
 

Real Time Feature Extraction and Tracking in a Computational Steering 
Environment 

 
 

J. Chen, D. Silver and M. Parashar 
Dept. of Electrical and Computer Engineering and CAIP Center,  

Rutgers University, 
P.O. Box 909, Piscataway, NJ 08855-0909 
jianc, silver,parashar@caip.rutgers.edu 

 
 

Keywords: Visualization, Feature extraction, Tracking, 
Computational steering, Distributed algorithm 
 
ABSTRACT 

 
Large distributed time-varying simulations are common in 

many scientific domains to study the evolution of various 
phenomena. These simulations produce thousands of timesteps 
which must be analyzed and interpreted. For datasets with evolving 
features, feature analysis and visualization tools are crucial to help 
interpret all the information. For example, it is usually important to 
know how many regions are evolving, what are their lifetimes, do 
they merge with others, how does the volume/mass change, etc. To 
be effective these visualization and analysis routines must also be 
parallelized in order to operate on the data where that data resides. 
Furthermore, interacting with the routines as the simulations are 
ongoing can aid in the analysis. In our previous work, we have 
developed a methodology for analyzing time-varying datasets 
which tracks 3D amorphous features as they evolve in time. In this 
paper, we describe the full parallel feature extraction and tracking 
algorithm within a computational steering environment for parallel 
and distributed simulations. We demonstrate how one can interact 
with the code and show various examples within ongoing 
computations. 

1.  INTRODUCTION 
 
Time varying simulations are common in many scientific 

domains to study the evolution of phenomena or features. 
The data produced in these simulations is massive. Instead 
of just one dataset of 5123 or 10243 (for regular gridded 
simulations) there could now be hundreds to thousands of 
timesteps. For datasets with evolving features, feature 
analysis and visualization tools are crucial to help interpret 
all the information and highlight the underlying physical 
processes [21][12][18]. For example, it is usually important 
to know how many regions are evolving, whether they 
merge with other regions, and how their volume may 
change over time. Therefore, feature based approaches, such 
as feature tracking and feature quantification are needed to 
follow identified regions over time. The first step is to 
define what regions are of interest, the second is to track 
them in all of the timesteps. Another important application 

of feature based approach is in data mining. These features 
can be catalogued to build a scientific database. This will 
help the scientist to relate the phenomenon of interest with 
previous simulations and perform event matching. A basic 
framework for analyzing time-varying datasets was 
presented in [21][22] and an overview is shown in Figure 1. 
The goal of the process is to obtain dramatic data reduction 
and thus help scientists quickly focus on a few features or 
events of interest.  

 

 
Figure 1. A process for visualizing 3D continuum datasets 

 
    As can be seen in Figure 1, the first step is to identify the 
features of interest and to define them. In [21][22][19] 
features are defined as thresholded connected components. 
The features are extracted from each dataset and then 
correlated over time using the algorithm in [21]. Once all 
the features are correlated, they can be quantified, 
compared, measured, etc. to obtain a full analysis of the 
evolution of each feature. This information constitutes 
“meta-data” which can be used for general querying. One 
example is event querying, i.e. retrieve all timesteps that 
demonstrate a particular event like large object merging. A 
database can eventually be built allowing the scientist 
understand the simulation in the context of all the 
simulations previously computed. The tracking information 
can also be used for enhanced visualization as shown in 
Figure 1 which depicts the trajectory of a single feature with 
history encoded as opacity.  



