Managing QoS for Multimedia Applications in The
Differentiated Services Environment

Manish Mahajan

The Applied Software Systems Laboratory (TASSL)

Dept. of Electrical and Computer Engineering, Rutgers University,
94 Brett Road, Piscataway, NJ 08854

Phone No: 732-445-5256

Email: manishm@caip.rutgers.edu

Manish Parashar

The Applied Software Systems Laboratory (TASSL)

Dept. of Electrical and Computer Engineering, Rutgers University,
94 Brett Road, Piscataway, NJ 08854

Phone No: 732-445-5388

Fax No: 732-445-0593

Email: parashar@caip.rutgers.edu

Abstract

The overall quality of network connections has a significant impact on the performance of networked
applications. As a result, Quality of Service (QoS) management for networked multimedia applications
over IP is a significant and immediate challenge. While differentiated services (diffserv) provide a sense
of resource allocation and QoS, they do not guarantee QoS. This paper presents the design,
implementation and evaluation of a content-aware bandwidth broker (CABB) that manages QoS for
multimedia applications in a diffserv environment. CABB allocates network resources to multimedia
flows based on client requirements, the adaptability of the application, and its tolerance to network level
parameters such as bandwidth, delay, and latency. It has been implemented and evaluated using the NS-2
simulator toolkit. Evaluations show that CABB improves network resource allocations and increases
overall throughput. Furthermore multimedia application flows are better managed and controlled,
improving perceived QoS and avoiding possible congestion at core routers.

Keywords: QoS, Content Aware Bandwidth Broker (CABB), Diffserv, Policies, SLA

1. Introduction

This paper presents the design, implementation and evaluation of a content-aware bandwidth broker
(CABB) that manages Quality of Service (QoS) for multimedia applications in a differentiated services
(diffserv) environment. CABB controls multimedia application flows between diffserv domains using
service policies that are defined based on the requirement, nature and adaptability of the flow, and its
sensitivity to network level parameters such as bandwidth, delay, and jitter.

The overall quality of network connections (e.g. link capacity, available end-to-end bandwidth, and
congestion) has a significant impact on the performance of networked applications. These applications
generate traffic at varying rates and have a varying ability to tolerate delays and jitter in the network.
Networked multimedia applications, which form a large part of today’s Internet traffic, present a
significant challenge, as they require quality guarantees from the network [1]. Internet Protocol (IP),
however, is best effort and does not provide any QoS guarantees [2] — that is, there are no mechanisms in
IP for policing or controlling unresponsive and high bandwidth flows that can cause congestion in the
network. As a result, all QoS management is left to the application [3]. Multimedia applications typically
have very limited feedback control to prevent them from causing congestion in the network.
Consequently, QoS management for networked multimedia applications over IP is a significant and
immediate challenge.

Different mechanisms such as Integrated Services (e.g. Resource Reservation Protocol (RSVP) [4]),
Differentiated Services [5], and Multi-Protocol Label Switching (MPLS) [6] have been proposed for
providing some level of QoS over the best-effort IP network [2]. These mechanisms improve QoS at the
edges of the network by identifying and controlling traffic flows or aggregates using classification,
conditioning and scheduling techniques. The Differentiated Services provide an approach to IP Quality of
Service management that is modular, incrementally deployable, and scalable while introducing minimal
complexity [5]. A diffserv domain provides different levels of service (e.g. premium, assured) to meet the
client’s request for guarantees. Network resources are partitioned between these levels of service, and
packets belonging to client flows are marked with specific diffserv code points (DSCP) that map these
packets to a particular level of service. This mapping is based on the service level agreement (SLA)
between the client and the network service provider. The bandwidth broker manages resources in a
diffserv domain. It tracks available network resources and classifies flows using service polices defined
based on client requirements and service classes offered by the diffserv domain [7]. In the diffserv
architecture, flows are allocated resources without any knowledge of the nature of the application or the
information being transmitted. As a result, the broker statically overallocates resources in order to meet

the guarantees made to the client. This overallocation wastes resources and causes future requests to be

rejected. Furthermore, the broker does not consider the nature of the flow and may allocate resources to
rogue flows. These flows can exceed their allocations and “hog” resources, causing congestion and
severely affecting the QoS of conforming flows. Thus, while diffserv does provide a sense of resource
allocation and QoS, it does not guarantee QoS or eliminate the possibility of congestion.

In this paper we present a content aware bandwidth broker (CABB) that provides adaptive brokering
for networked multimedia applications. CABB builds on the observation that multimedia applications are
flexible or tolerant with respect to network parameters such as packet loss, delay and jitter [8]". It exploits
this flexibility of multimedia flows to network level parameters to adapt the flows based on the state of
network resources and maintain a quantifiable level of QoS despite unfavorable network conditions. For
example, when the application’s demand for resources exceeds availability, rather than refusing
allocation, CABB may admit the application at a reduced QoS level until the required resources become
available. This can be a significant advantage for time critical applications. Furthermore, in case of
network congestion, CABB can adapt to the network state and reduce QoS rather than completely
disrupting application flows. CABB also prevents non-conforming (or rogue) flows from affecting the
performance of conforming flows by constantly monitoring and gradually degrading the level of service
of the rogue flows. Thus it provides an incentive to support end-to-end congestion control for best effort
traffic.

CABB has been implemented and evaluated using the NS-2 simulator toolkit [9]. Results presented in
this paper show that by exploiting the flexible nature of multimedia flows, CABB improves network
resource allocations leading to better network utilization. The results also show that multimedia flows are
better managed and controlled, thereby improving perceived QoS and avoiding possible congestion.
Furthermore, flow throughputs increase as CABB enables a larger number of flows to request for
resources without over allocation.

The rest of this paper is organized as follows: Section 2 discusses background and related work.
Section 3 introduces CABB and describes its architecture, and operations. Section 4 presents an

experimental evaluation of CABB. Section 5 summarizes the results. Section 6 presents the conclusion.

2. Background and Related Work

Different approaches have been proposed to provide service guarantees to multimedia applications.
These approaches can be broadly divided into network level protocols, reservation-based schemes, and
adaptation-based schemes for QoS support. Network level protocols provide QoS support by interpreting
the application’s requirements in terms of network parameters, and enhancing network switches to service

application flows or flow aggregates. Reservation-based schemes reserve network/system resources based

" Intolerant applications will be handled using the standard diffserv mechanism that provides guarantees.

on the application’s requirements. These schemes are typically accompanied by admission control
mechanisms that match application requests with existing resource availability. Adaptation-based
schemes utilize the adaptive behavior of applications that do not require hard service guarantees, and
perform application aware active resource management with runtime adaptations to provide better than
best effort service. Finally, various optimization schemes have been proposed for monitoring applications,
integrating application processing with data transport, and embedding QoS state information in
application data to improve performance of applications requiring service guarantees. A brief description
of these approaches is presented below.

2.1. Network Protocols with QoS Support

The Internet Engineering Task Force (IETF) has addressed the issues in building a QoS support
infrastructure to be deployed over IP on the Internet. Several working groups have proposed promising
alternatives. However, considering the scale and the increasing heterogeneity of the Internet, a single
solution is still elusive. The most prominent proposals are Integrated Services, Differentiated Services
(diffserv) and Multi Protocol Label Switching (MPLS).

