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Abstract 

The overall quality of network connections has a significant impact on the performance of networked 

applications. As a result, Quality of Service (QoS) management for networked multimedia applications 

over IP is a significant and immediate challenge. While differentiated services (diffserv) provide a sense 

of resource allocation and QoS, they do not guarantee QoS. This paper presents the design, 

implementation and evaluation of a content-aware bandwidth broker (CABB) that manages QoS for 

multimedia applications in a diffserv environment. CABB allocates network resources to multimedia 

flows based on client requirements, the adaptability of the application, and its tolerance to network level 

parameters such as bandwidth, delay, and latency. It has been implemented and evaluated using the NS-2 

simulator toolkit. Evaluations show that CABB improves network resource allocations and increases 

overall throughput. Furthermore multimedia application flows are better managed and controlled, 

improving perceived QoS and avoiding possible congestion at core routers. 

Keywords: QoS, Content Aware Bandwidth Broker (CABB), Diffserv, Policies, SLA 
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1. Introduction 

This paper presents the design, implementation and evaluation of a content-aware bandwidth broker 

(CABB) that manages Quality of Service (QoS) for multimedia applications in a differentiated services 

(diffserv) environment. CABB controls multimedia application flows between diffserv domains using 

service policies that are defined based on the requirement, nature and adaptability of the flow, and its 

sensitivity to network level parameters such as bandwidth, delay, and jitter. 

The overall quality of network connections (e.g. link capacity, available end-to-end bandwidth, and 

congestion) has a significant impact on the performance of networked applications. These applications 

generate traffic at varying rates and have a varying ability to tolerate delays and jitter in the network. 

Networked multimedia applications, which form a large part of today’s Internet traffic, present a 

significant challenge, as they require quality guarantees from the network [1]. Internet Protocol (IP), 

however, is best effort and does not provide any QoS guarantees [2] – that is, there are no mechanisms in 

IP for policing or controlling unresponsive and high bandwidth flows that can cause congestion in the 

network. As a result, all QoS management is left to the application [3]. Multimedia applications typically 

have very limited feedback control to prevent them from causing congestion in the network. 

Consequently, QoS management for networked multimedia applications over IP is a significant and 

immediate challenge. 

Different mechanisms such as Integrated Services (e.g. Resource Reservation Protocol (RSVP) [4]), 

Differentiated Services [5], and Multi-Protocol Label Switching (MPLS) [6] have been proposed for 

providing some level of QoS over the best-effort IP network [2]. These mechanisms improve QoS at the 

edges of the network by identifying and controlling traffic flows or aggregates using classification, 

conditioning and scheduling techniques. The Differentiated Services provide an approach to IP Quality of 

Service management that is modular, incrementally deployable, and scalable while introducing minimal 

complexity [5]. A diffserv domain provides different levels of service (e.g. premium, assured) to meet the 

client’s request for guarantees. Network resources are partitioned between these levels of service, and 

packets belonging to client flows are marked with specific diffserv code points (DSCP) that map these 

packets to a particular level of service. This mapping is based on the service level agreement (SLA) 

between the client and the network service provider. The bandwidth broker manages resources in a 

diffserv domain. It tracks available network resources and classifies flows using service polices defined 

based on client requirements and service classes offered by the diffserv domain [7]. In the diffserv 

architecture, flows are allocated resources without any knowledge of the nature of the application or the 

information being transmitted. As a result, the broker statically overallocates resources in order to meet 

the guarantees made to the client. This overallocation wastes resources and causes future requests to be 
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rejected. Furthermore, the broker does not consider the nature of the flow and may allocate resources to 

rogue flows. These flows can exceed their allocations and “hog” resources, causing congestion and 

severely affecting the QoS of conforming flows. Thus, while diffserv does provide a sense of resource 

allocation and QoS, it does not guarantee QoS or eliminate the possibility of congestion.  

