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1. Introduction

This paper presents design, implementation and evaluation of a content-aware bandwidth broker (CABB) that manages
QoS of multimedia applications in a differentiated services (diffserv) environment. CABB controls multimedia flows
between diffserv domains using service policies defined based on the requirement, nature and adaptability of the flow.

The overall quality of network connections (e.g. link capacity, available end-to-end bandwidth, congestion, etc) has a
significant impact on the performance of networked applications. These applications generate traffic at varying rates and
have a varying ability to tolerate delays and jitter in the network. Networked multimedia applications, which form a large
part of today’s Internet traffic, present a significant challenge, as they require quality guarantees from the network. Internet
Protocol (IP) however, is best effort and does not provide any Quality of Service (QoS) guarantees [4] — that is, there are no
mechanisms in IP for policing or controlling unresponsive and high bandwidth flows that can cause congestion in the
network. As a result, all QoS management is left to the application [9]. Multimedia applications have very limited feedback
control to stop them from causing congestion in the network. Consequently, QoS management for networked multimedia
applications over IP is a significant and immediate challenge.

Different mechanisms such as Integrated Services (e.g. RSVP [19]), Differentiated Services [2], and Multi-Protocol
Label Switching (MPLS) [20], have been proposed for providing some level of QoS over the unpredictable IP network [4].
These mechanisms provide improved network QoS to the applications at the edges of the network by identifying, handling
and controlling traffic using scheduling and resource reservation mechanisms. The Differentiated Services (diffserv)
network architecture provides these QoS guarantees in the most scalable and least complex manner [2]. A diffserv domain
provides different levels of service (e.g. premium, assured) to meet client’s request for guarantees. Network resources are
partitioned between these levels of service. Packets belonging to client flows are marked with specific code points (DSCP)
that map these packets to a particular level of service depending on the service level agreement (SLA) between the client
and the network service provider. The bandwidth broker manages resources in a diffserv domain. It tracks available
network resources and classifies flows using service polices defined based on client requirements and service classes
offered by the diffserv domain [16]. In the diffserv architecture, flows are allocated resources without any understanding of
the nature of information being transmitted. As a result, the broker statically overallocates resources so as to meet
guarantees made to the client. This over allocation wastes resources and causes future flow requests to be rejected.
Furthermore, the broker does not consider the nature of the flow and may allocate resources for rogue flows that can exceed
their allocations and hog resources, causing congestion, and severely affecting the QoS of conforming flows. Thus, while
diffserv does provide a sense of resource allocation and QoS, it does not guarantee QoS or eliminate the possibility of
congestion.

In this paper we present a content aware bandwidth broker (CABB) that provides adaptive brokering for networked
multimedia applications to allocate network resources among responsive (TCP) and unresponsive (UDP) flows. It builds on
the observation that multimedia applications are flexible with respect to network parameters such as packet loss, delay and
jitter. For example, a multimedia application flow may be tolerant or intolerant to packet loss [5]. CABB exploits this
flexibility of multimedia flows to network level parameters to adapt the flows based on the state of network resources to
maintain some level of QoS despite of unfavorable network conditions. For example, when the application’s demand for
resources exceeds availability, rather than refuse allocation to the application, CABB may admit and maintain the flow at a
reduced QoS until the required resources become available. This can be significant for time critical applications.
Furthermore, in case of network congestion, CABB can adapt to the network state and reduce QoS rather than completely
disrupting the flow. CABB also prevents non-confirming (or rogue) flows from affecting the performance of conforming
flows by constantly monitoring and gradually degrading the level of service for the rogue flows. Thus it provides the
incentive in support of end-to-end congestion control for best effort traffic.

CABB is implemented and evaluated using the NS-2 simulator toolkit. Results presented in this paper show that by
exploiting flexible nature of multimedia flows, CABB improves network resource allocations. The results also show that
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multimedia flows are better managed and controlled, thereby improving perceived QoS and avoiding possible congestion.
Flow throughputs also increase as CABB enables more flows to be admitted.

