the group. Each joining peer attempts
to discover an existing peer in the system and to
construct the overlay and setup its routing table.
It also sends discovery messages to the group. If
the message is unanswered after a pre-defined
time interval (in the order of seconds), the peer
assumes that it is the first one in the system. If a
peer responds to the message, the joining peer
queries this bootstrapping peer according to the
join protocol of the overlay, and updates routing
tables in the overlay to reflect the join.

The running phase consists of stabilization and
user modes. In the stabilization mode peer nodes
manage the structure of the overlay. In this mode,
peer nodes respond to periodic queries from
other peers to ensure that routing tables are up-
to-date and to verify that other peer nodes in the
group have not failed or left the system. In the
user mode, peer nodes participate in user appli-
cations. In this mode, application developers can
configure the system, setup application parame-
ters such as coordination groups, relevant seman-
tic spaces, master configurations, and initiate the
master processes.

4. Grid-Based Parallel Asynchronous Iterative
Applications Using CometG

This section illustrates the use of the CometG com-
putational infrastructure to implement and execute
a Grid-based PDE application. The application
uses parallel asynchronous Jacobi iterations for

In/Rd(ts,t, timeout)
Search in (wait until
repository Coordination Layer tuple returned or
[~ timeout)

post (keys,data)

Returned Content-based Routing

retrieval using the In/Rd I postResponse?llookup (overlayID, tuple I postResponse llookup(overlayln,

operator Self-organizing Overlay:

sendQuery (JxtaID, queryMsg)
<Lencluery (U

____________ >
queryResponse

JXTA Substrate
(a)

@ Springer

query)
Self-organizing Overlay

sendQuery (JxtaID, queryMsg)
-
JXTA Substrate

(b)

J Grid Computing (2006)

solving the heat distribution problem [17]. In this
illustrative application, the temperature at the
edges of a square sheet are known, and the
temperature at a point in the interior surface of
the sheet is computed based on the temperatures
around it. The square sheet is discretized as a two-
dimensional Grid and represented as a two-
dimensional array of points. In each iteration, the
value of each point in the interior of the array is
computed as an average of four points around it.
The computation is repeated until the stop crite-
rion is satisfied, i.e., the difference in temperature
values at a point between iterations is less than a
prescribed threshold, or the bound on the number
of iterations is reached.

Assuming that the application uses strip parti-
tioning, the Grid points are divided into blocks of
rows. Each block defines a task and is processed
by one worker. Since each point needs its four
immediate neighbors, each worker needs to
exchange data in the rows at the top and bottom
of the block with workers processing neighboring
blocks. The workers assigned the top most and
bottom most rows are exceptions and need to ex-
change data in only one row. A conceptual
overview of the CometG based implementation
of this application is shown in Figure 7. Flow
charts for the operation of master and worker
nodes are presented in Figure 8, and are de-
scribed below.

Figure 7. CometG-based
implementation of the heat
distribution problem using
parallel asynchronous
Jacobi iterations

Once a worker is initiated, it repeats the fol-
lowing steps until explicitly terminated: (1) Ex-
tract a task tuple from TaskSpace, (2) read the
required top and/or bottom border rows from
BorderSpace, (3) locally compute temperature,
(4) insert updated border rows into BorderSpace,
(5) repeat steps (2)—(4) until the stop criterion
specified in the task tuple is reached, and (6) send
results to the master corresponding to the task
using a direct communication channel.

When the master is launched, it uses user
inputs to configure the application (e.g., setup
the number of coordination group and master
organization, etc.) and initiates the BorderSpace.
If a single master is used, that master is respon-
sible for the entire Grid. The master first partitions
the Grid into blocks and inserts corresponding
tasks into TaskSpace. When a task is assigned to a
worker, the worker obtains task data from the
master using the direct communication channel.
When the task completes, the work submits the
results to the master also using the direct com-
munication channel. After all its tasks have
completed, the master checks if the stop criterion
is satisfied by the computed data, since the
overall application may not satisfy the stop
criterion even though each task locally satisfies
its stop criterion. If the overall stop criterion is
not satisfied, the master repartitions the Grid to
create new tasks and inserts them into TaskSpace.

Worker

0y 00 0 0 0 0 04
600000000

LYDVBHNH

Task tuples are extracted from
TaskSpace. Data is transferred

Task 2 t)
Task 2 7P through direct comm channel.

