
Managing QoS for Multimedia Applications in a Differentiated Services 
Environment 

Manish Mahajan and Manish Parashar 
The Applied Software Systems Laboratory, Dept. of Electrical and Computer Engineering, Rutgers University. 

94 Brett Road, Piscataway, NJ-08855-1390 
{manishm, parashar}@caip.rutgers.edu 

(Extended Abstract) 

1. Introduction 
This paper presents design, implementation and evaluation of a content-aware bandwidth broker (CABB) that manages 

QoS of multimedia applications in a differentiated services (diffserv) environment. CABB controls multimedia flows 
between diffserv domains using service policies defined based on the requirement, nature and adaptability of the flow. 

The overall quality of network connections (e.g. link capacity, available end-to-end bandwidth, congestion, etc) has a 
significant impact on the performance of networked applications. These applications generate traffic at varying rates and 
have a varying ability to tolerate delays and jitter in the network. Networked multimedia applications, which form a large 
part of today’s Internet traffic, present a significant challenge, as they require quality guarantees from the network. Internet 
Protocol (IP) however, is best effort and does not provide any Quality of Service (QoS) guarantees [4] – that is, there are no 
mechanisms in IP for policing or controlling unresponsive and high bandwidth flows that can cause congestion in the 
network. As a result, all QoS management is left to the application [9]. Multimedia applications have very limited feedback 
control to stop them from causing congestion in the network. Consequently, QoS management for networked multimedia 
applications over IP is a significant and immediate challenge. 

Different mechanisms such as Integrated Services (e.g. RSVP [19]), Differentiated Services [2], and Multi-Protocol 
Label Switching (MPLS) [20], have been proposed for providing some level of QoS over the unpredictable IP network [4]. 
These mechanisms provide improved network QoS to the applications at the edges of the network by identifying, handling 
and controlling traffic using scheduling and resource reservation mechanisms. The Differentiated Services (diffserv) 
network architecture provides these QoS guarantees in the most scalable and least complex manner [2]. A diffserv domain 
provides different levels of service (e.g. premium, assured) to meet client’s request for guarantees. Network resources are 
partitioned between these levels of service. Packets belonging to client flows are marked with specific code points (DSCP) 
that map these packets to a particular level of service depending on the service level agreement (SLA) between the client 
and the network service provider. The bandwidth broker manages resources in a diffserv domain. It tracks available 
network resources and classifies flows using service polices defined based on client requirements and service classes 
offered by the diffserv domain [16]. In the diffserv architecture, flows are allocated resources without any understanding of 
the nature of information being transmitted. As a result, the broker statically overallocates resources so as to meet 
guarantees made to the client. This over allocation wastes resources and causes future flow requests to be rejected. 
Furthermore, the broker does not consider the nature of the flow and may allocate resources for rogue flows that can exceed 
their allocations and hog resources, causing congestion, and severely affecting the QoS of conforming flows. Thus, while 
diffserv does provide a sense of resource allocation and QoS, it does not guarantee QoS or eliminate the possibility of 
congestion.  

In this paper we present a content aware bandwidth broker (CABB) that provides adaptive brokering for networked 
multimedia applications to allocate network resources among responsive (TCP) and unresponsive (UDP) flows. It builds on 
the observation that multimedia applications are flexible with respect to network parameters such as packet loss, delay and 
jitter. For example, a multimedia application flow may be tolerant or intolerant to packet loss [5]. CABB exploits this 
flexibility of multimedia flows to network level parameters to adapt the flows based on the state of network resources to 
maintain some level of QoS despite of unfavorable network conditions. For example, when the application’s demand for 
resources exceeds availability, rather than refuse allocation to the application, CABB may admit and maintain the flow at a 
reduced QoS until the required resources become available. This can be significant for time critical applications. 
Furthermore, in case of network congestion, CABB can adapt to the network state and reduce QoS rather than completely 
disrupting the flow. CABB also prevents non-confirming (or rogue) flows from affecting the performance of conforming 
flows by constantly monitoring and gradually degrading the level of service for the rogue flows. Thus it provides the 
incentive in support of end-to-end congestion control for best effort traffic.  

