

Real Time Feature Extraction and Tracking in a Computational Steering
Environment

J. Chen, D. Silver and M. Parashar
Dept. of Electrical and Computer Engineering and CAIP Center,

Rutgers University,
P.O. Box 909, Piscataway, NJ 08855-0909
jianc, silver,parashar@caip.rutgers.edu

Keywords: Visualization, Feature extraction, Tracking,
Computational steering, Distributed algorithm

ABSTRACT

Large distributed time-varying simulations are common in

many scientific domains to study the evolution of various
phenomena. These simulations produce thousands of timesteps
which must be analyzed and interpreted. For datasets with evolving
features, feature analysis and visualization tools are crucial to help
interpret all the information. For example, it is usually important to
know how many regions are evolving, what are their lifetimes, do
they merge with others, how does the volume/mass change, etc. To
be effective these visualization and analysis routines must also be
parallelized in order to operate on the data where that data resides.
Furthermore, interacting with the routines as the simulations are
ongoing can aid in the analysis. In our previous work, we have
developed a methodology for analyzing time-varying datasets
which tracks 3D amorphous features as they evolve in time. In this
paper, we describe the full parallel feature extraction and tracking
algorithm within a computational steering environment for parallel
and distributed simulations. We demonstrate how one can interact
with the code and show various examples within ongoing
computations.

1. INTRODUCTION

Time varying simulations are common in many scientific

domains to study the evolution of phenomena or features.
The data produced in these simulations is massive. Instead
of just one dataset of 5123 or 10243 (for regular gridded
simulations) there could now be hundreds to thousands of
timesteps. For datasets with evolving features, feature
analysis and visualization tools are crucial to help interpret
all the information and highlight the underlying physical
processes [21][12][18]. For example, it is usually important
to know how many regions are evolving, whether they
merge with other regions, and how their volume may
change over time. Therefore, feature based approaches, such
as feature tracking and feature quantification are needed to
follow identified regions over time. The first step is to
define what regions are of interest, the second is to track
them in all of the timesteps. Another important application

of feature based approach is in data mining. These features
can be catalogued to build a scientific database. This will
help the scientist to relate the phenomenon of interest with
previous simulations and perform event matching. A basic
framework for analyzing time-varying datasets was
presented in [21][22] and an overview is shown in Figure 1.
The goal of the process is to obtain dramatic data reduction
and thus help scientists quickly focus on a few features or
events of interest.

Figure 1. A process for visualizing 3D continuum datasets

 As can be seen in Figure 1, the first step is to identify the
features of interest and to define them. In [21][22][19]
features are defined as thresholded connected components.
The features are extracted from each dataset and then
correlated over time using the algorithm in [21]. Once all
the features are correlated, they can be quantified,
compared, measured, etc. to obtain a full analysis of the
evolution of each feature. This information constitutes
“meta-data” which can be used for general querying. One
example is event querying, i.e. retrieve all timesteps that
demonstrate a particular event like large object merging. A
database can eventually be built allowing the scientist
understand the simulation in the context of all the
simulations previously computed. The tracking information
can also be used for enhanced visualization as shown in
Figure 1 which depicts the trajectory of a single feature with
history encoded as opacity.

 With the increase in computational power available,
simulation sizes are growing. These datasets are massive,
and the standard post-processing feature extraction and
tracking [21] approach is unfeasible because the datasets
cannot be loaded onto a single processor. Automated tools
to aid in searching the data such as feature extraction and
tracking are even more crucial since the amount of data is
too large to simply investigate let alone download for local
visualization processing. To realize the full potential, the
feature extraction and tracking processing must be
implemented where the data resides and when it is being
computed (in-situ). This motivates the need for a
parallel/distributed feature extraction and tracking process
that runs along with the simulation. Furthermore, one would
like to interact with the tracking process while the
simulation is ongoing, to change parameters, initialize the
process, etc.
 In [7], a distributed feature extraction algorithm was
presented. In this paper, we extend the algorithm to include
distributed feature tracking and integrate it within a
computational steering system to support interaction while
the simulation and visualization is in progress. The
implementation uses GrACE (Grid Adaptive Computational
Engine) [17], an infrastructure which supports distributed
adaptive mesh-refinement computations on structured grids.
GrACE provides multifaceted objects specialized to
distributed adaptive grids and grid functions, and has been
deployed to support applications in many different
applications. This enables the visualization processes to run
in-situ without the added overhead for data transfers. To
access the ongoing simulation, the DISCOVER (Distributed
Interactive Steering and COllaborative Visualization
EnviRonment) portal [16] is used which provides a control
network to query the analysis, interaction and steering
interfaces. DISCOVER is supported by a suite of detachable
interfaces and analysis modules and allows users to interact
with, interrogate, control and steer GrACE-based
applications. In the next section, the algorithms for both
distributed feature extraction and tracking are detailed
followed by the implementations. Examples are presented in
Section 4.