Worker Task2 top &
24 2
898999889 > Worker
222202002 Task2 ©P " 43 top 6666688
0000000
Task 1 Task2 bottom 0000000
% Task3 bottom
BorderSpacer /4 Task3
3+
(\ Y~
TaskSpace N S
——

Each Grid point is the average of the
four neighbors. The border data is
exchanged through BorderSpace

Qf\ Task3
Master

) Springer

J Grid Computing (2006)

Figure 8. Operation of mas-
ter and worker nodes for the
CometG-based implementa-
tion of the heat distribution

problem

This process constitutes one global application
iteration, and is repeated until the overall stop
criterion is satisfied, at which point, the master
terminates the application.

If multiple masters are used, the user must
define the organization of the masters, e.g., a
hierarchical structure [13], and the termination
detection algorithm to be used. The Grid is uni-
formly partitioned across the masters in this case,
and each master locally partitions its sub-Grid
into blocks and inserts corresponding tasks into
TaskSpace. The operation at each master then
proceeds as in the single master case described
above. When a master detects local termination, it
coordinates with the other masters to establish
global convergence. In case of a hierarchical
master organization, it sends a ‘converge’ message
up the hierarchy to the root node. If the master
stays in a ‘converged’ state, no further messages
are sent, otherwise, a ‘diverge’ message is sent to
the root. The root node checks the messages
received from all the masters end of each iteration,
and if all of them are in the converged state for a

@ Springer

Init Master

Single
Master?
Configure
Master Structure

Insert Tasks

Collect Results

Coordinate Maste
Convergence

5 B
2 2

Init Worker

Extract A
Task Tuple

=3

Z

Retrieve
Task Data

Get Border
Tuples

Local
Computation

N,
NO

No

)
(5
—

End Transfer Result
to Master

specified number of iterations, it broadcasts a
‘stop’ message to the masters, which causes them
to terminate the application.

5. Experimental Evaluation

CometG and the PDE application have been de-
ployed on a wide-area environment using Planet-
Lab [7] test bed, as well as a campus network at
Rutgers. The objective of the experiments pre-
sented in this section is to evaluate and demon-
strate system performance and scalability, its
ability to tolerate faults, and its ability to support
wide-area deployments of parallel asynchronous
iterative applications. The experiments use a
horizontal block partitioning strategy and vary
the size of the problem as listed in Table 1. In
the multiple master mode, a hierarchical organi-
zation of the masters was used and measurements
were made at the root node. The different
experiments and the results obtained are de-
scribed below.

J Grid Computing (2006)

Table 1 Problem sizes used in the experimental evaluation

Problem size Partitions Block size Border tuple size

2,000 x 2,000 100 032 M 16.026 K
3,000 x 3,000 100 0.7M 24.026 K
8,000 x 2,000 200 0.64 M 16.026 K

5.1. Experiments Using the Campus Network
at Rutgers

These experiments were conducted on a Grid
consisting of 70 heterogeneous Linux-based com-
puters on the Rutgers campus network. Each
machine was a peer node in CometG overlay and
the machines formed a single CometG group.
The first set of experiments evaluated the
costs of basic tuple insertion and exact retrieval
operations. The tuples in the experiments were
fixed at 200 bytes, which is roughly equal to the
size of a task tuple. A ping-pong like process was
used in the experiments, in which an application
process inserted a tuple into the space using the
Out operator, read the same tuple using the Rd
operator, and deleted it using the /n operator. In
these experiments, the Out and exact matching
Rd/In operations used a 3D information space.
For an Out operation, the measured time corre-
sponded to the time interval between when the
tuple was posted into the space and when the
response from the destination was received, i.e.,
the time between Post and PostResponse in
Figure 6(a). For a Rd/In operation, the measured

time was the time interval between when the
template was posted into the space and when the
matching tuple was returned to the application,
assuming that a matching tuple existed in the
space, i.e., the time between Post and receiving
the tuple in Figure 6(b). This time included the
time for routing the template, matching tuples in
the repository, and returning the matching tuple.
Note that the time for in-memory template match-
ing is very small compared to the communication
time for this ping-pong test.

The average performance of the operators were
measured for different system sizes. Figure 9 plots
the average measured performance and shows
that the system scales well with increasing num-
ber of peer nodes. When the number of peer nodes
increases 32 times, i.e., from 2 to 64, the average
round trip time increases only about 1.5 times.
This is due to the logarithmic complexity of the
routing algorithm used by the Chord overlay. Rd
and In operations exhibit similar performance, as
seen in the figure. Further, increasing the size of
border tuples can cause message transmission
delays. However, as expected, the message rout-
ing time remains the dominant factor as the
system size increases. Note that the JXTA 2.3
Resolver Protocol used to implement CometG
has been shown to effectively transfer message of
size up to 128 KB [10], which is sufficient for
supporting border tuple communications for the
current application.