CABB is implemented and evaluated using the NS-2 simulator toolkit. Results presented in this paper show that by 
exploiting flexible nature of multimedia flows, CABB improves network resource allocations. The results also show that 
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multimedia flows are better managed and controlled, thereby improving perceived QoS and avoiding possible congestion. 
Flow throughputs also increase as CABB enables more flows to be admitted.  

2. Content-Aware Bandwidth Broker: Architecture, Polices, Operations 
The content-aware bandwidth broker (CABB) is an intelligent agent that is configured with service provisioning 

policies and associated with a particular diffserv domain. It builds on the bandwidth broker architecture defined by the 
Qbone team [16]. In a diffserv environment, there are two defined per hop behaviors (PHB): expedited forwarding (EF), 
and assured forwarding (AF) [2]. EF PHB supports low loss, low delay, and low jitter and serviced by a priority queue [3]. 
AF PHB defines four relative classes of service with each class supporting three levels of drop precedence and serviced by 
weighted fair queuing (WFQ). The CABB consists of four components, viz. resource allocator, a database to store all the 
parameters required to make the reservation decisions, a policy engine to create a particular policy for EF, AF or best effort 
flows, and a broker manager for inter-broker communication. CABB uses the policy engine to configure the functionality 
of routers in a diffserv domain. Changes made to a particular policy are reflected in all edge routers in the domain. The 
policies for EF, AF and best effort services calls consider the nature of the request along with the flexibility of application 
with respect to network level parameters of delay, jitter, and loss to resolve resource requirements. 

As described above networked multimedia applications are flexible in the sense that they can tolerate resource scarcity 
(within certain limitations) by reducing performance, and can utilize additional resources to improve performance. 
Furthermore, they can sacrifice the quality/performance of some parameters in order to preserve (or improve) the 
quality/performance of more critical parameters [1].  CABB maps this flexibility into variations network level parameters to 
maintain an acceptable QoS range for an application. When an application requests the CABB for network resources, it 
passes application specific QoS requirements and constraints. These parameters can include quality descriptions for the 
specific media characteristics (e.g. height, width, and color specification in a video stream), media sample rate, 
priority/criticality and transmission characteristics requirements for end-to-end delivery (e.g. end-to-end delay bounds). On 
receiving such a application flow request along with QoS parameters, CABB translates the parameters into network 
resource requirements such as rate usage profiles (i.e. chief and peak information rate), burst, delay, flexibility to delay, 
jitter, loss, and determines a time for which the created profile is to be active. CABB then tracks current allocation of 
marked traffic, and interprets the new requests in light of defined policies and available resources. It looks up its policy 
table for the existing policy that governs the requesting host and contains the relevant service level agreements (SLA), 
service/DSCP mappings, management information, current reservations/allocations, and edge router configurations. These 
parameters along with the application’s flexibility [1, 6] are passed to the policy engines defined by the SLA. These 
policies further translate the parameters into specific network actions such as bandwidth management (allocated 
transmission rate), queuing (per hop behavior), buffer space for queuing, network monitoring and accounting. The policies 
determine the users’ bandwidth requirements (after translating flexibility to map to minimum resource requirement [1]) and 

and organized fashion treating all flows fairly. 
Furthermore, the allocation is based on the 
client’s needs, as determined from its QoS 
parameters, rather than its peak request that 
may be larger. This not only conserves 
resources (which can be allocated to later 
requests and would otherwise be wasted) but 
also allows requests to served when requested 
resources are not fully available.    