2. DISTRIBUTED FEATURE EXTRACTION AND
TRACKING

There is lot of work done in building distributed

visualization systems, however most of these systems
perform distributed visualization with isosurfaces or volume
rendering (for example see [5][4][10]). Standard isosurface
algorithms are inherently parallelize-able since they treat
each cell in the grid independently and have no notion of
connectivity. This is not the case here. Connected features
provide much more information than simple isosurfaces,
since one can compute attributes (quantifications) such as

mass, volume, centroid and moments. These attributes
require the knowledge of the entire feature or object [19].
While each processor can locally extract their own features,
a feature and its evolution (future timesteps) may span
multiple processors, so a coalescing procedure must be used
to globally resolve feature identifications and compute
feature attributes.
 The features in [19] are defined as connected nodes that
satisfy a certain criteria, such as a region where all of the
nodes are above a particular threshold value. The bounding
surface of this region is a standard isosurface, although now
that all of the different regions are separate and distinct. The
regions can be extracted with a flood fill type algorithm or
with a stepped region-growing algorithm [21][19]. In
addition to the nodes (data cells) within an object, the
boundary polygons (isosurface), and a set of attributes are
computed. Since the data is distributed among multiple
processors, a connected feature may span several
processors. Once each processor identifies its own local
features, a “merge” must be performed to connect features
spanning several processors. The merge algorithm operates
by checking the boundaries between processors to see
whether a particular feature can potentially overlap (i.e., hits
the boundary). In [7], two different boundary merge
strategies are described, a “complete-merge” strategy,
which utilizes a binary swap algorithm [13], and a “partial-
merge” strategy, which utilizes a visualization accumulator.
The complete-merge strategy is related to the 2D parallel
implementation of the component labeling (image
segmentation) and watershed transformation algorithm
given in [15][2]. This algorithm requires an O(log(n))
communication overhead (where n is the number of
processors) to coalesce all of the features. The “partial-
merge” is a more efficient algorithm that does not depend
on the number of processors. After each processor does its
own feature extraction, processors communicate with their
immediate boundary neighbors to determine the local
connectivity. This partial-merge data (given as a set of
tables) is enough to reconstruct the full connectivity, which
can be done by a visualization accumulator as a preprocess
step to visualization. This step involves simple bookkeeping
to determine that if O1

p1 (feature labeled 1 in processor 1) is
connected to O2

p4 , and O2
p4 is connected to O9

p5 , then all of
these pieces are part of a larger feature. A picture describing
the local merge strategy is shown in Figure 2.

In addition to the “partial-merge” tables, the bounding
polygons (isosurface) and other quantification
measurements (volume, etc) are sent to the visualization
accumulator. After the objects are merged, all of the
bounding polygons pertaining to a feature are given the
same color, resulting in a coherent view of the features as
shown in Figure 2. Note that at the end of the processing
there are 27 distinct features found. (This data is one
timestep from a Pseudo-spectral simulation of coherent

turbulent vortex structures by Dr. N. Zabusky and Dr. V.
Fernandez of the Department of Mechanical and Aerospace
Engineering, Rutgers University. The dataset is 2563
(upsampled from 1283) with 100 timesteps.)

Figure 2. The “partial-merge” strategy for feature extraction.

2.1. Distributed Feature Tracking

Once features are defined, their evolution can be

characterized by performing feature tracking. Feature
tracking involves matching a feature in one timestep to the
next timestep. Events can be categorized into one of five
different classifications, i.e. continuation, splitting, merging,
creation and dissipation. As is described in [21] the most
salient characteristic of a continuing feature(s) is location.
The original feature tracking algorithm worked in two
phases. In the first phase, feature overlaps are determined to
find features from one timestep which overlap with features
from the next. This generates a set of candidates with which
to perform further testing. The next step performs additional
tests on the overlapping candidates to determine a “best-
match”. For example, if a feature in ti+1 overlaps with a
feature in ti by 1 voxel it is probably not the “best-match”.
Therefore, after overlap detection a second phase is
performed which implements the best matching test to find
the best correlations between features [21]. To efficiently

compute overlap, the objects nodes from each timestep are
sorted and the two sorted lists are “merged”. As they are
merged, the overlapping objects can be determined as well
as the amount of overlap. The overlap is stored in a table of
size n x m, where m and n are the number of objects in ti and
ti+1 respectively. Using the overlap-table, all combinations
between overlapping features are computed to maximize a
normalized correspondence metric [21][22].