2. Content-Aware Bandwidth Broker: Architecture, Polices, Operations

The content-aware bandwidth broker (CABB) is an intelligent agent that is configured with service provisioning
policies and associated with a particular diffserv domain. It builds on the bandwidth broker architecture defined by the
Qbone team [16]. In a diffserv environment, there are two defined per hop behaviors (PHB): expedited forwarding (EF),
and assured forwarding (AF) [2]. EF PHB supports low loss, low delay, and low jitter and serviced by a priority queue [3].
AF PHB defines four relative classes of service with each class supporting three levels of drop precedence and serviced by
weighted fair queuing (WFQ). The CABB consists of four components, viz. resource allocator, a database to store all the
parameters required to make the reservation decisions, a policy engine to create a particular policy for EF, AF or best effort
flows, and a broker manager for inter-broker communication. CABB uses the policy engine to configure the functionality
of routers in a diffserv domain. Changes made to a particular policy are reflected in all edge routers in the domain. The
policies for EF, AF and best effort services calls consider the nature of the request along with the flexibility of application
with respect to network level parameters of delay, jitter, and loss to resolve resource requirements.

As described above networked multimedia applications are flexible in the sense that they can tolerate resource scarcity
(within certain limitations) by reducing performance, and can utilize additional resources to improve performance.
Furthermore, they can sacrifice the quality/performance of some parameters in order to preserve (or improve) the
quality/performance of more critical parameters [1]. CABB maps this flexibility into variations network level parameters to
maintain an acceptable QoS range for an application. When an application requests the CABB for network resources, it
passes application specific QoS requirements and constraints. These parameters can include quality descriptions for the
specific media characteristics (e.g. height, width, and color specification in a video stream), media sample rate,
priority/criticality and transmission characteristics requirements for end-to-end delivery (e.g. end-to-end delay bounds). On
receiving such a application flow request along with QoS parameters, CABB translates the parameters into network
resource requirements such as rate usage profiles (i.e. chief and peak information rate), burst, delay, flexibility to delay,
jitter, loss, and determines a time for which the created profile is to be active. CABB then tracks current allocation of
marked traffic, and interprets the new requests in light of defined policies and available resources. It looks up its policy
table for the existing policy that governs the requesting host and contains the relevant service level agreements (SLA),
service/DSCP mappings, management information, current reservations/allocations, and edge router configurations. These
parameters along with the application’s flexibility [1, 6] are passed to the policy engines defined by the SLA. These
policies further translate the parameters into specific network actions such as bandwidth management (allocated
transmission rate), queuing (per hop behavior), buffer space for queuing, network monitoring and accounting. The policies
determine the users’ bandwidth requirements (after translating flexibility to map to minimum resource requirement [1]) and
allocate resources accordingly. Resource allocation is made in a succinct and organized fashion treating all flows fairly.

Furthermore, the allocation is based on the
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force the flows to adhere to the agreed policy. Furthermore, with the help of the broker manager, CABB can generate
additional request messages to reserve resources downstream [16]. Each downstream CABB takes into account the inter-
domain traffic SLA before allocating resources. There is a limit on the number of flow reservations allowed per service
class, which ensures good bandwidth utilization [2]. More information on CABB implementation can be found in [12]. The
CABB may also maintain a log of a flow’s history allowing it to identify (and curb) flows with a rogue nature (e.g. a flow
that is continuously bursty after promising constant rate).

For example, consider Figure 1. Source 1 in diffserv domain 1 (DS1) requests a flow setup to destination 2 in diffserv
domain 2 (DS2). It provides its requirements such as average and peak transmission rates, delay and jitter along with its
type (e.g. multimedia audio) to CABB1 in DS1. CABBI uses its policy engines to determine the required bandwidth and
PHB based on the agreed upon SLA, the current available resources, and the flexibility of the application. The flexibility
for various multimedia applications is encoded into the policy engine based on their tolerance to the above mentioned
network level parameters. CABBI1 passes the flow’s parameters (as is or reduced) to downstream broker, CABB2 in DS2.
On receiving a positive acknowledgement from CABB?2, it assigns a DSCP to the traffic flow between this source-
destination pair in its policy table. If available resources are insufficient or CABB2 returns a negative acknowledgement,
CABBI retries to set up of the flow by assigning a set of lower DSCPs, which define slightly lower requirements along
with lower but still acceptable quality. It also informs the application of this adaptation. Source 2 in DSI1 requests a flow
(multimedia video) also to destination 2 and provides its parameters such as peak transmission rates, delay, jitter, packet
loss and required resources. As before, CABB1 invokes its policy engines to determine the resources to be allocated. Note
that the flexibility number will be different in this case - multimedia video is more flexible to packet loss than audio. It sets
up the flow after receiving a positive acknowledgement from CABB2. In this example, source 1 is given EF PHB and
source 2 is given AF PHB.