In this paper we present a content aware bandwidth broker (CABB) that provides adaptive brokering 

for networked multimedia applications. CABB builds on the observation that multimedia applications are 

flexible or tolerant with respect to network parameters such as packet loss, delay and jitter [8]1. It exploits 

this flexibility of multimedia flows to network level parameters to adapt the flows based on the state of 

network resources and maintain a quantifiable level of QoS despite unfavorable network conditions. For 

example, when the application’s demand for resources exceeds availability, rather than refusing 

allocation, CABB may admit the application at a reduced QoS level until the required resources become 

available. This can be a significant advantage for time critical applications. Furthermore, in case of 

network congestion, CABB can adapt to the network state and reduce QoS rather than completely 

disrupting application flows. CABB also prevents non-conforming (or rogue) flows from affecting the 

performance of conforming flows by constantly monitoring and gradually degrading the level of service 

of the rogue flows. Thus it provides an incentive to support end-to-end congestion control for best effort 

traffic.  

CABB has been implemented and evaluated using the NS-2 simulator toolkit [9]. Results presented in 

this paper show that by exploiting the flexible nature of multimedia flows, CABB improves network 

resource allocations leading to better network utilization. The results also show that multimedia flows are 

better managed and controlled, thereby improving perceived QoS and avoiding possible congestion. 

Furthermore, flow throughputs increase as CABB enables a larger number of flows to request for 

resources without over allocation. 

The rest of this paper is organized as follows: Section 2 discusses background and related work. 

Section 3 introduces CABB and describes its architecture, and operations. Section 4 presents an 

experimental evaluation of CABB. Section 5 summarizes the results. Section 6 presents the conclusion. 

2. Background and Related Work 

Different approaches have been proposed to provide service guarantees to multimedia applications. 

These approaches can be broadly divided into network level protocols, reservation-based schemes, and 

adaptation-based schemes for QoS support. Network level protocols provide QoS support by interpreting 

the application’s requirements in terms of network parameters, and enhancing network switches to service 

application flows or flow aggregates. Reservation-based schemes reserve network/system resources based 
                                                 
1 Intolerant applications will be handled using the standard diffserv mechanism that provides guarantees. 
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on the application’s requirements. These schemes are typically accompanied by admission control 

mechanisms that match application requests with existing resource availability. Adaptation-based 

schemes utilize the adaptive behavior of applications that do not require hard service guarantees, and 

perform application aware active resource management with runtime adaptations to provide better than 

best effort service. Finally, various optimization schemes have been proposed for monitoring applications, 

integrating application processing with data transport, and embedding QoS state information in 

application data to improve performance of applications requiring service guarantees. A brief description 

of these approaches is presented below. 

2.1. Network Protocols with QoS Support 

The Internet Engineering Task Force (IETF) has addressed the issues in building a QoS support 

infrastructure to be deployed over IP on the Internet. Several working groups have proposed promising 

alternatives. However, considering the scale and the increasing heterogeneity of the Internet, a single 

solution is still elusive. The most prominent proposals are Integrated Services, Differentiated Services 

(diffserv) and Multi Protocol Label Switching (MPLS).  

The Integrated Services architecture provides QoS to individual applications or flows based on 

explicit resource requests [4]. It specifies a number of service classes designed to meet the needs of 

various networked applications. In principle it is a significant deviation from the highly successful and 

scalable best effort IP. Differentiated Services (diffserv) is a set of technologies that are used to provide 

QoS in a world of best effort service provisions [5]. In diffserv, all the complexities are pushed out to the 

edge routers, keeping core routers simple. As it exhibits greater flexibility and is able to allocate resources 

efficiently while still providing service guarantees, diffserv is well suited for providing network-level 

adaptive QoS support to distributed applications operating in heterogeneous networks. Multi Protocol 

Label Switching (MPLS) [6] is a traffic engineering protocol. It provides resource management for flow 

aggregates using network routing control based on fixed length ‘labels’ in packet headers. As MPLS is a 

protocol-independent mechanism resident in network level switches with no application control, 

technologies such as diffserv can readily leverage the management support provided by MPLS. 

2.2. Reservation-Based Schemes 

Intuitively, the most straightforward method for assuring service guarantees is to reserve 

resources according to an application’s request. However, reservation based schemes involve admission 

control algorithms, reservation protocols, monitoring protocols, and signaling mechanisms. These 

schemes are generally complex and require extensive network support. This affects their scalability and 

robustness. Nevertheless a number of innovative approaches have been proposed that address key 

technical challenges in achieving QoS on the Internet. Some of these are discussed below: 
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In [10], Chandra et al. have an intelligent network architecture based on service brokers that 

attempts to provide application-oriented reservations. Service brokers perform resource discovery and 

optimization of resource usage using application domain knowledge. An application-oriented signaling 

protocol handles the flow for an application. A hierarchical brokerage and resource management structure 

is suggested to handle resource allocation and sharing. 