The Integrated Services architecture provides QoS to individual applications or flows based on
explicit resource requests [4]. It specifies a number of service classes designed to meet the needs of
various networked applications. In principle it is a significant deviation from the highly successful and
scalable best effort IP. Differentiated Services (diffserv) is a set of technologies that are used to provide
QoS in a world of best effort service provisions [5]. In diffserv, all the complexities are pushed out to the
edge routers, keeping core routers simple. As it exhibits greater flexibility and is able to allocate resources
efficiently while still providing service guarantees, diffserv is well suited for providing network-level
adaptive QoS support to distributed applications operating in heterogeneous networks. Multi Protocol
Label Switching (MPLS) [6] is a traffic engineering protocol. It provides resource management for flow
aggregates using network routing control based on fixed length ‘labels’ in packet headers. As MPLS is a
protocol-independent mechanism resident in network level switches with no application control,
technologies such as diffserv can readily leverage the management support provided by MPLS.

2.2. Reservation-Based Schemes

Intuitively, the most straightforward method for assuring service guarantees is to reserve
resources according to an application’s request. However, reservation based schemes involve admission
control algorithms, reservation protocols, monitoring protocols, and signaling mechanisms. These
schemes are generally complex and require extensive network support. This affects their scalability and
robustness. Nevertheless a number of innovative approaches have been proposed that address key

technical challenges in achieving QoS on the Internet. Some of these are discussed below:

In [10], Chandra et al. have an intelligent network architecture based on service brokers that
attempts to provide application-oriented reservations. Service brokers perform resource discovery and
optimization of resource usage using application domain knowledge. An application-oriented signaling
protocol handles the flow for an application. A hierarchical brokerage and resource management structure
is suggested to handle resource allocation and sharing.

The multi-resource reservation algorithm proposed in [11] utilizes the resource broker model for
an integrated approach to reserving and scheduling resources with low contention. It adopts a component-
based approach with Resource Brokers, QoS Proxies and service components as the main entities. A
resource reservation plan reserves a minimum amount of bottleneck resources while deciding appropriate
levels of input and output quality for each service component. Simulations show that the proposed
algorithm works better, in terms of reservation success rate, than a random reservation path selection.

[12] presents the GARA resource management architecture, which addresses the challenges in
achieving end-to-end QoS guarantees across heterogeneous collections of shared resources. GARA builds
on existing techniques and concepts to support end-to-end discovery, reservation, allocation and
management of heterogeneous ensembles of computers, networks, storage-systems, and other resources
under independent local control. GARA exposes both reservations and objects as first-class, abstract
objects, defines uniform representations and operations for diverse resource types, and uses an
information service to reveal site-specific policies. These constructs enable the construction of reusable
co-reservation and co-allocation agents, which can combine domain- and resource-specific knowledge to
discover, reserve, and allocate resources that meet application QoS requirements.

2.3. Adaptation-Based Schemes

An alternative approach to reservation-based schemes is to adapt an application so that it
performs satisfactorily given existing resource constraints. These schemes are feasible only for
applications that are capable of adaptations, such as multimedia applications. Although adaptation-based
schemes can be complex, the complexity is typically at the middleware or application level and at the
end-hosts. As a result, the scalability of the approach is not adversely affected.

Applications that can deal with changes in the network environment are called network-aware. A
network-aware application attempts to adjust its resource demands in response to network performance
variations. In [13], J. Bollinger and T. Gross present a framework-based approach for the construction of
network-aware programs. The framework investigates techniques to measure dynamic changes in network
service quality and further, to map application-centric quality measures (e.g., predictability) to network-
centric quality measures (e.g., QoS models that focus on bandwidth or latency). A layered architecture

with an adaptation layer that implements feedback based on network resource availability is proposed.

In [14], Chang et al. present an application-independent adaptation framework with a tenability
interface and a virtual execution environment. Together, the two mechanisms enable the development of a
run-time adaptation system. This system continuously monitors resource conditions and application
progress (in terms of user preferences of QoS metrics), and automatically determines both, when
adaptation should be performed and how the application must be modified (i.e., which of its
configurations must be chosen) based on application profiles.

2.4. Miscellaneous Optimization Schemes

Several QoS and optimization schemes have been proposed to enhance the Internet infrastructure
for better QoS support. Such schemes involve monitoring tools for obtaining network and system
resource state in real time, integrating media encoding and transport for better adaptability support, and
using QoS state information in routing decisions. Some of these approaches are summarized below.

A QoS broker that orchestrates resources at the end-points and coordinates resource management
across layer boundaries is proposed in [15]. As an intermediary, it hides implementation details from
applications and per-layer resource managers. The broker uses services such as translation, admission,
and negotiation to properly configure the system to application needs.

In [16], Zhang et al. present an end-to-end transport architecture for multimedia streaming over
the Internet. They propose a new multimedia streaming TCP-friendly protocol (MSTFP) that combines
forward estimation of network conditions with information feedback control to optimally track the
network conditions. This scheme improves end-to-end QoS by allocating resources according to network
status and media characteristics.

An approach to managing real-time traffic in multimedia networks is presented in [17]. The
respective roles of the real-time control system, the management system, and the network operator, are
clarified and their interactions aimed at managing real-time services are described. It introduces an
architecture based on the concept of managing network services by tuning the resource control tasks in
the network control system. The L-E model to deal with the complexity of the network control system, a
generic system-level abstraction of a resource control task, is presented.

[18] reviews the main requirements and challenges for effective management of multimedia
networks. It presents a case study of a thin-client based multimedia system called CSL (Computer-
supported Learning System). In the framework proposed, most of the link management information will
be kept in a Management Information Base (MIB) in the network and a very simple MIB will be
maintained in the thin client. The MIB in the network is accessible to the network management
application, and a lightweight protocol is proposed for the updating of the network MIB using an agent at
the thin client.

Table 1, gives an overview of existing approaches to adaptive QoS at various levels i.e. network,
application, middleware etc. Note that it is not exhaustive nor do we propose to present a taxonomy of

QoS management approaches.

Table I: QoS Management for Multimedia Applications

Network Protocols with QoS | These approaches provide QoS support by interpreting the
support application’s requirement in terms of network parameters and
enhancing the network switches to service application flows or flow
aggregates according to the assigned service levels.

Examples include Integrated Services [5], Differentiated Services
[4], Multi Protocol Label Switching [6].

Reservation Based Schemes These approaches reserve network/system resources based on the
application’s requirements, and are typically accompanied by
admission control schemes that check if the application’s request
can be serviced with the existing resource availability [10][11][12].

Adaptation Based Schemes These approaches utilize the adaptive behavior of applications that
do not require hard service guarantees, and provide a better than best
effort service by performing application aware active resource
management and runtime adaptations [13][14].

Miscellaneous Optimization | Miscellaneous optimization schemes for monitoring, integrating
Schemes application processing with data transport and embedding QoS state
information in application data to achieve a better performance for
applications requiring service guarantees [15][16] [17] [18].

3. Content Aware Bandwidth Broker: Architecture, Policies and Operations

This section presents the architecture, operations, policies and implementation of the content aware
bandwidth broker (CABB). The following section summarizes the diffserv approach and the traditional
bandwidth broker architecture.

3.1. Diffserv and the Bandwidth Broker Architecture

Diffserv classifies the network traffic and allocates the network resources to flows based on a
management policy. Service classes are created with different QoS guarantees and flows are assigned
these classes. Service Level Agreements (SLA) are set up between adjacent diffserv domains. The SLA
establishes policy criteria and defines the traffic profile to be maintained by independently managed
domains. As shown in Figure 1, packet classification is done based on one or more bits in the packet at
the ingress router. The packet is then marked, using diffserv code points (DSCP), as belonging to one of
the many service classes and injected into the network. All packets with the same code point are grouped
together and are known as a behavior (flow) aggregate. DSCP determines an aggregate’s per hop behavior
(PHB), i.e. the treatment given to the aggregate at routers on the way to its destination. Core routers

examine the DSCP to decide how to forward the packet. Most of the work in this scheme is done at the

edge routers. The edge routers are responsible for classifying and conditioning packets using a multifield

classifier, flow markers, traffic meters, traffic shaper and policers [5].