3. Experimental Evaluation

As mentioned earlier, CABB is implemented using the NS-2 simulator toolkit on top of Nortel Networks diffserv
implementation. We evaluate CABB using three different network topologies with two sets of experiments in each case.
We describe the first set of experiments below. The other two sets of experiments are summarized in Table 2 and will be
described in detail in the final paper. The
network topology is shown in Figure 2. The
CABB diffserv domain includes three routers and
has one CABB that manages and configures
the edge routers. The experiments consist of
the three flows: (1) SO-dest: audio-EF PHB,
(2) Si-dest: video — AF PHB, (3) S2-dest:
video conference — AF PHB. Core-E2: is the
bottleneck link with a 5 Mb capacity. CABB
manages and configures routers E£1, E2 each
with two queues, one priority and one WFQ.
Following notations are used in the
discussion below: Peak Information Rate
(PIR), Committed Information Rate (CIR),
Committed Burst Size (CBS), Packet

Figure 2: Topology (A mixture of one EF and two AF flows) Transmission Rate (RATE), Available

Bandwidth (ABW), and Usable Bandwidth

(UBW) which is the actual allocated bandwidth. Early drops follow the RED algorithm [5], while late drops occur when

packet arrival exceeds buffer size. We define DSCP 10 for EF PHB and DSCP 21 for AF PHB. For non-conforming flows

DSCP 10 can be downgraded (allocate reduced bandwidth) to DSCP 11. Similarly DSCP 21 is downgraded to DSCP 22.
Simple policies for EF and AF flows are show in Table 1.

Dest
Sk for hoth
LF and EF

flows

32
I Video
Conference
LF flow

EF Policy AF Policy
If ABW > PIR, UBW = f (PIR) If ABW > CIR, UBW = f (CIR, CBS)
If CIR < ABW <PIR, UBW =f If ABW < CIR, UBW = f (flexibility,
(flexibility, CIR, PIR), CIR, CBS).
If ABW <CIR || UBW If ABW <UBW,
retry with reduced parameters retry with reduced parameters

Table 1: EF and AF Policies



The overall goal of this experiment was to demonstrate the operation of CABB and its ability to effectively manage
resource allocation and limit the effect of unresponsive EF and/or AF flow. The two experiments for the topology show in
Figure 2 are described below. The results are plotted in Figures 3 and 4. The legend for Figures 3 and 4 is as follows: cp —
Codepoint; TotPkts — Total packets, TxPkts — Transmitted packets; edrops — early drops and ldrops — late drops at the core
router (Core). Graphs 2 and 3 show the EF profile (CP 10 and 11). Graph 4 and 5 show the AF profile (CP21 and 22). The
tables in these figures show transmission rates and parameters used by the CABB policy manager. These statistics were
calculated for 80.0 time steps of the simulation.

Experiment 1: In this experiment, SO, S1 and S2 demand 4mb (PIR), 1mb (CIR), and 1mb (CIR) and transmit at 2.5mb,
Imb, and 1mb respectively. The results from this experiment are plotted in Figure 3. As can be seen from these plots
(graphs 2 and 3), SO is allocated reduced bandwidth (2 MB), i.e. its packets are downgraded to CP 11 since Rategy >
UBWosg. S1 and S2 are allocated their requested resources and are never downgraded as there are in-profile (see graphs 3
and 4). This shows that CABB does not allow the out-of-profile EF flow to downgrade or drop in-profile AF flow from S1
and S2.

Experiment 2: In this experiment, SO, S1, S2 demand 3mb, Imb, and Imb and transmit at 2.5mb, 2mb, and Imb
respectively. The results from this experiment are plotted in Figure 4. As can be seen from these plots, SO, S1 and S2 are
allocated full resources. Graphs 2 and 3 show that SO is in-profile and is never downgraded. S1 goes out of profile and the
AF aggregate packets are downgraded to CP22 and are eventually dropped (see in graphs 4 and 5). As seen in graph 5,
edrops are less than corresponding Idrops. Finally, we observe that the out of profile AF flow does not affect the in-profile
EF aggregate.

Observations and Results

Topology

Experiment

Topology 2: Builds
on Figure 2 but
without source S2.
S1-dest (video-EF
PHB)

Core-E2 bottleneck
link: 7mb.

Observe CABB decisions
regarding flow allocations and
flow control for unresponsive
EF flows.

1) SO, S1 demand 8mb and
2.6mb (PIR) and transmit at
8mb and 9mb respectively.

2) S0, S1 demand 1.5mb and
2mb (PIR) and transmit at
1.5mb and 1mb respectively.

Result 1: SO was rejected after interbroker communication
failed (congested link) for less flexible audio application.
S1 was allocated full resources (PIR) but Rateg; >> UBWj;.
Thus one flow is rejected despite retrial and another
allocated full resources but policed and forced to adhere to
SLA.