The multi-resource reservation algorithm proposed in [11] utilizes the resource broker model for 

an integrated approach to reserving and scheduling resources with low contention. It adopts a component-

based approach with Resource Brokers, QoS Proxies and service components as the main entities. A 

resource reservation plan reserves a minimum amount of bottleneck resources while deciding appropriate 

levels of input and output quality for each service component. Simulations show that the proposed 

algorithm works better, in terms of reservation success rate, than a random reservation path selection. 

[12] presents the GARA resource management architecture, which addresses the challenges in  

achieving end-to-end QoS guarantees across heterogeneous collections of shared resources. GARA builds 

on existing techniques and concepts to support end-to-end discovery, reservation, allocation and 

management of heterogeneous ensembles of computers, networks, storage-systems, and other resources 

under independent local control. GARA exposes both reservations and objects as first-class, abstract 

objects, defines uniform representations and operations for diverse resource types, and uses an 

information service to reveal site-specific policies. These constructs enable the construction of reusable 

co-reservation and co-allocation agents, which can combine domain- and resource-specific knowledge to 

discover, reserve, and allocate resources that meet application QoS requirements. 

2.3. Adaptation-Based Schemes 

An alternative approach to reservation-based schemes is to adapt an application so that it 

performs satisfactorily given existing resource constraints. These schemes are feasible only for 

applications that are capable of adaptations, such as multimedia applications. Although adaptation-based 

schemes can be complex, the complexity is typically at the middleware or application level and at the 

end-hosts. As a result, the scalability of the approach is not adversely affected.  

Applications that can deal with changes in the network environment are called network-aware. A 

network-aware application attempts to adjust its resource demands in response to network performance 

variations. In [13], J. Bollinger and T. Gross present a framework-based approach for the construction of 

network-aware programs. The framework investigates techniques to measure dynamic changes in network 

service quality and further, to map application-centric quality measures (e.g., predictability) to network-

centric quality measures (e.g., QoS models that focus on bandwidth or latency). A layered architecture 

with an adaptation layer that implements feedback based on network resource availability is proposed.  
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In [14], Chang et al. present an application-independent adaptation framework with a tenability 

interface and a virtual execution environment. Together, the two mechanisms enable the development of a 

run-time adaptation system. This system continuously monitors resource conditions and application 

progress (in terms of user preferences of QoS metrics), and automatically determines both, when 

adaptation should be performed and how the application must be modified (i.e., which of its 

configurations must be chosen) based on application profiles. 

2.4. Miscellaneous Optimization Schemes 

Several QoS and optimization schemes have been proposed to enhance the Internet infrastructure 

for better QoS support. Such schemes involve monitoring tools for obtaining network and system 

resource state in real time, integrating media encoding and transport for better adaptability support, and 

using QoS state information in routing decisions. Some of these approaches are summarized below. 

A QoS broker that orchestrates resources at the end-points and coordinates resource management 

across layer boundaries is proposed in [15]. As an intermediary, it hides implementation details from 

applications and per-layer resource managers. The broker uses services such as translation, admission, 

and negotiation to properly configure the system to application needs. 

In [16], Zhang et al. present an end-to-end transport architecture for multimedia streaming over 

the Internet. They propose a new multimedia streaming TCP-friendly protocol (MSTFP) that combines 

forward estimation of network conditions with information feedback control to optimally track the 

network conditions. This scheme improves end-to-end QoS by allocating resources according to network 

status and media characteristics. 

An approach to managing real-time traffic in multimedia networks is presented in [17]. The 

respective roles of the real-time control system, the management system, and the network operator, are 

clarified and their interactions aimed at managing real-time services are described. It introduces an 

architecture based on the concept of managing network services by tuning the resource control tasks in 

the network control system. The L-E model to deal with the complexity of the network control system, a 

generic system-level abstraction of a resource control task, is presented.  