Crop
BFflow | BF | pyous [EELIOW BF traffc
Palicet P, ket shipet
flow | &F o fow Aet DACP
P Poticer » L
- Downgrade?
ow
—M & #F EUW To Priotity ot
; matket
hrsving Policet () quenies
packet]
Packet | Forvarng
— Classf P el ’
— Bet Effort G

Figure 1: Diffserv edge router functionality: traffic classification and conditioning

There are two defined PHBs: expedited forwarding (EF), and assured forwarding (AF) [19]. EF
PHB supports low loss, low delay, and low jitter. EF PHB is assigned to flows that cannot tolerate QoS
degradation. AF PHB defines four relative classes of service and each service supports three levels of
drop precedence (i.e. a total of twelve code points). The conditioner at an edge router shapes and
smoothes bursts of EF traffic before injecting it into network. EF traffic not conforming to its SLA is
termed “out-of-profile”, and is dropped. AF traffic conforming to the SLA is termed “within profile”, and
is delivered with a higher probability than out-of-profile AF traffic. Out-of-profile traffic may be demoted
or downgraded to a reduced bandwidth allocation instead of being dropped. Thus diffserv provides simple
and coarse mechanism for QoS support.

As shown in Figure 2, a Bandwidth Broker (BB) is an agent that controls the resources within a
diffserv domain, using service policies defined by client requirements. SLAs are used to define the
relation between policies and PHBs. A service provisioning policy (SPP) indicates the configuration of
traffic conditioners in the edge routers of the diffserv domain and the mapping of traffic streams to
diffserv behavior aggregates. The BB requires both, the SLAs and the SPPs to achieve the range of user
services. The broker uses the SLA to determine if it can provide the allocation and configures the
particular edge router to classify and mark the packets accordingly [5,7].

The bandwidth broker has been designed to add intelligence to the diffserv and better utilize the
existing resources. But it wastes resources by statically overallocating them to meet client guarantees.
Furthermore, it may allocate resources for rogue flows severely affecting the QoS of guaranteed or

conforming flows. For example, a flow that is continuously bursty after promising constant rate may be

considered a rogue flow. Thus, bandwidth broker along with diffserv does not guarantee QoS or eliminate

the possibility of congestion.

Broker for Cormpany & mteracts with Edge
Company A Routers for that particular trust region

Bandwidth Broker 1

Internal
caore router

i

EF agzrezate restricted to
B byteslsec

Unrnarked
packet flow

FPackets belongmg To EF
flowse have DSCP =t to a
particular PHBE

Bancwidth Broker 2

farketilon: Broker 1 and Broker

trust regions interact
————— B Signaling mechanisn other to set up flows

Figure 2: Bandwidth broker in a diffserv domain

3.2. CABB Architecture

The CABB presented in this paper uses the bandwidth broker architecture defined by the Qbone
team [7] [20] [21]. The key components of this architecture include User Interface, Inter-domain
Interactions, Intra-domain Interactions, Routing Table, Database and Policy Services.

CABB extends on this architecture by adding content aware policies. These policy engines define
specific policies for the various service classes offered by the diffserv domain. These policies consider the
nature of the request and the flexibility of application with respect to network level parameters (e.g. delay,
jitter, and loss) while resolving resource requirements to adaptively manage application QoS. CABB uses
these policy engines to configure functionality of edge routers in the diffserv domain [7][20].

3.3. CABB Operations and Policies

A CABB may receive a resource allocation request from one of two sources: a request from an
element in the domain that the broker controls, or a request from a peer CABB. It either confirms or
denies the request and responds accordingly. Additionally, it may generate request messages for
downstream resources. CABB consists of four components, viz. a resource allocator, a database to store
the parameters required to make the reservation decisions, a broker manager for inter-broker
communication, and a policy engine to create a particular policy for the available service classes. We

have three different service classes in our implementation: EF, AF and Best-Effort.

As described above, networked multimedia applications are flexible, i.e. they can tolerate
resource scarcity (within certain limitations) by reducing performance, and can utilize additional
resources to improve performance. Furthermore, they can sacrifice the quality/performance of some
parameters in order to preserve (or improve) the quality/performance of more critical parameters [22].
CABB maps this flexibility into various network level parameters to maintain an acceptable QoS range
for an application. This is done such that the end user perceives a quantifiable QoS even if all requested
resources are not allocated.

When an application requests CABB for network resources, it invokes an API provided by CABB
and passes application specific QoS requirements and constraints. These parameters can include quality
descriptions for the specific media characteristics (e.g. height, width, and color specification in a video
stream), media sample rate, priority/criticality, and transmission characteristics requirements for end-to-
end delivery (e.g. end-to-end delay bounds). On receiving such an application flow request along with
QoS parameters, CABB translates the parameters into network resource requirements such as rate usage
profiles (i.e. committed and peak information rate), burst, delay, flexibility to delay, jitter and loss, for the
time during which the created profile is to be active. The translation builds on heuristics presented in
[23][24][22][3] that are based on application flexibility, and provide mechanisms to translate the
multimedia application level parameters such as frame rate, frame size, etc to network resource requests
and constraints, such as rate usage profiles, burst, and delay. Application data transport requirements are
identified based on frame size and frame rate. For example, video resolution (pixels per frame) and
encoding (bits per pixel) define the frame size. Frame rate for video can be typically altered from 30
frames per second for very good quality to as low as 15 frames per second for an acceptable quality. The
bit rate encoding for the audio signal determines its fidelity and frame size. Audio signal are highly
sensitive to delay and jitter and hence have a smaller range of permissible frame rates. Collectively, frame
size and frame rate modifications translate into a range of bandwidth requirements for each media type for
acceptable performance [3]. Once the translation to network requirements is complete, CABB tracks
current allocation of marked traffic [25], and interprets the new request in light of defined policies and
available resources. It looks up its policy table for the existing policy that governs the requesting host and
contains the relevant service level agreements (SLA), service/DSCP mappings, management information,
current reservations/allocations, and edge router configurations.

These parameters along with the application’s flexibility [22, 26] are passed to the policy engine
defined by the SLA. The policy engine further translates the parameters into specific network actions such
as bandwidth management (allocated transmission rate), queuing (per hop behavior), buffer space
management for queuing, network monitoring, and accounting. In our implementation, rate usage profiles

are pre-specified for simulated applications. The policies determine the users’ bandwidth requirements

10

and allocate resources accordingly. Note that an application’s flexibility is used to determine its minimum
resource requirements [22]. As will be shown in the experimental evaluation presented in Section 4,
resource allocation is done in a succinct and organized fashion and treats all flows fairly. Furthermore, the
allocation is based on the client’s needs as defined by its QoS parameters, rather than its peak request that
is typically larger. This conserves resources and allows a larger number of requests to be served even
though all the requested resources are not available.

The EF policy is outlined as follows. The diffserv router uses two parameters to police EF flows:
committed information rate (CIR) and peak information rate (PIR). The application generates data at an
average rate of CIR and can go to peak rates of PIR. Although it reserves PIR as its peak bandwidth it
may not generate data at PIR all the time during its duration. If the flow exceeds PIR at any time, it goes
out-of-profile and will be downgraded to a lower DSCP with reduced bandwidth and eventually dropped.
The CABB invokes its EF service policy manager to decide the result of a given request. It does a query
on the edge router(s) from source to destination in its domain and waits for a reply. After receiving the
reply, CABB decides whether the edge router(s) has sufficient resources to handle the flow or not. If
available resources are not sufficient, i.e. the available bandwidth is less than CIR or between CIR and
PIR, CABB uses the flows’ flexibility, represented as a flexibility number, to determine its minimum
resource requirements. It then retries to set up the flow with reduced resource requirement. The CABB
API return call then informs the application of the status of current reservation/marking. It provides a set
of alternate reduced parameters if resource request fails.