The first phase of the feature tracking algorithm can be
easily incorporated into a distributed algorithm. Assuming
the each timestep has the same partition as the previous
timestep, each processor can compute the overlap from one
timestep to the next and determine its own overlap-table.
However, the second phase of feature tracking is not as
straight forward. If each processor independently computed
the best match result and then merged across neighboring
boundaries (as is performed in the feature extraction phase)
this may not yield the correct matching results. An example
is presented in Figure 3. If each processor determined its
own best match, the matched result could yield that Object
A and B (time t0) combine to form Object 2 (in t1), Object C
matches to Object 3, and Object 1 is born in t1. Simply
merging the boundaries will then yield that Objects A, B
and C correspond with Objects 2 and 3. When looking at all
the possibilities (as is done in the sequential best match) the
correct match would yield that Object A goes to Object 1
and B and C go to 2 and 3.

Figure 3. Determining the best match

To correct this result, a scheme similar to the local merge

strategy in the feature extraction phase is utilized. Each
processor computes its own overlap result and sends the
table to the visualization accumulator. The viz-accumulator
(in addition to computing the feature merge) can then
compute the best match results. The algorithm can be
summarized as shown in Figure 4. In the first stage, the
local overlap detection algorithm determines the feature
boundaries and interior nodes and computes the overlap
from two different timesteps (ti and ti+1). The local
information is sent to the viz-accumulator which uses that to
compute the best match. In the second stage, viz-
accumulator computes the global overlap by comparing the
local overlap tables and the local merging tables
(determined by feature extraction). After that, the best
match algorithm is performed on the viz-accumulator.

A B C

1 2 3

P0 P1
t0

t1

Figure 4. Parallel feature extraction and tracking example. This
figure uses the same dataset as Figure 2. The number below each
image is the feature count of that block data. In the final image of
timestep 2, each object gets the same color as its matched feature
of timestep 1.

Figure 5. Overview for the distributed feature extraction and

tracking system.

 A full overview of both the feature extraction and feature
tracking distributed processes are shown in Figure 5. Each
processor determines the features and the tracking
information as the data becomes available. The data is either
being computed by the simulation or it is being read in by
the visualization program. This is explained in more detail
in the next section.

3. GRACE IMPLEMENTATION

 In order for the feature extraction and tracking routines to
run in-situ, the implementation must utilize the same data
structure as the ongoing simulation so as to not incur any
data copying overhead. For this implementation, we used
the GrACE infrastructure[17]. GrACE supports distributed
adaptive mesh refinement on structured grids. It contains a
unified data-management substrate which transparently
spans distributed processor memories as well as disks and
persistent storage systems. The key feature of the data-
management scheme is a natural mapping from a
multidimensional, multiscale application domain to 1-

dimensional storage that is directly derived from the
application domain coordinate system. This mapping
enables implementation of a semantically specialized virtual
shared memory where the memory address space is derived
from application domain coordinates. As a result
heterogeneous computational and data objects can be
directly accessed from virtual memory based on their
location in the computational domain rather than using
conventional memory addresses and pointers. The resulting
data-structure implements a virtual, Hierarchical,
Distributed and Dynamic Array (HDDA) spanning multiple
levels of the distributed memory hierarchy.
 The implementation contains three parts: (1) an
initialization phase, which includes the DISCOVER
communication protocols (see next section), (2) a
visualization computation phase, which determines the
feature extraction and tracking, and (3) a write out phase,
which sends the data to the viz-accumulator (or through the
DISCOVER portal). Because the HDDA grid abstraction
has been optimized for ghost communications, the neighbor
processor communication can be done using ghost regions.
After feature extraction, on each processor local object
information (such as local feature volume/mass, feature id
etc.) of those features which contain boundary cells will be
written into a Grid Function. A ghost region
synchronization of that grid function will be performed to
pass the local information to direct neighbors. Each
processor can then determine the local feature merge table
by comparing the neighboring feature information in the
ghost region with its local features to see if any of them are
potentially connected. This process is similar with the
partial merge strategy in the distributed feature extraction
section. The local feature merge information will be passed
to the viz-accumulator while simulation finishes to
completion.
 The GrACE implementation works with both in-situ data
or data that is currently being computed (during the
simulation) or as a post-processing step for just visualization
where the data has already been computed and is stored on
disk. Both types of examples are shown in Section 4.