The next set of experiments measured overall
application performance using a problem of size
3,000 x 3,000 Grid points and precision thresholds

Figure 9. Average time for I

. - Out

Out, In, and Rd operations 140
for increasing system sizes
on the Rutgers campus 120
network -

£

< 100

£

'_

§ 80

5

O

19}

x

w60

40

20

24 32 40 48 56 64

Number of Nodes

@ Springer

J Grid Computing (2006)

of 1073, 1073, and 10~7. The Grid was partitioned
into 100 blocks and uniformly distributed across
10 master nodes. The masters were organized as a
hierarchy with one root using the algorithm in
[13]. All other nodes served as worker nodes,
each hosting two worker instances. The total
execution time is plotted in Figure 10. In this
plot, the X-axis represents the number of workers
plotted using a logarithmic scale with base 10.
The plots show the overall application perfor-
mance improvements and demonstrate that, as
expected, the improvements are more significant
when there is more computation (e.g., when the
precision threshold is smaller).

The third experiment demonstrates the
CometG fault tolerance mechanisms for hand-
ling task losses due to worker dynamism. The ex-
periment was conducted on 32 machines and
used a problem of size 2,000 x 2,000 Grid points
and a precision threshold of 1075, The Grid was
partitioned into 100 tasks distributed across
four master nodes. The user defined task timeout
threshhold was set to 50 s. All the other nodes
served as workers and hosted multiple worker
instances. Tuple losses were simulated by having
workers that have retrieved a task tuple fail with a
probability of 25%. A global monitor process was
used to calculate the number of alive workers
in the system each time worker was started or
failed. In the experiment, 20 workers were initially
started on randomly selected nodes. As the ap-
plication progressed, workers failed and the lost
task tuples were regenerated. Meanwhile, 20 new

workers were started at 285 and 439 s after the
start of the application, at the rate of one worker
every 3s. The results of this experiment are
plotted in Figure 11. Figure 11(a) plots the fluc-
tuations in the number of workers during the
lifetime of the application. Of the 100 total tasks
in the application, 22% were regenerated once
and 3% were regenerated twice due to worker
failures. Figure 11(b) illustrates the life-cycles of
tasks including timeouts and the resulting task
regenerations. For clarity, this figure only shows a
subset of tasks with id between 80 and 90. Plots
for other tasks are similar.

5.2. Experiments Using the PlanetLab
Wide-Area Test Bed

This section presents the experiment on the wide-
area PlanetLab [7] test bed. PlanetLab is a large
scale heterogeneous distributed environment
composed of inter-connected sites on a global
scale. The goal of the experiment is to demonstrate
the ability of CometG to support application even
in an unreliable and highly dynamic environments
such as PlanetLab, which essentially represents an
extreme case for a Desktop Grid environment.
The CometG is currently deployed on 234 ma-
chines on PlanetLab, which have been used in the
experiment presented below. In the experiment,
each machine ran an instance of the CometG
stack, randomly joined the CometG overlay dur-
ing bootstrap phase, and served as a master or
worker node with one worker instance per node.

Figure 10. Overall applica- 12000
tion execution time for a 11000
problem size of 3,000 x 3,000
and 100 partitions on the
Rutgers campus network 9000

Execution Time (sec)
[=2]
o
o
o

- | =B Precision =10 ||
-6~ Precision = 107
| = Precision =107 |

@ Springer

20 50 90 120

8
Number of Workers

J Grid Computing (2006)

30 ™ T 90 :
Workers Join =~ » Generation
L2 e — | ® 2nd generation
3rd generation
e | .
88 4 Finished
s] P
Q
<
o 86 > -
= - time out
k) = 85(»]
5 5 time out
2 S 84|» - 4
g time out
z 83 [pb—a
82 p . <
time out
81 p °
. time out time out
. Workers Join 80 b
0 - - - . T T T T T T T T T T
0 100 200 300 400 500 40 80 120 160 200 240 280 320 360 400

Elapsed Time (sec)

(a)

Elapsed Time (sec)

(b)

Figure 11. Evaluation of CometG fault tolerance mechanisms for tolerating loss of task tuples. (a) Fluctuations in the
number of worker due to failures. (b) Life-cycles of tasks 80 through 90