The diffserv router uses two parameters to police AF flows: committed information rate (CIR)
and committed bucket size (CBS), which is a token bucket filter. The flow reserves CIR as its peak
bandwidth. If it exceeds CIR at any time, it will be downgraded to a lower DSCP with reduced bandwidth
and eventually dropped. The CABB invokes its AF service policy manager to decide the result of a given
request. It does a query on the edge router(s) from source to destination in its domain and waits for a
reply. After receiving the reply, CABB decides whether the edge router(s) has sufficient resources to
handle the flow or not. If the resources are not sufficient i.e. the available bandwidth is less than CIR,
CABB uses the flows’ flexibility number to determine its minimum resource requirements. It then retries
to set up the flow with reduced resource requirement. The CABB API return call then informs the
application of the status of current reservation/marking. It provides a set of alternate reduced parameters if
resource request fails, e.g. required resources are not available, and the application decides to retry with
reduced parameters. On allocating the flow, CABB updates the parameters at edge router(s) along the
path from source to destination.

The CABB policy engines essentially leverage the flexibility of multimedia applications and use

it to effectively map them to available service levels to achieve better admission control [22]. A flow is

11

rejected only if available resources remain insufficient even after reducing the level of service.
Furthermore, with the help of the broker manager, CABB can generate additional request messages to
reserve resources downstream [7,15]. Each downstream CABB takes into account the inter-domain traffic
SLA before allocating resources. There is a limit on the number of flow reservations allowed per service
class, which ensures good bandwidth utilization [5]. For a successful admission, the CABB makes
appropriate reservations (usable bandwidth, buffers) using the resource allocator and assigns a DSCP to
the application flow. Diffserv-enabled routers use the DSCP marking to provide the requisite PHB. The
DSCP mappings may be unique to each router but the PHB is the same for all diffserv-enabled routers.
CABB then schedules the flow to the appropriate queue manager (Priority or Weighted Fair Queue) and
updates the policy table. Diffserv’s internal policing mechanisms then force the flows to adhere to the
agreed policy. CABB prevents non-conforming (or rogue) flows from affecting the performance of
conforming flows by constantly monitoring network condition and gradually degrading the service of
rogue flows. Thus it provides the incentive in support of end-to-end congestion control for best effort
traffic. A highly congested network may stop best effort but will allow high priority traffic (EF service
class) to go through. Hence even though it is congested the users of high priority service class don’t see
the congestion. The CABB may also maintain a log of a flow’s history to help it to identify and curb
rogue flows.

Networked multimedia application flows are usually bursty and it is difficult to define the
characteristics of such a flow [2]. CABB uses the minimum information given by such a flow (such as
committed and peak information rate), the ranked importance of an application, the importance of the
user, the current available resources, the result of inter-broker communication and the tolerant
adaptability of the application to network level parameters to allocate the flow. It achieves better
admission control by implementing content aware policy engines.

3.4. An Illustrative Example

The operation of CABB is illustrated using the sample diffserv configuration shown in Figure 3.
This network includes two diffserv domains, two sources in domain 1 and a destination in domain 2. The
two diffserv domains are required to show the inter-domain interaction between the broker agents to
provide end-to-end resource allocation for a source-destination pair. We assume static routes in this
example.

Source 1 in diffserv domain 1 (DS1) requests a flow setup to destination 2 in diffserv domain 2
(DS2). It provides its requirements such as average and peak transmission rates, delay and jitter, along
with the flow type (e.g. multimedia audio) to CABB1 in DS1. CABBI uses its policy engines to
determine the required bandwidth and PHB based on the agreed upon SLA, the current available

resources, and the flexibility of the application. The flexibility for various multimedia applications is

12

encoded into the policy engine as a flexibility number based on their tolerance to the above mentioned
network level parameters [22]. CABB1 forwards the flow’s parameters, either as is or reduced, to the
downstream broker CABB2 in DS2. On receiving a positive acknowledgement from CABB?2, it assigns a
DSCP to the traffic flow between this source-destination pair in its policy table. If the available resources
are insufficient or CABB2 returns a negative acknowledgement, CABBI1 re-attempts the flow setup by
assigning it a lower but still acceptable quality and correspondingly lower DSCP. It also informs the

application of this adaptation.

Diiffzerv domain 2

—® PacketFlow

—==--=-—9= Signaling mechanisn

Figure 3: Sample Differentiated Services Configuration

Source 2 in DSI1 requests a multimedia video flow also to destination 2 and provides its
parameters such as peak transmission rates, delay, jitter, packet loss and required resources. As before,
CABBI invokes its policy engines to determine the resources to be allocated. Note that the flexibility
number will be different in this case as multimedia video is more flexible to packet loss than audio. It
once again sets up the flow after receiving a positive acknowledgement from CABB2. In this example,
Source 1 is given EF PHB and Source 2 is given AF PHB. The timing diagram in Figure 4 shows the
steps involved in setting up a connection when a flow requests transmission. It describes the sequence of
interactions after the Host (Source 1) initiates transmission request to Dest (Destination 2).

The CABB, prevents congestion by effectively ordering the flows in such a manner that they
conform to the traffic profile as agreed in the SLA. An appropriate number of flows are allowed at a time
so that the network is not unduly loaded. We can now control multimedia traffic at the edge router; i.e.
keep the core simple and move all complexity to the edge router. The CABB ensures that all applications

get a fair share of bandwidth according to their SLA and that the bandwidth for various service classes is

13

efficiently utilized. When the network is congested, the CABB may allow a multimedia application to go
through, but with reduced service. As CABB is content aware and knows the flexibility of the
applications, it takes it into account while allocating flow rate. Note that it is finally up to the application
to accept the reduced service or not. The application may opt to retry later to get a richer set of services.
In case of premium service with EF flows, the broker guarantees that this flow will not face any queuing
delay along the way and will be delivered within the constraints of its QoS parameters, giving it the
impression of a virtual leased line. Such flows will rarely experience any packet drops (early or late) at

the routers.

Edge Edge
Host CABEB1 Router 1 Router 2 CABEZ Dest

Reguest flow till dest for
given (o3 parameters Cotrvert to Hetwrork Levwel

™ parameters using | flexibdlity and
tap Edge router resperces

e
-

Fdge response; suffjcient f

%’;ﬂ cient regourcey

Loecal tesowces sufficient Check resouarces
donarsty eam| and pass flow paratmfeters

L

Downstream broker taps itfs domain’s
edge rofters to check resmute

-
Fdze response: suff{cient [
ihsufficient resources
—

Infprm upstream teoker of
respurce avail ability

Inflorm iff insaffyei ent
regdources till destinati opy

ol
-

Rebry with lower parameters
N

Use Flexibility to allocate resoarces
wifer ourrent resource fnanch

il
-

Cinsacgess allocate flow bazed on 3LA and upddte policy table

De-allocate resoutrces |after
flowr perminates

[
-

Figure 4: CABB timing sequence diagram.