This is possible because the CABB policy 
engines unde

allocate resources accordingly. Resource allocation is made in a succinct 

rstand applications requirements 
and can effectively map them to available 
service levels to achieve better admission 
control. A flow is rejected only if resources 
remain insufficient even after reducing the 
level of service.  For successful admission, the 
CABB makes appropriate reservations using 
the resource allocator (i.e. usable bandwidth, 
buffers) and assigns it a DSCP for that service. 
It then schedules the flow to a particular queue 
manager (Priority or Weighted Fair Queue). 
Diffserv’s internal policing mechanisms then 

Figure 1: Test Network with Different Scenarios 
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force the flows to adhere to the agreed policy. Furthermore, with the help of the broker manager, CABB can generate 
additional request messages to reserve resources downstream [16]. Each downstream CABB takes into account the inter-
domain traffic SLA before allocating resources. There is a limit on the number of flow reservations allowed per service 
class, which ensures good bandwidth utilization [2]. More information on CABB implementation can be found in [12]. The 
CABB may also maintain a log of a flow’s history allowing it to identify (and curb) flows with a rogue nature (e.g. a flow 
that is continuously bursty after promising constant rate).  

For example, consider Figure 1. Source 1 in diffserv domain 1 (DS1) requests a flow setup to destination 2 in diffserv 
dom

3. Experimental Evaluation 
 implemented using the NS-2 simulator toolkit on top of Nortel Networks diffserv 

imp

D

 
EF Policy AF Policy 

ain 2 (DS2). It provides its requirements such as average and peak transmission rates, delay and jitter along with its 
type (e.g. multimedia audio) to CABB1 in DS1. CABB1 uses its policy engines to determine the required bandwidth and 
PHB based on the agreed upon SLA, the current available resources, and the flexibility of the application. The flexibility 
for various multimedia applications is encoded into the policy engine based on their tolerance to the above mentioned 
network level parameters. CABB1 passes the flow’s parameters (as is or reduced) to downstream broker, CABB2 in DS2. 
On receiving a positive acknowledgement from CABB2, it assigns a DSCP to the traffic flow between this source-
destination pair in its policy table. If available resources are insufficient or CABB2 returns a negative acknowledgement, 
CABB1 retries to set up of the flow by assigning a set of lower DSCPs, which define slightly lower requirements along 
with lower but still acceptable quality. It also informs the application of this adaptation. Source 2 in DS1 requests a flow 
(multimedia video) also to destination 2 and provides its parameters such as peak transmission rates, delay, jitter, packet 
loss and required resources. As before, CABB1 invokes its policy engines to determine the resources to be allocated. Note 
that the flexibility number will be different in this case - multimedia video is more flexible to packet loss than audio. It sets 
up the flow after receiving a positive acknowledgement from CABB2. In this example, source 1 is given EF PHB and 
source 2 is given AF PHB. 

As mentioned earlier, CABB is
lementation. We evaluate CABB using three different network topologies with two sets of experiments in each case. 

We describe the first set of experiments below. The other two sets of experiments are summarized in Table 2 and will be 
described in detail in the final paper. The 
network topology is shown in Figure 2. The 
diffserv domain includes three routers and 
has one CABB that manages and configures 
the edge routers. The experiments consist of 
the three flows: (1) S0-dest: audio-EF PHB, 
(2) S1-dest: video – AF PHB, (3) S2-dest: 
video conference – AF PHB. Core-E2: is the 
bottleneck link with a 5 Mb capacity. CABB 
manages and configures routers E1, E2 each 
with two queues, one priority and one WFQ. 
Following notations are used in the 
discussion below: Peak Information Rate 
(PIR), Committed Information Rate (CIR), 
Committed Burst Size (CBS), Packet 
Transmission Rate (RATE), Available 
Bandwidth (ABW), and Usable Bandwidth 
 algorithm [5], while late drops occur when 

packet arrival exceeds buffer size. We define DSCP 10 for EF PHB and DSCP 21 for AF PHB. For non-conforming flows 
DSCP 10 can be downgraded (allocate reduced bandwidth) to DSCP 11. Similarly DSCP 21 is downgraded to DSCP 22. 
Simple policies for EF and AF flows are show in Table 1. 