 

 

    With the increase in computational power available, 
simulation sizes are growing. These datasets are massive, 
and the standard post-processing feature extraction and 
tracking [21] approach is unfeasible because the datasets 
cannot be loaded onto a single processor. Automated tools 
to aid in searching the data such as feature extraction and 
tracking are even more crucial since the amount of data is 
too large to simply investigate let alone download for local 
visualization processing. To realize the full potential, the 
feature extraction and tracking processing must be 
implemented where the data resides and when it is being 
computed (in-situ). This motivates the need for a 
parallel/distributed feature extraction and tracking process 
that runs along with the simulation. Furthermore, one would 
like to interact with the tracking process while the 
simulation is ongoing, to change parameters, initialize the 
process, etc.  
    In [7], a distributed feature extraction algorithm was 
presented. In this paper, we extend the algorithm to include 
distributed feature tracking and integrate it within a 
computational steering system to support interaction while 
the simulation and visualization is in progress. The 
implementation uses GrACE (Grid Adaptive Computational 
Engine) [17], an infrastructure which supports distributed 
adaptive mesh-refinement computations on structured grids. 
GrACE provides multifaceted objects specialized to 
distributed adaptive grids and grid functions, and has been 
deployed to support applications in many different 
applications. This enables the visualization processes to run 
in-situ without the added overhead for data transfers. To 
access the ongoing simulation, the DISCOVER (Distributed 
Interactive Steering and COllaborative Visualization 
EnviRonment) portal [16] is used which provides a control 
network to query the analysis, interaction and steering 
interfaces. DISCOVER is supported by a suite of detachable 
interfaces and analysis modules and allows users to interact 
with, interrogate, control and steer GrACE-based 
applications.  In the next section, the algorithms for both 
distributed feature extraction and tracking are detailed 
followed by the implementations. Examples are presented in 
Section 4. 

2.  DISTRIBUTED FEATURE EXTRACTION AND 
TRACKING 

 
There is lot of work done in building distributed 

visualization systems, however most of these systems 
perform distributed visualization with isosurfaces or volume 
rendering (for example see [5][4][10]). Standard isosurface 
algorithms are inherently parallelize-able since they treat 
each cell in the grid independently and have no notion of 
connectivity. This is not the case here. Connected features 
provide much more information than simple isosurfaces, 
since one can compute attributes (quantifications) such as 

mass, volume, centroid and moments. These attributes 
require the knowledge of the entire feature or object [19]. 
While each processor can locally extract their own features, 
a feature and its evolution (future timesteps) may span 
multiple processors, so a coalescing procedure must be used 
to globally resolve feature identifications and compute 
feature attributes. 
    The features in [19] are defined as connected nodes that 
satisfy a certain criteria, such as a region where all of the 
nodes are above a particular threshold value. The bounding 
surface of this region is a standard isosurface, although now 
that all of the different regions are separate and distinct. The 
regions can be extracted with a flood fill type algorithm or 
with a stepped region-growing algorithm [21][19]. In 
addition to the nodes (data cells) within an object, the 
boundary polygons (isosurface), and a set of attributes are 
computed. Since the data is distributed among multiple 
processors, a connected feature may span several 
processors. Once each processor identifies its own local 
features, a “merge” must be performed to connect features 
spanning several processors. The merge algorithm operates 
by checking the boundaries between processors to see 
whether a particular feature can potentially overlap (i.e., hits 
the boundary). In  [7], two different boundary merge 
strategies are described, a “complete-merge” strategy, 
which utilizes a binary swap algorithm [13], and a “partial-
merge” strategy, which utilizes a visualization accumulator. 
The complete-merge strategy is related to the 2D  parallel 
implementation of the component labeling (image 
segmentation) and watershed transformation algorithm 
given in [15][2]. This algorithm requires an O(log(n)) 
communication overhead (where n is the number of 
processors) to coalesce all of the features. The “partial-
merge” is a more efficient algorithm that does not depend 
on the number of processors. After each processor does its 
own feature extraction, processors communicate with their 
immediate boundary neighbors to determine the local 
connectivity. This partial-merge data (given as a set of 
tables) is enough to reconstruct the full connectivity, which 
can be done by a visualization accumulator as a preprocess 
step to visualization. This step involves simple bookkeeping 
to determine that if O1

p1 (feature labeled 1 in processor 1) is 
connected to O2

p4 , and O2
p4 is connected to O9

p5 , then all of 
these pieces are part of a larger feature. A picture describing 
the local merge strategy is shown in Figure 2. 