[18] reviews the main requirements and challenges for effective management of multimedia 

networks. It presents a case study of a thin-client based multimedia system called CSL (Computer-

supported Learning System). In the framework proposed, most of the link management information will 

be kept in a Management Information Base (MIB) in the network and a very simple MIB will be 

maintained in the thin client. The MIB in the network is accessible to the network management 

application, and a lightweight protocol is proposed for the updating of the network MIB using an agent at 

the thin client. 
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Table 1, gives an overview of existing approaches to adaptive QoS at various levels i.e. network, 

application, middleware etc. Note that it is not exhaustive nor do we propose to present a taxonomy of 

QoS management approaches. 

Table I: QoS Management for Multimedia Applications 

Network Protocols with QoS 
support 

These approaches provide QoS support by interpreting the 
application’s requirement in terms of network parameters and 
enhancing the network switches to service application flows or flow 
aggregates according to the assigned service levels. 
Examples include Integrated Services [5], Differentiated Services 
[4], Multi Protocol Label Switching [6]. 

Reservation Based Schemes These approaches reserve network/system resources based on the 
application’s requirements, and are typically accompanied by 
admission control schemes that check if the application’s request 
can be serviced with the existing resource availability [10][11][12]. 

Adaptation Based Schemes These approaches utilize the adaptive behavior of applications that 
do not require hard service guarantees, and provide a better than best 
effort service by performing application aware active resource 
management and runtime adaptations [13][14]. 

Miscellaneous Optimization 
Schemes 

Miscellaneous optimization schemes for monitoring, integrating 
application processing with data transport and embedding QoS state 
information in application data to achieve a better performance for 
applications requiring service guarantees [15] [16] [17] [18]. 

 

3. Content Aware Bandwidth Broker: Architecture, Policies and Operations 

This section presents the architecture, operations, policies and implementation of the content aware 

bandwidth broker (CABB). The following section summarizes the diffserv approach and the traditional 

bandwidth broker architecture. 

3.1. Diffserv and the Bandwidth Broker Architecture 

Diffserv classifies the network traffic and allocates the network resources to flows based on a 

management policy. Service classes are created with different QoS guarantees and flows are assigned 

these classes. Service Level Agreements (SLA) are set up between adjacent diffserv domains. The SLA 

establishes policy criteria and defines the traffic profile to be maintained by independently managed 

domains. As shown in Figure 1, packet classification is done based on one or more bits in the packet at 

the ingress router. The packet is then marked, using diffserv code points (DSCP), as belonging to one of 

the many service classes and injected into the network. All packets with the same code point are grouped 

together and are known as a behavior (flow) aggregate. DSCP determines an aggregate’s per hop behavior 

(PHB), i.e. the treatment given to the aggregate at routers on the way to its destination. Core routers 

examine the DSCP to decide how to forward the packet. Most of the work in this scheme is done at the 
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edge routers. The edge routers are responsible for classifying and conditioning packets using a multifield 

classifier, flow markers, traffic meters, traffic shaper and policers [5]. 

Figure 1: Diffserv edge router functionality: traffic classification and conditioning 

There are two defined PHBs: expedited forwarding (EF), and assured forwarding (AF) [19]. EF 

PHB supports low loss, low delay, and low jitter. EF PHB is assigned to flows that cannot tolerate QoS 

degradation. AF PHB defines four relative classes of service and each service supports three levels of 

drop precedence (i.e. a total of twelve code points). The conditioner at an edge router shapes and 

smoothes bursts of EF traffic before injecting it into network. EF traffic not conforming to its SLA is 

termed “out-of-profile”, and is dropped. AF traffic conforming to the SLA is termed “within profile”, and 

is delivered with a higher probability than out-of-profile AF traffic. Out-of-profile traffic may be demoted 

or downgraded to a reduced bandwidth allocation instead of being dropped. Thus diffserv provides simple 

and coarse mechanism for QoS support. 

As shown in Figure 2, a Bandwidth Broker (BB) is an agent that controls the resources within a 

diffserv domain, using service policies defined by client requirements. SLAs are used to define the 

relation between policies and PHBs. A service provisioning policy (SPP) indicates the configuration of 

traffic conditioners in the edge routers of the diffserv domain and the mapping of traffic streams to 

diffserv behavior aggregates. The BB requires both, the SLAs and the SPPs to achieve the range of user 

services. The broker uses the SLA to determine if it can provide the allocation and configures the 

particular edge router to classify and mark the packets accordingly [5,7]. 

The bandwidth broker has been designed to add intelligence to the diffserv and better utilize the 

existing resources. But it wastes resources by statically overallocating them to meet client guarantees. 