From the results in Section 4, we see that queue management and diffserv policing work in such
a manner that in the case of a non-conforming flow, only that particular queue to which the flow belongs

will be penalized. The other flow aggregates are not affected. If for any reason the broker is not able to

14

allow a flow, it will log a report indicating the flow’s requirements, source, destination and time the flow
was requested.
3.5. CABB Implementation

We have implemented the bandwidth broker on the Network Simulator-2 (NS-2) toolkit. The
NS-2 toolkit has substantial functionality for simulating different network topologies and traffic models.
NS-2 also has an open architecture that allows users to add new functionalities. We implemented a
scheduler that allowed us to implement and service various types of queues for EF, AF and Best-Effort
service classes. This scheduler enables setting up and serving various FIFO queues such as non-
preemptive priority queues, weighted round-robin queues and best effort queues for the various edge
routers. Using the diffserv patch provided by Nortel Networks [9] and extending it with our scheduler and
the CABB, we can generate diffserv domains and create suitable test networks as shown in the

experimental evaluation in Section 4.

BANDWIDTH BRCOKER
Inter-Broker

Enough resources for the flow down the network Corumunizabin
Ilodule

Bevized
¥ - Policy

i

i

i

i - - dpplication type
; Policy and tolerance
E Decision et

i

i

i

i

i

Logie

requested flowr

Faolicy Have access to
et or

Tahle the policy table List of Edge
the Diomain

Tel

Palic
Scripts ¥

not? BEouters of

i
i
i
i
up poliey for i
i
i
i
i
i

¥ List of Brokers

7
|
Traffic Flow Eiid Prnker domain 1

Broker dognain 2

Edge Router Prker domain 3

Central Entity used for inter-
dormain broker corraumication

Figure 5: CABB internal block diagram and interactions

The diffserv implementation has three modules, two of them are related to the edge router and
core routers, and the third module is the policy and resource manager. The policy class handles the
creation, manipulation, and enforcement of edge router policies. A policy defines the treatment that
packets will receive at an edge router. Policies are set using Tcl scripts [9]. The policy class uses a policy
table to store the parameter values. The packet that arrives at the edge router is classified to decide to
which traffic aggregate it belongs, and a specified meter is used to check the average traffic rate of that
client to make sure it corresponds to the current sending rate. If it does not conform, it gets downgraded to

a lower DSCP.

15

As shown in Figure 5, the CABB is used to configure the policy module of the diffserv. Our
CABB implementation consists of four modules: user interface module through which the user/network
operator can allocate resources, a database module that stores all the parameters required to make the
reservation decisions, a service policy manager module, and a central entity called the broker manager
that handles inter-broker communication. The policy manager module creates a particular policy module
for EF, AF or Best-Effort flows and updates the policy at all the other edge routers in its domain.

The CABB makes the provisioning based on the SLA agreed upon by client/user (through the
user interface module) using Tcl scripts and in compliance with other parameters in the database module.
These include the current reservations and the router configurations. Configuration changes are made to
the policy module. Within the policy module every source-destination flow is associated with a policy
type, meter type, current rate of traffic (the rate agreed upon with the client) and other policer specific
parameters. The CABB’s policy table has only one entry for a particular source-destination pair. Any
change in that entry is then communicated to all the edge-routers in that domain. We associate a set of
DSCPs with each flow. Each DSCP corresponds to a different traffic rate and PHB and is internally
implemented as a specific queue that will serve the packet.

To aid the broker in it’s DSCP mapping, we have implemented a priority queue for EF PHB
(also called EF code points) and weighted round-robin queues for AF and Best-Effort PHB (also called
AF and Best-Effort code points respectively). The key idea is that EF flows should receive guaranteed
service, and should not face any queuing delay in their path to the destination. A priority queue staves off
other traffic while it is being served. The diffserv-capable edge router also takes care of shaping and
policing the EF flows which ensures that the flows downstream confirm to their profile. The weighted
round robin queues are serviced according to their weights. We put higher weights for AF flows and
lower weights for Best-Effort flows.

For interbroker communication, the CABB looks up its database and routing table to identify the
downstream edge router and peer broker. It communicates the flows’ parameters to the peer broker. The
downstream broker then uses these parameters along with the link’s latest characteristics and resources to
decide whether to allow the flow to continue or not. If the allocation is not successful, it informs the
broker upstream. The flow is then allowed to retry once it is rejected. If the allocation is successful, this
process continues on another downstream edge router and broker till the destination is reached. This is a
one-way communication from host to destination and does not imply that the destination has resources
reserved at the same time. CABB gives us the advantage of setting up a flow using RSVP type signaling

without the overheads of keeping and refreshing up-to date network state information.

16

4. Experimental Evaluation

In this section we present an experimental evaluation of the performance and effectiveness of CABB.
The evaluation consisted of a series of simulations using different network topologies. The simulations
are designed to evaluate the performance and effectiveness of CABB under various network conditions.
They evaluate CABB adaptations in cases of congested links, out-of-profile clients and insufficient
resources. The evaluations concentrate on multimedia flows and uses different applications types such as
audio, video, and video conferencing. The network topologies consist of multiple source nodes,

heterogeneous links and a single sink node.

Table II — Notations

Notation Explanation

PIR Peak Information Rate: Peak rate of transmission.

CIR Committed Information Rate: Average rate of
transmission.

CBS Committed Burst Size: This parameter is used by
AF policer in conjunction with CIR.

ABW Available Bandwidth: Bandwidth currently unused
and available.

UBW Usable Bandwidth: Actual allocated bandwidth.

The notations used in the discussion below are summarized in Table 2. Early drops follow the RED
algorithm [8], while late drops occur when packet arrival exceeds buffer size. We define -DSCP 10 for EF
PHB and DSCP 21 for AF PHB. For our experimental purposes, in the case of non-conforming flows,
DSCP 10 may be downgraded (i.e. allocated reduced bandwidth) to DSCP 11. Similarly DSCP 21 and 23
may be downgraded to DSCP 22 and 24 respectively. Simple policies for EF and AF flows are show in
Table 3. We allocate 1/3™ bandwidth to EF flows, 5/12" bandwidth to AF flows and the rest (1/4™) to best
effort in all the topologies given below [8]. These simple rules/policies, which are centralized at the level

of CABB, effectively provide it control over flow allocations while being fair to all flow types.

Table III: EF and AF Policies

EF Policy AF Policy

If (ABW > PIR), If (ABW > CIR),
__UBW = function_1(PIR) __ UBW = function_3 (CIR, CBS)
If (CIR < ABW <PIR), If (ABW < CIR),
_ UBW = function 2(flexibility, CIR, | UBW = function 4 (flexibility, CIR,
PIR), CBS).
If (ABW < CIR || UBW) If (ABW < UBW),

retry with reduced parameters retry with reduced parameters

The CABB processes requests on a first come first serve. Requests are evaluated on the basis of their

flexibility, SLA, the availability of resources and interactions with peer brokers, and are either allocated

17

the requested resources, allocated reduced resources or rejected. After the request is successfully
processed, it is assigned a DSCP, which is then used by the diffserv-enabled router to classify and
monitor the associated flow. In what follows, we present experimental results for 3 different network
topologies. The results are for 80 simulation timesteps. Each set of results consists of a pair of plots for
each source, one showing the number of transmitted packets and the other showing the number of
dropped packets. Graphs 2 and 3 are for the EF source (DSCP 10) and Graphs 4 and 5 (and possible 6 and
7) are for the AF source(s) (DHCP 21, 22). The table in the figures lists the diffserv parameters and
transmission rates for the different sources. The notation used in the figures is as follows: cp -DSCP;
TotPkts — Total packets, TxPkts — Transmitted packets; edrops — Early Drops and ldrops — Late Drops at
the core router (Core).
4.1. Network Topology I

The first network topology evaluated is shown in Figure 6 and consists of — three routers (one core
and two edge), and a CABB that manages and configures the edge routers. The goal of this experiment is
to demonstrate the operation of CABB and its ability to effectively manage resource allocation and to
limit the effect of unresponsive EF and/or AF flows. The experiments consist of three sources (SO, S1,
and S2) and one sink (Dest). The three flows are: (1) SO-Dest: audio-- EF PHB, (2) SI-Dest: video — AF
PHB, (3) §2-Dest: video conference — AF PHB. The Core- E2 link is the bottleneck link with a capacity
of 5 Mb. The edge routers £/, E2 have two queues, one priority and one WFQ.