Result 2: SO was allocated full resources. S1 was allocated
reduced resources since video being more flexible than
audio. We observed that CABB increased flow allocations
with some flows getting reduced resources arrived at from
their flexibility number.

Topology 3: Same
as Fig 2 with the
following changes.
S2-dest (FTP on
TCP-AF PHB).
Core-E2 bottleneck
link: 7mb.

Three queues:
priority and 2 WFQ

Observe CABB’s admission and
control for UDP and TCP flows
and behavior between EF, AF
aggregates.

1) SO, S1 and S2 demand
2.6mb, 1mb, and 3mb. SO
and S1 transmit at 2.6mb and
Imb. S2 produces packets at
regular intervals.

2) S0, S1 and S2 demand 5mb,
7mb and 1mb respectively.
S0 and S1 transmit at 2mb
and 4mb respectively

Result 1: SO, S1 are allocated full resources while S2 has a
reduced allocation. Out-of-profile SO incurs packet drops
while S1 is downgraded. In-profile S2 is unaffected by
rogue SO.

Result 2: SO given reduced resources, S1 is rejected and S2
allocated full resources after interbroker communication
and taking flexibility into account Out-of-profile S2 is
downgraded while in-profile S1 is unaffected. Thus CABB
allocated only those flows that would not load the network
giving reduced resources to some. We see that TCP flow is
not starved but is penalized for not conforming to SLA.
Furthermore it does not affect in-profile audio (UDP).

Table 2: Topologies 2 and 3 — Observation and Results

4. Summary of Results

In the CABB-based diffserv system, multimedia flows are analyzed, allocated resources and regulated before being
allowed to use the network. CABB effectively orders flows so that they confirm to the traffic profile as agreed in the
original SLA or the reduced profile arrived at using the applications’s flexibility number. Furthermore, queue management
and diffserv policing work such that when a flow goes out-of-profile its packets are downgraded and eventually dropped
thus regulating a flow. EF flows serviced by priority queues are allowed to go through with minimal drop. Among the
flows, the downgraded DSCP faces harsher penalty as compared to the initially allocated one. The out-of-profile AF flows



do not affect the throughput of EF flows and vice versa. Multimedia applications, due to their flow requirements, are
usually assigned to EF flows. However those flows that can tolerate losses may be assigned to AF flows due to adaptation
by the broker. Hence, these flows go through a congested network in some form or other, with the CABB doing coarse
tuning of bandwidth requirements (avoiding over allocation) and the application level adaptive QoS doing the fine-tuning
of the applications’ response/sensitivity to network changes [9]. This is done such that the end user perceives a quantifiable
QoS even with reduced resource allocation. CABB ensures higher flow throughput by identifying and controlling rogue
flows. Furthermore, CABB eliminates the need for applications to have to deal directly with the diffserv router for
resources [7]. Both TCP and UDP flows get a fair share of the network. TCP flows are not starved by rogue UDP flows and
at the same time are regulated to confirm to SLA.

The normal broker does not account for application’s adaptability leading to overallocation of resources. It allocates
flows based on available resources and hence cannot ensure that a rogue flow will not affect flows belonging to same or
other service classes. Consequently, when compared to a normal broker the CABB efficiently utilizes the network by
allowing only those flows that do not congest it.
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5. Conclusions

A reservation-based environment requires end-to-end multi-resource reservation plans. In this paper we discussed the
CABB architecture for managing the QoS of multimedia applications in a diffserv environment. CABB determines the
policy for a particular flow based on the end user service level agreement, the flow’s characteristics (flexibility), network
resource availability and interbroker communication, to provide application level end-to-end QoS under (un)favorable
network states. Experimental results show that CABB’s policy decisions prevent congestion in the downstream network.
These policy decisions are simple, unbiased and effective to allow enough concurrent flows such that the network is not
unduly loaded and hence controls traffic at the edge router keeping the core simple. This design is easily scalable since no
state is maintained in routers. Multimedia applications or those that use UDP for data transmission are now coarsely
controlled by the broker’s policy decision. The broker considers the applications demands before allocating resources
ensuring that the flow will confirm to the profile else be downgraded. Thus it intelligently allows flows to utilize resources
and maximizes the flow throughput without congestion. This work can be extended further. Our next step is to enhance the
CABB?’s intelligence with a better understanding of the distribution profile of the usage of multimedia applications or flows
and/or users and also to make the policy decisions more dynamic.
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