The experiment used a problem of size 8,000 x
2,000 and a precision of 107>. The problem was
partitioned into 200 tasks, which were uniformly
distributed and across four CometG coordination
groups. Each group had about 60 peer nodes, in
which five nodes acted as masters and others
served as workers. The task timeout threshhold
was set to 500 s and the border tuple read timeout
was set to 100 s. The experiment was conducted
on December 9, 2006, and lasted more than 3 h,
including the infrastructure setup, bootstrap, ap-
plication deployment, configuration, and exe-

cution. The application terminated after two
global iterations, during which multiple worker
nodes left the system or failed and were handled
by the CometG fault tolerance mechanisms. One
master in coordination group 3 also failed and
was restarted manually. The task tables of all
the masters were collected and summarized in
Figures 12 and 13. Figure 12 separately plots the
retrieval, computation, and result submission
times for all the tasks for each of the two global
iterations. The X-axis in these plots represents
the task id, and the Y-axis represents the execu-

150

150

200

150
—~ 100 100 100
8
2
Qo
£
- 50 50
o b iiandill il 0
50 100 150 200 50 100 150 200 50 100 150
(1) Retrival Time (2) Computation Time (3) Result Submission Time
150 150 150
< 100 100 100
[
K23
o
£
- 50 50
. RIPPE Y . .

50 100 200 50

(4) Retrival Time

150

100
(5) Computation Time

150 200 50 100 150 200

(6) Result Submission Time

Figure 12. Execution time of each CometG phase on PlanetLab using a problem size of 8,000 x 2,000 and 200 tasks.
(1)—(3) Phases of the first global iteration. (4)—(5) Phases of the second global iteration

@ Springer

J Grid Computing (2006)

Figure 13. Overall execution 500f
time for two global iterations 450}
on PlanetLab using a prob- 4001

lem size of 8,000 x 2,000 and 3501
200 tasks. (1) Total execu-
tion time of the first global
iteration. (2) Total execution
time of the second global
iteration

Time (sec)

50 100
@)

tion time of each phase. Note that the computa-
tion time for the second iteration is significantly
smaller and the first, as expected. Figure 13 plots
the total execution time for each iteration. The
X-axis once again represents the task id. The
variation in the execution time for different tasks
illustrates the heterogeneity of the workers and
the PlanetLab test bed. These experiments dem-
onstrate that CometG system can effectively
support parallel asynchronous iterative applica-
tions on an extreme case of a wide-area Desktop
Grid environment with very high heterogeneity,
dynamism, and uncertainty.

The experimental results presented in this
section demonstrate both, the efficiency/scalabil-
ity of CometG and its ability to support wide-area
deployments of Desktop Grid applications based
on parallel asynchronous iterative algorithms.

6. Conclusion

Desktop Grids leverage Internet connected com-
puters and have been successfully used to tackle
large applications in science and engineering with
significant computational requirements. However,
current Desktop Grid systems have been limited
to embarrassingly parallel applications since indi-
vidual tasks in these applications are independent
and do not require inter-task synchronization and
communications, which can present significant
challenges in heterogeneous, dynamic and unre-
liable Grid environments. Parallel asynchronous
iterative computations relax these synchroniza-
tion and communication requirements and can
tolerate heterogeneous computational capabilities
and unreliable communication channels, and are
emerging as promising approaches for enabling

@ Springer

100 1
501 1
o

150 200 50 100 150 200

@)

large scale computation problems on Desktop
Grids.

This paper presented the design and implemen-
tation of CometG, a decentralized (peer-to-peer)
computational infrastructure that effectively ex-
tends Desktop Grid environments to support
parallel asynchronous iterative applications. Com-
etG provides a decentralized scalable tuple space,
efficient communication and coordination, and
application-level abstractions that can be used to
implement Desktop Grid applications based on
parallel asynchronous iterative algorithms using
the master-worker/BOT paradigm. The deploy-
ment and evaluation of CometG and a CometG-
based application in a wide-area environment
using PlanetLab test bed, as well as a campus
network were presented. The evaluations demon-
strated both, the efficiency/scalability of CometG
and its ability to support wide-area deployments
of applications based on parallel asynchronous
iterative algorithms.