CABR
51
MM Video
LFflow SHE 10 MR Dest
Stua s Smk for both
Co - AF ad EF

flows

5l
MM Video
Conference
LF flowr

Sms

Figure 6: Topology 1 (1 EF, 2 AF flows)

4.1.1. Experiment1

In this experiment, SO, S1 and S2 request 4mb (PIR), 1mb (CIR), and 1mb (CIR) and transmit at
2.5mb, 1mb, and 1mb respectively. The results from this experiment are plotted in Figure 7. As Rategy >

UBWy, (3.33mb), SO’s packets are downgraded to CP 11 and it is allocated a reduced bandwidth (2 Mb).

18

This is shown in graphs 2 and 3 in Figure 7. S1 and S2 are allocated the resource they request, seen in
graphs 3 and 4. For example, if S1 streams a movie containing uncompressed low-quality images of 320 x
240 pixels, each encoded by a single byte, leading to video data units of 76,800 bytes each. Assume that
images are to be displayed at 30 Hz, or one image every 33 msec. It produces data packets at the rate of
615 Kbps. This rate confirms to its profile and packets belonging to this flow are never downgraded.
Furthermore, we see from Figure 7 that SO (audio in this case) goes out-of-profile and gets downgraded
without affecting the other AF flows. This shows that CABB prevents the out-of-profile EF flow from
defecting (downgrading or dropping) the in-profile AF flows from S1 and S2 at the edge router. This
improves the transfer delay that would have resulted without CABB due to congestion at upstream routers

caused by unchecked flows.

25000 1 Packets Dropped
50000 Graph 1 "
Packets Transmitted 0.8 Graph 3
40000 Graph 2
)
30000
~
Qo000
o
10000 Time
0
0 5 10 20 30 40 50 60 70 80
0 5 10 20 30 40 50 60 70 80 oS TXPs(GP10) Time ———idrops, edrops (GP10)
—B—TolPis, TePkts ——d——~drops, edrops — - TotPkts, TxPKs(CP 11) ——m— Idrops, edrops(CP 1)
20000 1
18000 Packets Transmitted o Packets Dropped Nole |CIE | FIR | CBS | BATE
16000 Graph 4 -]
rap 0.7
14000 o’ Graph 5
L1
520 (M) | (M) | (ME) | (M)
510000
8000
Lo S0l 14 25
4000 .
Time
o 811 01
0 0 5 10 20 30 40 50 60 70 80
’_u_s_m_zu_sﬁ 40 5 60 70 8 52 l ID l
——&— TotPkts, TxPKs(CP 21) ——&— Idrops, edrops(CP 21)

Figure 7. Results of experiment 1 (topology 1)

4.1.2. Experiment 2

In this experiment, SO, S1, S2 request 3mb, Imb, and 1mb and transmit at 2.5mb, 2mb, and 1mb
respectively. The results from this experiment are plotted in Figure 8. As can be seen from these plots, all
three sources are allocated full resources. SO is in-profile and is never downgraded as seen in graphs 2 and
3. S1 goes out-of-profile and its AF aggregate packets are downgraded to CP22 and are eventually
dropped (see graphs 4 and 5). As graph 5 shows, edrops are fewer than the corresponding ldrops. Finally,
we observe that the out-of-profile AF flow does not affect the in-profile EF flow. Here, once again,
CABB improves throughput and performance of conforming multimedia applications while gracefully
degrading the performance of rogue flows. For example, if SO was a critical audio application and S1 was
a non-critical video (rogue) application, CABB’s polices avoid the video application to hog network
resources by gracefully degrading its performance and later dropping the video flow’s packets. Audio

packets from SO, which remain in-profile, are not affected by the rogue nature of the video flow from S1.

19

Thus S0’s guaranteed service level agreement is met. This results in the audio application’s improved

performance inspite of having to compete with rogue flows.

50000 30000 19
Graph 1 Packets Transmitted Packets Dropped
50000 25000 Graph 2 ” 0.8 4 Graph 3
0000 490000 © 0.6
Q [
30000 15000 804
- S o
020000 Time 010000 0.2 1
10000 5000 0+ ¢ttt
0

0 & 0 a0 a0 a0 =0 s 70 8 0+ P T S 0 5 10 20 30 40 50 60 70 80

—m— TotPds —— TxPkts . Tim

—>—drops —— edrops —e— TotPids, TxPids (CP 10) Time ‘—O—Idrops,edrops (CP 10) ‘ e
fggg Packets Transmitted
16000 Graph 4 Packets Dropped NIIIE CIR PIR CBS RATE
£ W) | (b 1
£ « (M) | (M) | (ME) | (M)
-gooo § oo
8000 § oo

& Ti
o et - 30 |1 |3 25
AT Tme || . S n |2
0 E ‘.‘ —2 200 K y

0O 5 10 20 30 40 50 60 70 80 ° 1«!3:«3‘

————ToPus (CP21) ——m— TP (CP21) 0 T 52 1 ID 1

TP) Tos (CP 22 ‘ -] e ‘

Figure 8. Results of experiment 2 (topology 1)

4.2. Network Topology II

The second network topology is shown in Figure 9. It builds on network topology I but removes
source S2. The goal of this set of experiments is to evaluate the ability of CABB to fairly allocate
resources to flows and to control unresponsive EF flows. The experiments consist of two flows: (1) S0-
Dest: audio-EF PHB, (2) SI-Dest: video — EF PHB. The Core-E2 link is the bottleneck link with a

capacity of 7 Mb. The edge routers £/, E2 each have one priority queue in this case.

CAEB
S0 MM n
. Bardwidth = 10 B
fudo EF Delay= s
flowr
\ 10ME THB 0B
Ste St St 5ok forboth
El Cow El EF Fbws

51 MM 6&

Viden EF St
Flow

Figure 9: Topology 2, Multi EF flows

4.2.1. Experiment I
In this experiment, SO, S1 request 8mb and 2.6mb (PIR) and transmit at 8mb and 9mb respectively.
The results of this experiment are plotted in Figure 10. Using its policy engine, the CABB makes

decisions as follows:

20

Rate 5o = 8 Mbps, UBW g, = function (1,3,8). - rejected.

Rate 5; =9 Mbps; UBW g; = function (5, 1, 2.6) = 2.6 Mbps. - accepted.

SO is rejected as the request resource cannot be supported by the bottleneck link and the audio
application is not flexible. This is illustrated in Figure 10. S1 is allocated the requested resources (PIR).
However, Rates; >> UBWs; (3.33 mb). As a result, one flow is rejected despite retrial and a later request
was allocated full resources, thereby treating flows fairly while allocating among them. S1 exceeds its
profile and is policed and forced to adhere to its SLA. Although there were sufficient resources
(bandwidth) to meet S1’s requirements, this source exceeded its allocation. As a result, CABB did not
allocate extra resources to S1 but downgraded it to remain within profile. Without CABB, S1 would not
have been downgraded. The resources saved by downgrading S1 can be used to support a new flow,
which might otherwise have been denied resource. Note that our Active Resource Management (ARM)
scheme presented in [25] extends this idea to dynamic management. This scheme helps in increasing the

network’s throughput while actively managing the flow’s resource demands.