In addition to the “partial-merge” tables, the bounding 
polygons (isosurface) and other quantification 
measurements (volume, etc) are sent to the visualization 
accumulator. After the objects are merged, all of the 
bounding polygons pertaining to a feature are given the 
same color, resulting in a coherent view of the features as 
shown in Figure 2. Note that at the end of the processing 
there are 27 distinct features found. (This data is one 
timestep from a Pseudo-spectral simulation of coherent 



 

 

turbulent vortex structures by Dr. N. Zabusky and Dr. V. 
Fernandez of the Department of Mechanical and Aerospace 
Engineering, Rutgers University. The dataset is 2563 
(upsampled from 1283) with 100 timesteps.) 

 

 
Figure 2. The “partial-merge” strategy for feature extraction. 
 

2.1. Distributed Feature Tracking 
 
Once features are defined, their evolution can be 

characterized by performing feature tracking. Feature 
tracking involves matching a feature in one timestep to the 
next timestep. Events can be categorized into one of five 
different classifications, i.e. continuation, splitting, merging, 
creation and dissipation. As is described in [21] the most 
salient characteristic of a continuing feature(s) is location. 
The original feature tracking algorithm worked in two 
phases. In the first phase, feature overlaps are determined to 
find features from one timestep which overlap with features 
from the next. This generates a set of candidates with which 
to perform further testing. The next step performs additional 
tests on the overlapping candidates to determine a “best-
match”. For example, if a feature in ti+1 overlaps with a 
feature in ti by 1 voxel it is probably not the “best-match”.  
Therefore, after overlap detection a second phase is 
performed which implements the best matching test to find 
the best correlations between features [21]. To efficiently 

compute overlap, the objects nodes from each timestep are 
sorted and the two sorted lists are “merged”. As they are 
merged, the overlapping objects can be determined as well 
as the amount of overlap. The overlap is stored in a table of 
size n x m, where m and n are the number of objects in ti and 
ti+1 respectively. Using the overlap-table, all combinations 
between overlapping features are computed to maximize a 
normalized correspondence metric [21][22].  

The first phase of the feature tracking algorithm can be 
easily incorporated into a distributed algorithm. Assuming 
the each timestep has the same partition as the previous 
timestep, each processor can compute the overlap from one 
timestep to the next and determine its own overlap-table. 
However, the second phase of feature tracking is not as 
straight forward. If each processor independently computed 
the best match result and then merged across neighboring 
boundaries (as is performed in the feature extraction phase) 
this may not yield the correct matching results. An example 
is presented in Figure 3. If each processor determined its 
own best match, the matched result could yield that Object 
A and B (time t0) combine to form Object 2 (in t1), Object C 
matches to Object 3, and Object 1 is born in t1. Simply 
merging the boundaries will then yield that Objects A, B 
and C correspond with Objects 2 and 3. When looking at all 
the possibilities (as is done in the sequential best match) the 
correct match would yield that Object A goes to Object 1 
and B and C go to 2 and 3. 

 
 
 
 
 
 
 

 
Figure 3.  Determining the best match 

 
To correct this result, a scheme similar to the local merge 

strategy in the feature extraction phase is utilized. Each 
processor computes its own overlap result and sends the 
table to the visualization accumulator. The viz-accumulator 
(in addition to computing the feature merge) can then 
compute the best match results.  The algorithm can be 
summarized as shown in Figure 4.  In the first stage, the 
local overlap detection algorithm determines the feature 
boundaries and interior nodes and computes the overlap 
from two different timesteps (ti and ti+1). The local 
information is sent to the viz-accumulator which uses that to 
compute the best match. In the second stage, viz-
accumulator computes the global overlap by comparing the 
local overlap tables and the local merging tables 
(determined by feature extraction). After that, the best 
match algorithm is performed on the viz-accumulator.  