Currently, CometG can effectively support co-
ordination groups consisting of tens to hundreds
of peers. Further, each peer can run multiple
instances of masters and/or workers. The scal-
ability of CometG can be potentially extended to
thousands or even millions of nodes with the
following enhancements: (1) Separating the space
nodes from end nodes, where the space nodes
provide coordination services and the end nodes
host the application program modules; (2)
employing relatively powerful peers, i.e., super-
peers, with larger memory capacity and network
bandwidth, as space nodes and master nodes; and
(3) using high-throughput task dispatch implemen-
tations such as the task servers popularly used by
current Desktop Grid projects [1, 9] to support
millions of users.

J Grid Computing (2006)

Acknowledgements

The research presented in this paper

is supported in part by the National Science Foundation
via grants numbers ACI 9984357, EIA 0103674, EIA
0120934, ANI 0335244, CNS 0305495, CNS 0426354 and
IIS 0430826.

References
1. ‘Boinc.” http://boinc.berkeley.edu/
2. ‘Climatprediction.net.” http://climateapps2.oucs.ox.

SOOI N AW

—_

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ac.uk/cpdnboinc/download_main.php

. ‘Folding@Home.’ http://folding.stanford.edu/

. ‘mpiJava.” http://www.hpjava.org/mpiJava.html

. ‘Predictor@Home.” http://predictor.scripps.edu/

. ‘Project JXTA.” http://www.jxta.org

. ‘Project PlanetLab.” http://www.planet-lab.org

. ‘SETI@Home.’ http://setiathome.ssl.berkeley.edu/

. ‘XtremWeb.” http://xw.Iri.fr:4330/XtremWeb/

. Antoniu, G., Hatcher, P., Jan, M., Noblet, D.P.:

Evaluation of JXTA communication layers. In: Pro-
ceedings of the Fifth International Workshop on
Global and Peer-to-Peer Computing (2005)

Bahi, J., Contassot-Vivier, S., Couturier, R.: Dynamic
load balancing and efficient load estimators for asyn-
chronous iterative algorithms. IEEE Trans. Parallel
Distrib. Syst. 16(4), 289-299 (2005)

Bahi, J., Contassot-Vivier, S., Couturier, R. Vernier,
F.: A decentralized convergence detection algorithm
for asynchronous parallel iterative algorithms. IEEE
Trans. Parallel Distrib. Syst. 16(1), 4-13 (2005)

Bahi, J.M., Domas, S., Mazouzi, K.: Combination of
Java and asynchronism for the Grid: a comparative
study based on a parallel power method. In: Proceed-
ings of 18th International Parallel and Distributed
Processing Symposium (2004)

Bakken, D.E., Schlichting, R.D.: Supporting fault-
tolerant parallel programming in Linda. IEEE Trans.
Parallel Distrib. Syst. 6(3), 287-302 (1995)

Baudet, G.M.: Asynchronous iterative methods for
multiprocessors. J. ACM 25(2), 226-244 (1978)
Bertsekas, D.P., Tsitsiklis, J.N.: Convergence rate and
termination of asynchronous iterative algorithms. In:
Proceedings of the 3rd International Conference on
Supercomputing, pp. 461-470 (1989)

Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distribut-
ed computation: Numerical methods. Athena Scientific
(1997)

Browne,J.C., Yalamanchi, M.,Kane, K., Sankaralingam,
K.: General parallel computations on desktop grid and
P2P systems. In: Proceedings of the 7th Workshop on
Workshop on Languages, Compilers, and Run-time
Support for Scalable Systems, pp. 1-8 (2004)
Carriero, N., Gelernter, D.: Linda in context.
Commun. ACM 32(4), 444-459 (1989)

Cristian, F.: Understanding fault-tolerant distributed
systems. Commun. ACM 34(2), 56-78 (1991)

Cristian, F., Fetzer, C.: The timed asynchronous dis-
tributed system model. IEEE Trans. Parallel Distrib.
Syst. 10(6), 642-657 (1999)

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

Frommer, A., Szyld, D.: On asynchronous iterations.
J. Comput. Appl. Math. 123(1), 201-216 (2000)
Gelernter, D.: Generative communication in Linda.
ACM Trans. Program. Lang. Syst. 7(1), 80-112 (1985)
Huet, F., Caromel, D., Bal, H.E.: A high performance
Java middleware with a real application. In: Proceed-
ings of the Supercomputing Conference (2004)
Kondo, D., Taufer, M., Brooks, C., Casanova, H.,
Chien, A.: Characterizing and evaluating Desktop
Grids: an empirical study. In: Proceedings of the In-
ternational Parallel and Distributed Processing Sym-
posium (2004)