7000
90000 60000 Packets Transmitted

50000 (graph 2) 6000

Node |CIR PR RATE

80000
70000
60000
1 50000
2 40000
30000
20000
10000 R

o e o

0

5 10 20 30 40 50 60 70 80 0 5 10 20 30 40 50 60 70 80 Sl 1 26 9
Idrops (CP10) irops (CP10) ‘

Idrops (CP11) ==Mé==edrops (CP11)

Overall (graph 1) Packets dropped

5000 (graph 3)
40000

M) (ME) | M)

23] 8

4000

Pits

£ 30000
4 3000

Time 20000 2000

10000 1000

el TxPKis et diops edrops ‘ ‘+Tkaxs(ch; ——A——TyPKts (CP11) ‘

Figure 10. Results of experiment 1 (topology 2)

4.2.2. Experiment 2

In this experiment, SO, S1 request 1.5mb and 2mb (PIR) and transmit at 1.5mb and 1mb respectively.
The results of this experiment are plotted in Figure 11. Using its policy engine, the CABB makes
decisions as follows:

Rate o = 1.5 Mbps, UBW g, = function (1.5) =1.5Mbps - accepted

Rate 5; = 1 Mbps; UBW g; = function (5, 1, 2) = 1 Mbps - accepted.

AS can be seen from graphs in Figure 11, SO is allocated full resources. S1 however is allocated
reduced resources as video being more flexible than audio. We observed that CABB increased flow

allocations with some flows getting reduced resources arrived at from their flexibility number.

30000 30000

! Node | IR FR RATE

08 Packets Dropped
(graph 3)

Packets Transmitted
(graph 2)

Overall (graph 1)

25000 25000

20000

2 15000 2 o 2 (IUIh) (Iurb) ahllbj
1:::: 10000 a0 1 13 15
0 %n ! 0 S 1 1 2 1

g a
10 20 30 4 5 60 70 8
——B—TiPkis ——d—drops adrops ——TPks (CP10) i (CP10) i odrops (CP10)

21

Figure 11. Results of experiment 2 (topology 2)

4.3. Network Topology 111

The third network topology is shown in Figure 12. It consists of: (1) S0-Dest: audio-EF PHB, (2) SI-
Dest: video — EF PHB, (3) S2-Dest. FTP on TCP - AF PHB. The Core-E?2 link is the bottleneck link with
a capacity of 7 Mb. The edge routers £1, E2 each have one priority and two WFQ queues in this case. The
goal of this experiment is to evaluate the ability of CABB to manage UDP and TCP flows.

CARR

30 b .
; Bandwilth= 10 WB
Audin EF Delay= 513 \
flow
10WB 1M 10WE

Sink forhoth
EF,AF
Flows

Figure 12. Topology 3: allocation and inter-effects of tcp and udp flows.

4.3.1. Experiment 1

In this experiment we observe that all flows are allocated requested resources. Furthermore, the one
flow aggregate does not affect another. Specifically, we see the effect of TCP going out-of-profile on
UDP. S0, S1 and S2 request 2.6mb, Smb and 5mb respectively. SO and S1 both transmit at 1mb as noted
in the table in Figure 13. Using its policy engine, the CABB makes decisions as follows:

Rate g9 = 2.6 Mbps; UBW g, = function (2.6) = 2.6 Mbps. - accepted.

Rate 5; =4 Mbps; UBW g; = function (1) = 1 Mbps. - accepted.

Rate 5, = 1 Mbps; UBW g, = function (1) = 1 Mbps. — accepted.

The results from this experiment are plotted in Figure 13. SO, S1 and S2 are allocated full resources.
From graph 4,5 in Figure 13, we see that S1 is first downgraded and then dropped. Graph 6 and 7 show
that the FTP application flow is downgraded. However as graphs 2 and 3 show, the EF flow is not
affected by this flow. Out-of-profile S1, S2 are downgraded while in-profile SO is unaffected. This
experiment shows that CABB only admitted flows that do not load the network, giving reduced resources
to some if necessary. The TCP flow is not starved but is penalized, as it does not conform to its SLA.

Furthermore, it does not affect in-profile UDP (audio) flow.

22

30000

Overall (graph 1) Packets Transmitted

(graph 2)

25000 Packets Transmitted
(graph 4)

20000

Pkts
Pkts

10000

5000

0 5 10 20 3 40 5 6 70 8
—8—TxPks —A——Idrops edmps‘ —8——TxPks (CP10) ——B——drops(CP10) ——A&—— edrops(CP10)

0 5 10 20 3 4 5 0 7 8
TPk (CP21) el TP (CP22) ‘

ot |CIR |PR |CBS |RATE

30000 60

Packets Dropped
(graph 7)

Packets Transmitted
(graph 6)

25000

My | MY | EB) | M

3001 26 26

20000

g 15000
a

Pkts
Pkts

10000

31 pi 4

5000

0 20 30 40 5 6 70 80

0 s
rops(CP23) rops(CP23)
Idrops(CP24) === edirops(CP24)

0 5 10 20 30 40 50 60 70 80
‘ ———TPHs (CP23) ——A— ks (CP2Y) ‘

ps(CP21) ps(CP21)
Idrops(CP22) —W—edrops(CP22)

V| i

Figure 13.Results of experiment 1 (topology 3)

5. Summary of Results

In the CABB-based diffserv system, multimedia flows are analyzed, allocated resources and regulated
before being allowed to use the network. CABB effectively orders flows so that they conform to the
traffic profile as agreed in the original SLA or to the reduced profile defined based on the application’s
flexibility number. Furthermore, queue management and diffserv policing ensure that when a flow goes
out-of-profile its packets are downgraded and eventually dropped, thus regulating the flow. EF flows
serviced by priority queues are allowed to go through with minimal drop. Also, a downgraded DSCP
faces a harsher penalty as compared to an initially allocated DSCP. The out-of-profile AF flows do not
affect the throughput of EF flows and vice versa. Multimedia applications, due to their flow requirements,
are usually assigned to EF flows. However, flows that can tolerate losses may be assigned to AF flows as
a result of adaptation by the broker. Hence, these flows go through a congested network, with the CABB
doing coarse tuning of bandwidth requirements (avoiding overallocation) and the application level
adaptive QoS doing the fine-tuning of the applications response/sensitivity to network changes [3]. As a
result, the end user perceives a quantifiable QoS even with reduced resource allocation. CABB ensures
higher flow throughput by identifying and controlling rogue flows. Furthermore, CABB eliminates the
need for applications to have to deal directly with the diffserv router for resources [27].

A traditional broker does not account for an application’s adaptability, leading to overallocation of
resources [25]. Consequently, when compared to a normal broker, the CABB efficiently utilizes the

network by allowing only those flows that do not congest it.

23

6. Conclusions

In this paper we presented a content aware bandwidth broker (CABB) that provides adaptive
brokering for networked multimedia applications. CABB builds on the observation that multimedia
applications are flexible or tolerant with respect to network parameters such as packet loss, delay and
jitter [8]. It exploits this flexibility of multimedia flows to network level parameters to adapt the flows
based on the state of network resources and maintain a quantifiable level of QoS despite unfavorable
network conditions. Furthermore, in case of network congestion, CABB can adapt to the network state
and reduce QoS rather than completely disrupting application flows. CABB also prevents non-
conforming flows from affecting the performance of conforming flows by constantly monitoring and
gradually degrading the level of service of non-conforming flows. Thus it provides incentive to support
end-to-end congestion control for best effort traffic.