Furthermore, it may allocate resources for rogue flows severely affecting the QoS of guaranteed or 

conforming flows. For example, a flow that is continuously bursty after promising constant rate may be 
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considered a rogue flow. Thus, bandwidth broker along with diffserv does not guarantee QoS or eliminate 

the possibility of congestion. 

Figure 2: Bandwidth broker in a diffserv domain 

3.2. CABB Architecture 

The CABB presented in this paper uses the bandwidth broker architecture defined by the Qbone 

team [7] [20] [21]. The key components of this architecture include User Interface, Inter-domain 

Interactions, Intra-domain Interactions, Routing Table, Database and Policy Services.  

CABB extends on this architecture by adding content aware policies. These policy engines define 

specific policies for the various service classes offered by the diffserv domain. These policies consider the 

nature of the request and the flexibility of application with respect to network level parameters (e.g. delay, 

jitter, and loss) while resolving resource requirements to adaptively manage application QoS. CABB uses 

these policy engines to configure functionality of edge routers in the diffserv domain [7][20]. 

3.3. CABB Operations and Policies 

A CABB may receive a resource allocation request from one of two sources: a request from an 

element in the domain that the broker controls, or a request from a peer CABB. It either confirms or 

denies the request and responds accordingly. Additionally, it may generate request messages for 

downstream resources. CABB consists of four components, viz. a resource allocator, a database to store 

the parameters required to make the reservation decisions, a broker manager for inter-broker 

communication, and a policy engine to create a particular policy for the available service classes. We 

have three different service classes in our implementation: EF, AF and Best-Effort. 
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As described above, networked multimedia applications are flexible, i.e. they can tolerate 

resource scarcity (within certain limitations) by reducing performance, and can utilize additional 

resources to improve performance. Furthermore, they can sacrifice the quality/performance of some 

parameters in order to preserve (or improve) the quality/performance of more critical parameters [22].  

CABB maps this flexibility into various network level parameters to maintain an acceptable QoS range 

for an application. This is done such that the end user perceives a quantifiable QoS even if all requested 

resources are not allocated.  

When an application requests CABB for network resources, it invokes an API provided by CABB 

and passes application specific QoS requirements and constraints. These parameters can include quality 

descriptions for the specific media characteristics (e.g. height, width, and color specification in a video 

stream), media sample rate, priority/criticality, and transmission characteristics requirements for end-to-

end delivery (e.g. end-to-end delay bounds). On receiving such an application flow request along with 

QoS parameters, CABB translates the parameters into network resource requirements such as rate usage 

profiles (i.e. committed and peak information rate), burst, delay, flexibility to delay, jitter and loss, for the 

time during which the created profile is to be active. The translation builds on heuristics presented in 

[23][24][22][3] that are based on application flexibility, and provide mechanisms to translate the 

multimedia application level parameters such as frame rate, frame size, etc to network resource requests 

and constraints, such as rate usage profiles, burst, and delay. Application data transport requirements are 

identified based on frame size and frame rate. For example, video resolution (pixels per frame) and 

encoding (bits per pixel) define the frame size. Frame rate for video can be typically altered from 30 

frames per second for very good quality to as low as 15 frames per second for an acceptable quality. The 

bit rate encoding for the audio signal determines its fidelity and frame size. Audio signal are highly 

sensitive to delay and jitter and hence have a smaller range of permissible frame rates. Collectively, frame 

size and frame rate modifications translate into a range of bandwidth requirements for each media type for 

acceptable performance [3]. Once the translation to network requirements is complete, CABB tracks 

current allocation of marked traffic [25], and interprets the new request in light of defined policies and 

available resources. It looks up its policy table for the existing policy that governs the requesting host and 

contains the relevant service level agreements (SLA), service/DSCP mappings, management information, 

current reservations/allocations, and edge router configurations. 