(UBW) which is the actual allocated bandwidth. Early drops follow the RE

Figure 2: Topology (A mixture of one EF and two AF flows) 

If ABW > PIR, IR) 
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If ABW > CIR IR, CBS) 
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 UBW = f (P
If CIR < ABW < PIR, UBW = f 
(flexibility, CIR, PIR),  
If ABW < CIR || UBW  
    retry with reduced par

, UBW = f (C
If ABW < CIR, UBW = f (flexibility, 
CIR, CBS).  
If ABW < UB
    retry with reduce

Table 1: EF and AF Policies 
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The overall goal of this experiment was to ABB and its ability to effectively manage 
re

Experiment Observations and Results 

demonstrate the operation of C
source allocation and limit the effect of unresponsive EF and/or AF flow. The two experiments for the topology show in 

Figure 2 are described below. The results are plotted in Figures 3 and 4. The legend for Figures 3 and 4 is as follows: cp –
Codepoint; TotPkts – Total packets, TxPkts – Transmitted packets; edrops – early drops and ldrops – late drops at the core 
router (Core). Graphs 2 and 3 show the EF profile (CP 10 and 11). Graph 4 and 5 show the AF profile (CP21 and 22). The 
tables in these figures show transmission rates and parameters used by the CABB policy manager. These statistics were 
calculated for 80.0 time steps of the simulation.  
Experiment 1: In this experiment, S0, S1 and S2 demand 4mb (PIR), 1mb (CIR), and 1mb (CIR) and transmit at 2.5mb, 
1mb, and 1mb respectively. The results from this experiment are plotted in Figure 3. As can be seen from these plots 
(graphs 2 and 3), S0 is allocated reduced bandwidth (2 MB), i.e. its packets are downgraded to CP 11 since RateS0 > 
UBWS0. S1 and S2 are allocated their requested resources and are never downgraded as there are in-profile (see graphs 3 
and 4). This shows that CABB does not allow the out-of-profile EF flow to downgrade or drop in-profile AF flow from S1 
and S2.  
Experiment 2: In this experiment, S0, S1, S2 demand 3mb, 1mb, and 1mb and transmit at 2.5mb, 2mb, and 1mb 
respectively. The results from this experiment are plotted in Figure 4. As can be seen from these plots, S0, S1 and S2 are 
allocated full resources. Graphs 2 and 3 show that S0 is in-profile and is never downgraded. S1 goes out of profile and the 
AF aggregate packets are downgraded to CP22 and are eventually dropped (see in graphs 4 and 5). As seen in graph 5, 
edrops are less than corresponding ldrops. Finally, we observe that the out of profile AF flow does not affect the in-profile 
EF aggregate. 
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Topology 2: Builds 

 

B decisions 
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2) 

. 

ter interbroker communication 

 
on Figure 2 but 
without source S2. 
S1-dest (video-EF 
PHB) 
Core-E2 bottleneck
link: 7mb. 

Observe CAB
regarding flow allocations 
flow control for unresponsive 
EF flows. 
1) S0, S1 demand 8mb and 

2.6mb (PIR) and transmit
8mb and 9mb respectively. 
S0, S1 demand 1.5mb and 
2mb (PIR) and transmit at 
1.5mb and 1mb respectively

Result 1: S0 was rejected af
failed (congested link) for less flexible audio application. 
S1 was allocated full resources (PIR) but RateS1 >> UBWS1.
Thus one flow is rejected despite retrial and another 
allocated full resources but policed and forced to adhere to 
SLA. 
Result 2: S0 was allocated full resources. S1 was allocated 
reduced resources since video being more flexible than 
audio. We observed that CABB increased flow allocations 
with some flows getting reduced resources arrived at from 
their flexibility number. 

as Fig 2 with the 
following changes. 
S2-dest (FTP on 
TCP-AF PHB). 
Core-E2 bottlenec
link: 7mb. 
Three queues: 
priority and 2 W

control for UDP and TCP flows 
and behavior between EF, AF 
aggregates. 
1) S0, S1 and S2 demand 

2.6mb, 1mb, and 3mb. S
and S1 transmit at 2.6mb a
1mb. S2 produces packets at 
regular intervals. 
S0, S1 and S2 demand 5mb, 
7mb and 1mb respectively. 
S0 and S1 transmit at 2mb 
and 4mb respectively  