 

 

 

A B C

1 2 3

P0 P1
t0

t1



 

 

 
Figure 4. Parallel feature extraction and tracking example. This 
figure uses the same dataset as Figure 2. The number below each 
image is the feature count of that block data. In the final image of 
timestep 2, each object gets the same color as its matched feature 
of timestep 1. 
 

 
Figure 5. Overview for the distributed feature extraction and 

tracking system. 
     
    A full overview of both the feature extraction and feature 
tracking distributed processes are shown in Figure 5. Each 
processor determines the features and the tracking 
information as the data becomes available. The data is either 
being computed by the simulation or it is being read in by 
the visualization program. This is explained in more detail 
in the next section. 

3.  GRACE IMPLEMENTATION 
 
    In order for the feature extraction and tracking routines to 
run in-situ, the implementation must utilize the same data 
structure as the ongoing simulation so as to not incur any 
data copying overhead. For this implementation, we used 
the GrACE infrastructure[17]. GrACE supports distributed 
adaptive mesh refinement on structured grids. It contains a 
unified data-management substrate which transparently 
spans distributed processor memories as well as disks and 
persistent storage systems. The key feature of the data-
management scheme is a natural mapping from a 
multidimensional, multiscale application domain to 1-

dimensional storage that is directly derived from the 
application domain coordinate system. This mapping 
enables implementation of a semantically specialized virtual 
shared memory where the memory address space is derived 
from application domain coordinates. As a result 
heterogeneous computational and data objects can be 
directly accessed from virtual memory based on their 
location in the computational domain rather than using 
conventional memory addresses and pointers. The resulting 
data-structure implements a virtual, Hierarchical, 
Distributed and Dynamic Array (HDDA) spanning multiple 
levels of the distributed memory hierarchy.  
    The implementation contains three parts: (1) an 
initialization phase, which includes the DISCOVER 
communication protocols (see next section), (2) a 
visualization computation phase, which determines the 
feature extraction and tracking, and (3) a write out phase, 
which sends the data to the viz-accumulator (or through the 
DISCOVER portal). Because the HDDA grid abstraction 
has been optimized for ghost communications, the neighbor 
processor communication can be done using ghost regions. 
After feature extraction, on each processor local object 
information (such as local feature volume/mass, feature id 
etc.) of those features which contain boundary cells will be 
written into a Grid Function. A ghost region 
synchronization of that grid function will be performed to 
pass the local information to direct neighbors. Each 
processor can then determine the local feature merge table 
by comparing the neighboring feature information in the 
ghost region with its local features to see if any of them are 
potentially connected. This process is similar with the 
partial merge strategy in the distributed feature extraction 
section. The local feature merge information will be passed 
to the viz-accumulator while simulation finishes to 
completion.  
    The GrACE implementation works with both in-situ data 
or data that is currently being computed (during the 
simulation) or as a post-processing step for just visualization 
where the data has already been computed and is stored on 
disk. Both types of examples are shown in Section 4. 

3.1. Discover Portal and Visualization 
     
    DISCOVER is a generic framework that enables 
interactive steering of scientific applications and also allows 
for collaborative visualization of data sets generated by such 
simulations [1]. DISCOVER is supported by a suite of 
detachable interfaces and analysis modules and allows users 
to interact with, interrogate, control and steer GrACE-based 
applications through a web based portal. A snapshot of the 
GrACE interface portal is shown in Figure 6. In this work, 
we have included some DISCOVER controls within the 
feature extraction and tracking process which enables a user 
to start or stop the feature tracking and to change the 



 

 

threshold setting. This is especially useful for long 
simulations where interesting events may not take place 
until much later in the simulation.  
 