3.1. Discover Portal and Visualization

 DISCOVER is a generic framework that enables
interactive steering of scientific applications and also allows
for collaborative visualization of data sets generated by such
simulations [1]. DISCOVER is supported by a suite of
detachable interfaces and analysis modules and allows users
to interact with, interrogate, control and steer GrACE-based
applications through a web based portal. A snapshot of the
GrACE interface portal is shown in Figure 6. In this work,
we have included some DISCOVER controls within the
feature extraction and tracking process which enables a user
to start or stop the feature tracking and to change the

threshold setting. This is especially useful for long
simulations where interesting events may not take place
until much later in the simulation.

Figure 6. In-situ feature extraction and tracking with DISCOVER

 The feature extraction and tracking routines produce files
which can then be loaded for visualization. The files contain
the tracked results (as a set of graphs) and associated
polygonal data containing isosurfaces. This information is
read into the viz accumulator which is a bookkeeping
program designed to correlate the various files and perform
best matching. The final result can then be visualized using
AVS express or VTK modules written for this type of data
[2]. (These codes are available on our website[2]).

4. RESULTS

Figure 7. Distributed feature extraction and tracking example

 We applied the distributed feature extraction and tracking
algorithm to three different simulations. The first two
utilized feature extraction and tracking as a post processing

step, i.e., to process the visualization. The first simulation
was a pseudo-spectral simulation of coherent vortex
structures. The data was 2563 with 100 timesteps. Figures 2
and 4 show results from this dataset. Figure 7 contains four
timesteps from a simulation of rotating, stratified turbulence
using the quasi-geostrophic (QG) equations [8][9]. The
dataset is 960x960x480 with 1000 timesteps. In this figure,
the features in each processor as well as the merged result
are shown. Note how the isosurfaces from each distinct
timestep are colored appropriately. (Both of these datasets
were upsampled from lower resolutions to demonstrate
different partition schemes.)

 The third example is using in-situ feature extraction and
tracking. The simulation, called RM3D, uses a compressible
Euler equation for shock accelerated inhomogeneous flows
(Richtmyer-Meshkov) [20]. In this environment, baroclinic
vorticity is playing the major role of hydrodynamic
instability and late time turbulent mixing. 8000 timesteps
were run with a resolution of 256x64x64, with a threshold
of 50%. Figure 8 displays 5 timesteps from between
timesteps t=1900 and t=2600. In this simulation, the large
red feature splits into two separate features (the children are
given the same color as the parent, however, other coloring
options are also available [21]). The graph on the right
displays the computed quantification, i.e. the volume of the
red object over these timesteps. The break in the graph
depicts where the feature split. In this example, the
DISCOVER portal was used to control the simulation and
start the feature tracking at timestep 1000.

5. DISCUSSION

 The implementation presented here can be used with any
application implemented with GrACE. The methodology
can also be incorporated into any other distributed
infrastructure used for compute intensive simulations (such

Figure 8. In-situ feature
extraction and tracking. The left
part shows the feature tracking
results for 5 timesteps of the
RM3D simulation. The upper
graph shows how the volume of
the red feature changes over time.
Note how the feature splits.

as CHOMBO [3]). For these examples, no load balancing
was performed. For the in-situ mode, load balancing is done
by the simulation and should be equivalent for the
visualization processing, because the “features” are most
those locations that need to be load balanced for the
simulation. We are currently investigating the load
balancing work for the post-processing mode.
 Another area of investigation is AMR. For adaptive
meshes, individual portions of the data may contain higher
resolution data at different levels. Since GrACE contains
support for adaptive mesh refinement, the distributed feature
extraction and tracking algorithm presented here can easily
incorporate the various levels by creating extra bookkeeping
files which can then be coalesced by the viz-accumulator.
The visualization viewers will also have to be
accommodated to support the new queries which will now
be possible (i.e. showing connected regions through levels
and time).
 Another area of investigation is to incorporate different
types of “feature”, and to extend the feature tracking to
include a “contour tree” like representation [6].

6. CONCLUSIONS

For massive time-varying simulation, feature analysis and

visualization tools are crucial to help interpret all of the
resulting datasets. In this paper, we presented an algorithm
and implementation of a distributed system for in-situ
feature extraction and tracking of massive datasets. The
implementation could be used as a distributed visualization
algorithm or as a system that runs along with a computing
simulation. We have also demonstrated the ability to interact
with the ongoing simulation.