Result 1: S0, S1 are alloc
reduced allocation. Out-of-profile S0 incurs packet drops 
while S1 is downgraded. In-profile S2 is unaffected by 
rogue S0. 
Result 2: S0 given reduced resources, S1 is rejected and
allocated full resources after interbroker communication 
and taking flexibility into account Out-of-profile S2 is 
downgraded while in-profile S1 is unaffected. Thus CAB
allocated only those flows that would not load the network 
giving reduced resources to some. We see that TCP flow is 
not starved but is penalized for not conforming to SLA. 
Furthermore it does not affect in-profile audio (UDP). 

Table 2: Topolog

Topology 3: Same 

k 

FQ 

Observe CABB’s admission and 

0 
nd 

2) 

ated full resources while S2 has a 

 S2 

B 

ies 2 and 3 – Observation and Results  

4. Summary of Results 
serv system, multimedia flows are analyzed, allocated resources and regulated before being 

allo
In the CABB-based diff

wed to use the network. CABB effectively orders flows so that they confirm to the traffic profile as agreed in the 
original SLA or the reduced profile arrived at using the applications’s flexibility number. Furthermore, queue management 
and diffserv policing work such that when a flow goes out-of-profile its packets are downgraded and eventually dropped 
thus regulating a flow. EF flows serviced by priority queues are allowed to go through with minimal drop. Among the 
flows, the downgraded DSCP faces harsher penalty as compared to the initially allocated one. The out-of-profile AF flows 
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do not affect the throughput of EF flows and vice versa. Multimedia applications, due to their flow requirements, are 
usually assigned to EF flows. However those flows that can tolerate losses may be assigned to AF flows due to adaptation 
by the broker. Hence, these flows go through a congested network in some form or other, with the CABB doing coarse 
tuning of bandwidth requirements (avoiding over allocation) and the application level adaptive QoS doing the fine-tuning 
of the applications’ response/sensitivity to network changes [9]. This is done such that the end user perceives a quantifiable 
QoS even with reduced resource allocation. CABB ensures higher flow throughput by identifying and controlling rogue 
flows. Furthermore, CABB eliminates the need for applications to have to deal directly with the diffserv router for 
resources [7]. Both TCP and UDP flows get a fair share of the network. TCP flows are not starved by rogue UDP flows and 
at the same time are regulated to confirm to SLA. 

The normal broker does not account for application’s adaptability leading to overallocation of resources. It allocates 
flows based on available resources and hence cannot ensure that a rogue flow will not affect flows belonging to same or 
other service classes. Consequently, when compared to a normal broker the CABB efficiently utilizes the network by 
allowing only those flows that do not congest it. 
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Figure 3: Out-of-profile S0 gets downgraded not 

affecting in-profile S1 and S2 
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5. Conclusions 
ed environment requires end-to-end multi-resource reservation plans. In this paper we discussed the 

CAB

gregate to downgrade 

A reservation-bas
B architecture for managing the QoS of multimedia applications in a diffserv environment. CABB determines the 

policy for a particular flow based on the end user service level agreement, the flow’s characteristics (flexibility), network 
resource availability and interbroker communication, to provide application level end-to-end QoS under (un)favorable 
network states. Experimental results show that CABB’s policy decisions prevent congestion in the downstream network. 
These policy decisions are simple, unbiased and effective to allow enough concurrent flows such that the network is not 
unduly loaded and hence controls traffic at the edge router keeping the core simple. This design is easily scalable since no 
state is maintained in routers. Multimedia applications or those that use UDP for data transmission are now coarsely 
controlled by the broker’s policy decision. The broker considers the applications demands before allocating resources 
ensuring that the flow will confirm to the profile else be downgraded. Thus it intelligently allows flows to utilize resources 
and maximizes the flow throughput without congestion. This work can be extended further. Our next step is to enhance the 
CABB’s intelligence with a better understanding of the distribution profile of the usage of multimedia applications or flows 
and/or users and also to make the policy decisions more dynamic. 
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