 
Figure 6. In-situ feature extraction and tracking with DISCOVER  

 
    The feature extraction and tracking routines produce files 
which can then be loaded for visualization. The files contain 
the tracked results (as a set of graphs) and associated 
polygonal data containing isosurfaces. This information is 
read into the viz accumulator which is a bookkeeping 
program designed to correlate the various files and perform 
best matching. The final result can then be visualized using 
AVS express or VTK modules written for this type of data 
[2]. (These codes are available on our website[2]). 

4.    RESULTS 
     

 
Figure 7. Distributed feature extraction and tracking example 

     
    We applied the distributed feature extraction and tracking 
algorithm to three different simulations. The first two 
utilized feature extraction and tracking as a post processing 

step, i.e., to process the visualization. The first simulation 
was a pseudo-spectral simulation of coherent vortex 
structures. The data was 2563 with 100 timesteps. Figures 2 
and 4 show results from this dataset. Figure 7 contains four 
timesteps from a simulation of rotating, stratified turbulence 
using the quasi-geostrophic (QG) equations [8][9]. The 
dataset is 960x960x480 with 1000 timesteps. In this figure, 
the features in each processor as well as the merged result 
are shown. Note how the isosurfaces from each distinct 
timestep are colored appropriately. (Both of these datasets 
were upsampled from lower resolutions to demonstrate 
different partition schemes.)   
 

 
 
    The third example is using in-situ feature extraction and 
tracking. The simulation, called RM3D, uses a compressible 
Euler equation for shock accelerated inhomogeneous flows 
(Richtmyer-Meshkov) [20]. In this environment, baroclinic 
vorticity is playing the major role of hydrodynamic 
instability and late time turbulent mixing. 8000 timesteps 
were run with a resolution of 256x64x64, with a threshold 
of 50%. Figure 8 displays 5 timesteps from between 
timesteps t=1900 and t=2600. In this simulation, the large 
red feature splits into two separate features (the children are 
given the same color as the parent, however, other coloring 
options are also available [21]). The graph on the right 
displays the computed quantification, i.e. the volume of the 
red object over these timesteps. The break in the graph 
depicts where the feature split. In this example, the 
DISCOVER portal was used to control the simulation and 
start the feature tracking at timestep 1000.  

5.  DISCUSSION 
     
    The implementation presented here can be used with any 
application implemented with GrACE. The methodology 
can also be incorporated into any other distributed 
infrastructure used for compute intensive simulations (such 

Figure 8. In-situ feature 
extraction and tracking. The left
part shows the feature tracking 
results for 5 timesteps of the 
RM3D simulation. The upper
graph shows how the volume of 
the red feature changes over time. 
Note how the feature splits. 



 

 

as CHOMBO [3]). For these examples, no load balancing 
was performed. For the in-situ mode, load balancing is done 
by the simulation and should be equivalent for the 
visualization processing, because the “features” are most 
those locations that need to be load balanced for the 
simulation. We are currently investigating the load 
balancing work for the post-processing mode. 
   Another area of investigation is AMR. For adaptive 
meshes, individual portions of the data may contain higher 
resolution data at different levels. Since GrACE contains 
support for adaptive mesh refinement, the distributed feature 
extraction and tracking algorithm presented here can easily 
incorporate the various levels by creating extra bookkeeping 
files which can then be coalesced by the viz-accumulator. 
The visualization viewers will also have to be 
accommodated to support the new queries which will now 
be possible (i.e. showing connected regions through levels 
and time).  
    Another area of investigation is to incorporate different 
types of “feature”, and to extend the feature tracking to 
include a “contour tree” like representation [6]. 

6.  CONCLUSIONS 
 
For massive time-varying simulation, feature analysis and 

visualization tools are crucial to help interpret all of the 
resulting datasets. In this paper, we presented an algorithm 
and implementation of a distributed system for in-situ 
feature extraction and tracking of massive datasets. The 
implementation could be used as a distributed visualization 
algorithm or as a system that runs along with a computing 
simulation. We have also demonstrated the ability to interact 
with the ongoing simulation.  
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and RM2D simulations. 
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