Experimental results presented show that multimedia flows are better managed and controlled,
thereby improving perceived QoS and avoiding possible congestion. Furthermore, flow throughputs
increase as CABB enables a larger number of flows to request for resources without over allocation.
Results also show that CABB’s policy decisions, based on content awareness, prevent congestion in the
downstream network. These policy decisions are simple, unbiased, and effective. Furthermore, they admit
the appropriate number of concurrent flows so that the network is not unduly loaded and hence controls
traffic at the edge router, keeping the core simple. This design is easily scalable as no state is maintained
in the routers. Multimedia applications or those that use UDP for data transmission are now coarsely
controlled by the broker’s policy decision. This work can be extended further. The next step is to integrate
our work with Active Resource Management (ARM) scheme [25] and to enhance the CABB with a better

understanding of the usage of multimedia flows and/or users to further optimize these flow allocations.
Acknowledgments

The research presented in this paper was supported in part by the National Science Foundation via

grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA-0120934 (ITR)

References

1 T.Bonald, A. Proutiere, J. W. Roberts, Statistical Performance Guarantees for Streaming Flows using
Expedited Forwarding, Proc. of INFOCOM 2001, pp. 26-28, Tallinn, Estonia, April, 2001.

2 X. Xiao, L. M. Ni, Internet QoS: The Big Picture, IEEE Network Magazine, March/April, Vol 13, No
2, pp- 8-18, 1999.

10

11

12

13

14

15

16

17

24

N. Shaha, A. Desai, M. Parashar, Multimedia Content Adaptation for QoS Management over
Heterogeneous Networks, proc of International Conference on Internet Computing 2001,Nevada,
USA, pp 642-648, Computer Science Research Education and Applications (CSREA) Press, June
2001.

L. Zhang, S. Berson, S. Herzog, S. Jamin, Resource ReSerVation Protocol (RSVP), RFC-2205, The
Internet Engineering Task Force (IETF), Sep 1997.

K. Nichols, V. Jacobson, L. Zhang, A Two-bit Differentiated Services Architecture for the Internet,
RFC 2638, July 1999, see http://www.cs.wisc.edu/~cs640-1/papers/jacobson.qos.ps

E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching Architecture (MPLS), RFC-
3031, The Internet Engineering Task Force (IETF), Jan 2001.

QBone, Simple Inter-domain Bandwidth Broker Signaling, Internet 2, see
http://gbone.internet2.edu/bb/

L. Peterson, B. S. Davie, Computer Networks - A Systems Approach, pp. 446-514, 2nd edition,
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2000.

The Network Simulator - NS-2, see http://ww.isi.edu/nsnam/ns/

P. Chandra, A. L. Fisher, C. Kosak and P. Steenkiste, Network Support for Application-oriented QoS,
Proc. of Sixth International Workshop on Quality of Service (IWQoS’ 98), pp. 187-195, 1998.

D. Xu, K. Nahrstedt, A. Viswanathan, D. Wichadakul, QoS and Contention-Aware Multi-Resource
Reservation, In Proceedings of the 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC-9), pp. 318-327, Pittsburgh, PA, August 2000.

I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, A distributed resource
management architecture that supports advance reservations and co-allocation, International
Workshop on QoS (IwQo0S’99), 1999.

J. Bollinger, T. Gross, A Framework-Based Approach to the Development of Network-Aware
Applications, IEEE Transactions Software Engineering (Special Issue on Mobility and Network-
Aware Computing), Vol. 24, No. 5, pp. 376-390, May 1998

F. Chang, V. Karamcheti, Automatic Configuration and Run-time Adaptation of Distributed
Applications, ninth [EEE Intl. Symposium on High Performance Distributed Computing (HPDC), pp.
11-20, August 2000.

K. Nabhrstedt, J. M. Smith, The QoS Broker, IEEE Multimedia, Vol 2, No 1, pp. 53-67, 1995.

Q. Zhang, W. Zhu, Y. Zhang, Resource Allocation for Multimedia Streaming over the Internet,
Multimedia, Vol 3, No. 3, pp. 339, September 2001.

M. Choon Chan, Rolf Stadler and G. Pacifici, Managing Multimedia Network Services, Journal of
Network and Systems Management (JNSM), Vol. 5, No. 3, 1997.

http://www.cs.wisc.edu/~cs640-1/papers/jacobson.qos.ps
http://qbone.internet2.edu/bb/
http://ww.isi.edu/nsnam/ns/

18

19

20

21

22

23

24

25

26

27

25

J. A. Gutierrez, D. P. Sheridan, and R. Radhakrishna Pillai, A Framework and Lightweight Protocol
for Multimedia Network Management, Journal of Network and Systems Management (JNSM), Vol.
8, No. 1, 2000.

IETF Differentiated Services Working Group, see http://www.ietf.org/ids.by.wg/diffserv.html

S. Hares, A Discussion of Bandwidth Broker Requirements for Internet2 Qbone Deployment (version
7). 1999.

CA*net II Differentiated Services Bandwidth Broker System Specification, British Columbia Institute
of Technology (BCIT), Technology Centre Group for Advanced Information Technology, 1998.

B. Li, D. Xu, K. Nahrstedt, J. W. S. Liu, End-to-End QoS support for Adaptive Applications Over the
Internet, SPIE International Symposium on Voice, Video and Data Communications, pp 147 — 161,
November 1998.

C. Aurrecoechea, A. Campbell, and L. Hauw, A Survey of QoS Architectures, ACM/Springer Verlag
Multimedia Systems Journal, Special Issue on QoS Architecture, Vol. 6, No. 3, pp. 138-151, May
1998.

A. Campbell, and G. Coulson, A QoS Adaptive Transport System: Design, Implementation and
Experience, Fourth ACM International Conference on Multimedia (ACM Multimedia 96), pp. 117-
127, Boston, November 18-22, 1996.

M. Mahajan, A. Ramanathan, M. Parashar, Active Resource Management for The Differentiated
Services Environment, International Journal of Network Management, John Wiley and Sons,
February 2003 (to appear).

D. D. Clark, S. Shenker, and L. Zhang, Supporting Real-Time Applications in an Integrated Services
Packet Network: Architecture and Mechanisms, Proc. of ACM Sigcomm 92, pp. 14-26, ACM Press,
New York, Aug. 1992.

J. Shin, J. Kim, and C.C J. Kuo, Content-Based Packet Video Forwarding Mechanism in
Differentiated Services Networks, Proceedings of the Packet Video Workshop 2000, Sardinia, Italy,
May 2000.

Biographies

Manish Mahajan is Ph.D. student in the Department of Electrical and Computer Engineering at Rutgers

University. He received his BS from VJTI, Bombay University. His research interests include computer

networks, and parallel & distributed computing.

Manish Parashar is an Associate Professor in the Department of Electrical and Computer Engineering at

Rutgers University. His research interests include autonomic computing, parallel & distributed

computing, scientific computing, and software engineering.

http://www.ietf.org/ids.by.wg/diffserv.html

	Abstract
	Introduction
	Background and Related Work
	Network Protocols with QoS Support
	Reservation-Based Schemes
	Adaptation-Based Schemes
	Miscellaneous Optimization Schemes

	Content Aware Bandwidth Broker: Architecture, Policies and Operations
	Diffserv and the Bandwidth Broker Architecture
	CABB Architecture
	CABB Operations and Policies
	An Illustrative Example
	CABB Implementation

	Experimental Evaluation
	Network Topology I
	Experiment 1
	Experiment 2

	Network Topology II
	Experiment I
	Experiment 2

	Network Topology III
	Experiment 1

	Summary of Results
	Conclusions
	Acknowledgments
	The research presented in this paper was supported in part by the National Science Foundation via grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA-0120934 (ITR)
	References
	Biographies