Kreyszig, E.: Advanced Engineering Mathematics.
Wiley (1998)

Li, Z., Parashar, M.: Comet: a scalable coordination
space for decentralized distributed environments. In:
Proceedings of the 2nd International Workshop on Hot
Topics in Peer-to-Peer Systems, pp. 104-112 (2005)
Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.:
Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Trans. Knowl. Data Eng.
13(1), 124-141 (2001)

Nieuwpoort, R.V., Maassen, J., Kielmann, T., Bal,
H.E.: Satin: simple and efficient Java-based Grid pro-
gramming. Scalable Computing: Practice and Experi-
ence 6(3), 19-32 (2005)

Obreiter, P.: Extending truple spaces towards a mid-
dleware for eCommerce. Thesis, University of Karls-
ruhe (2000)

Oliveira, L., Lopes, L., Silva, F.: P> parallel peer-to-
peer an internet parallel programming environment. In:
Proceedings of the Workshop on Web Engineering and
Peer-to-Peer Computing (2002)

Plaat, A.: Optimizing parallel applications for wide-
area clusters. In: Proceedings of the 12th. International
Parallel Processing Symposium, p. 784 (1998)
Sankaralingam, K., Yalamanchi, M., Sethumadhavan,
S., Browne, J.C.: Pagerank computation and keyword
search on distributed systems and P2P networks. J.
Grid Computing 1(3), 291-307 (2003)

Schmidt, C., Parashar, M.: Enabling flexible queries
with guarantees in P2P systems. IEEE Internet
Computing, Special issue on Information Dissemina-
tion on the Web (3), 19-26 (2004)

Sterck, H.D., Markel, R.S., Phol, T., Ride, U.: A
lightweight Java taskspaces framework for scientific
computing on computational Grids. In: Proceedings of
the ACM symposium on Applied computing, pp. 1024—
1030 (2003)

Stoica, I., Morris, R., Karger, D., Kaashoek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer look-
up service for internet applications. In: Proceedings of
the ACM SIGCOMM Conference (2001)

Tolksdorf, R., Glaubitz, D.: Coordinating web-based
systems with documents in XMLSpaces. In: Proceed-
ings of the 6th International Conference on Coopera-
tive Information Systems (2001)

Wilkinson, B., Allen, M.: Parallel programming: Tech-
niques and applications using networked workstations
and parallel computers. Prentice Hall (2004)

World Wide Web Consortium. Document Object Model

) Springer

http://boinc.berkeley.edu/
http://climateapps2.oucs.ox.ac.uk/cpdnboinc/download_main.php
http://climateapps2.oucs.ox.ac.uk/cpdnboinc/download_main.php
http://folding.stanford.edu/
http://www.hpjava.org/mpiJava.html
http://predictor.scripps.edu/
http://www.jxta.org
http://www.planet-lab.org
http://setiathome.ssl.berkeley.edu/
http://xw.lri.fr:4330/XtremWeb/

J Grid Computing (2006)

(DOM) Level 2 Core Specification. W3C Recom- Concurrency — Practice and Experience 10(11-13), 1189-

mendation (2000). http://www.w3.org/TR/DOM-Level- 1196 (1998)

2-Core 41. Zhang, Y., Li, X.S., Marques, O.: Towards an auto-
40. Yalamanchilli, N., Cohen, W.W.: Communication matic and application-based eigensolver selection. In:

performance of Java-based parallel virtual machines. LACSI Symposium (2005) accepted

@ Springer

http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core

	A Decentralized Computational Infrastructure �for Grid-Based Parallel Asynchronous �Iterative Applications
	Abstract
	Introduction
	Parallel Iterative Computations �in Grid Environments
	Parallel Asynchronous Iterative Algorithms and Applications
	Requirements for Grid-Based Parallel Asynchronous Iterative Algorithms �and Applications
	The Tuple Space Paradigm
	Related Work

	A Decentralized Computational Infrastructure for Grid-Based Asynchronous Iterative Computations
	Tuples and Tuple Distribution

	Sec8
	Outline placeholder
	The Communication Layer

	Sec9
	Outline placeholder
	The Coordination Layer
	The Application Layer
	Supporting Large Application/System Scales
	Addressing the Unreliability of the Grid
	System Implementation and Operation
	System Operation

	Grid-Based Parallel Asynchronous Iterative Applications Using CometG
	Experimental Evaluation
	Experiments Using the Campus Network �at Rutgers
	Experiments Using the PlanetLab �Wide-Area Test Bed

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