This work was done at the Vizlab, CAIP Center, Rutgers
University. We gratefully acknowledge the support of the
National Science Foundation (ITR 0082634). We would
also like to thank Shuang Zhang for his help with the RM3D
and RM2D simulations.

REFERENCES
[1] GrACE and DISCOVER homepage:

http://www.caip.rutgers.edu/TASSL/
[2] Vizlab homepage: http://www.caip.Rutgers.edu/vizlab.html.
[3] CHOMBO: http://seesar.lbl.gov/ANAG/chombo.index
[4] ChomboVis: http://seesar.lbl.gov/ANAG/chombovis.html
[5] Proceedings of the IEEE Symposium on Parallel and Large

Data Visualization (PVG), October 2001 (also 1999,1997).
ACM Press

[6] C. Bajaj, A. Shamir and B.-S. Sohn,
Progressive Tracking of Isosurfaces in Time-Varying Scalar
Fields, CS & TICAM Technical Report, University of Texas
at Austin, 2002.

[7] J. Chen, Y. Kusurkar, and D. Silver, Distributed Feature
Extraction. Proc. SPIE Vol. 4665, p.189-195, Visualization
and Data Analysis 2002, 3/2002.

[8] D. Dritschel and M. Ambaum, A Countour-Advective Semi-
lagrangian Numerical Algorithm for Semulating Fine-Scale
Conservative Dynamical Fields. QJRMS, April 1997.

[9] D. Dritschel and M. Torre Juarez, The Instability and
Breakdown of Tall Columnar Vortices in a Quasi-
Geostrophic Fluid. Journal of Fluid Mechanics, Aug 1996.

[10] L. Durbeck, N.Macias, D.Weinstein, C.Johnson and
J.Hollerbach, SCIRun/Haptic Display for Flow Fields. Third
PHANToM User’s Group Workshop, Oct 1998.

[11] B. Guo. Interval Set: A Volume Rendering Technique
Generalizing Isosurface Extraction. In Proceedings IEEE
Visualization ’95, pages 3-10, Atlanta, Georgia, October 29-
November 3 1996.

[12] W. Koegler, Case Study: Applications of Feature Tracking to
Analysis of Autoignition Simulation Data. IEEE
Visualization (Vis 2001), San Diego, CA, Oct 2001.

[13] Y. Kusurkar, Distributed Feature Extraction, MS Thesis,
Rutgers, The State University of New Jersey, October 2000.

[14] Moga, and M. Gabbouj, Parallel Image Component
Labeling with Watershed Transformation. IEEE Transaction
on Pattern Analysis and Machine Intelligence, May 1997,
Vol 19, No 5.

[15] Moga, Parallel Multiresolution Image Segmentation with
Watershed Transformation. ACPC’99, LNCS 1557, P.
Zinterhof, M. Vajtersic, and A. Uhl Editors, Springer Verlag
1999, pp. 226-235.

[16] R. Muralidhar, M. Parshar, An Interactive Object
Infrastructure for Computational Steering of Distributed
Simulations. Proceedings of the Ninth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC 2000), IEEE Computer Science Society Press, pp.
304-305, Aug 2000.

[17] M. Parashar and J. Brown, Distributed Dynamic Data-
structures for Parallel Adaptive Mesh-Refinement. HiPC,
December 1995.

[18] S. Park, C. Bajaj and I. Ihm, Effective Visualization of Very
Large Oceanography Time-Varying Volume Dataset. CS &
TICAM Technical Report, University of Texas at Austin,
2001.

[19] F. Post and T. van Walsum and F. H. Post and D. Silver.
Iconic Techniques for Feature Visualization. In Proceedings
of IEEE Visualization '95, pages 288--295,Atlanta, Georgia,
October 1995.

[20] R. Samtaney and D. I. Pullin, On initial--value and self--
similar solutions of the compressible Euler equations. Phys.
Fluids, Vol 8(10), pp:2650-2655, 1996.

[21] D. Silver and X. Wang. Tracking and Visualizing Turbulent
3D Features. IEEE Transactions on Visualization and
Computer Graphics, 3(2), June 1997.

[22] D. Silver and X. Wang, Tracking Features in Unstructured
Datasets. Proceedings of IEEE Visualization '98 Conference,
October 1998, Research Triangle Park, NC.

[23] D. Silver. Object-Oriented Visualization. IEEE Computer
Graphics and Applications, 15(3), May 1995.

[24] T.v. Walsum. Selective Visualization on Curvilinear Grids.
Ph.D thesis, Delft University of Technology, Delft, The
Netherlands, 1995.