These parameters along with the application’s flexibility [22, 26] are passed to the policy engine 

defined by the SLA. The policy engine further translates the parameters into specific network actions such 

as bandwidth management (allocated transmission rate), queuing (per hop behavior), buffer space 

management for queuing, network monitoring, and accounting. In our implementation, rate usage profiles 

are pre-specified for simulated applications. The policies determine the users’ bandwidth requirements 
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and allocate resources accordingly. Note that an application’s flexibility is used to determine its minimum 

resource requirements [22]. As will be shown in the experimental evaluation presented in Section 4, 

resource allocation is done in a succinct and organized fashion and treats all flows fairly. Furthermore, the 

allocation is based on the client’s needs as defined by its QoS parameters, rather than its peak request that 

is typically larger. This conserves resources and allows a larger number of requests to be served even 

though all the requested resources are not available. 

The EF policy is outlined as follows. The diffserv router uses two parameters to police EF flows: 

committed information rate (CIR) and peak information rate (PIR). The application generates data at an 

average rate of CIR and can go to peak rates of PIR. Although it reserves PIR as its peak bandwidth it 

may not generate data at PIR all the time during its duration. If the flow exceeds PIR at any time, it goes 

out-of-profile and will be downgraded to a lower DSCP with reduced bandwidth and eventually dropped. 

The CABB invokes its EF service policy manager to decide the result of a given request. It does a query 

on the edge router(s) from source to destination in its domain and waits for a reply. After receiving the 

reply, CABB decides whether the edge router(s) has sufficient resources to handle the flow or not. If 

available resources are not sufficient, i.e. the available bandwidth is less than CIR or between CIR and 

PIR, CABB uses the flows’ flexibility, represented as a flexibility number, to determine its minimum 

resource requirements. It then retries to set up the flow with reduced resource requirement. The CABB 

API return call then informs the application of the status of current reservation/marking. It provides a set 

of alternate reduced parameters if resource request fails. 

The diffserv router uses two parameters to police AF flows: committed information rate (CIR) 

and committed bucket size (CBS), which is a token bucket filter. The flow reserves CIR as its peak 

bandwidth. If it exceeds CIR at any time, it will be downgraded to a lower DSCP with reduced bandwidth 

and eventually dropped. The CABB invokes its AF service policy manager to decide the result of a given 

request. It does a query on the edge router(s) from source to destination in its domain and waits for a 

reply. After receiving the reply, CABB decides whether the edge router(s) has sufficient resources to 

handle the flow or not. If the resources are not sufficient i.e. the available bandwidth is less than CIR, 

CABB uses the flows’ flexibility number to determine its minimum resource requirements. It then retries 

to set up the flow with reduced resource requirement. The CABB API return call then informs the 

application of the status of current reservation/marking. It provides a set of alternate reduced parameters if 

resource request fails, e.g. required resources are not available, and the application decides to retry with 

reduced parameters. On allocating the flow, CABB updates the parameters at edge router(s) along the 

path from source to destination. 

The CABB policy engines essentially leverage the flexibility of multimedia applications and use 

it to effectively map them to available service levels to achieve better admission control [22]. A flow is 
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rejected only if available resources remain insufficient even after reducing the level of service. 

Furthermore, with the help of the broker manager, CABB can generate additional request messages to 

reserve resources downstream [7,15]. Each downstream CABB takes into account the inter-domain traffic 

SLA before allocating resources. There is a limit on the number of flow reservations allowed per service 

class, which ensures good bandwidth utilization [5]. For a successful admission, the CABB makes 

appropriate reservations (usable bandwidth, buffers) using the resource allocator and assigns a DSCP to 

the application flow. Diffserv-enabled routers use the DSCP marking to provide the requisite PHB. The 

DSCP mappings may be unique to each router but the PHB is the same for all diffserv-enabled routers. 

CABB then schedules the flow to the appropriate queue manager (Priority or Weighted Fair Queue) and 

updates the policy table. Diffserv’s internal policing mechanisms then force the flows to adhere to the 

agreed policy. CABB prevents non-conforming (or rogue) flows from affecting the performance of 

conforming flows by constantly monitoring network condition and gradually degrading the service of 

rogue flows. Thus it provides the incentive in support of end-to-end congestion control for best effort 

traffic. A highly congested network may stop best effort but will allow high priority traffic (EF service 

class) to go through. Hence even though it is congested the users of high priority service class don’t see 

the congestion. The CABB may also maintain a log of a flow’s history to help it to identify and curb 

rogue flows. 

Networked multimedia application flows are usually bursty and it is difficult to define the 

characteristics of such a flow [2]. CABB uses the minimum information given by such a flow (such as 

committed and peak information rate), the ranked importance of an application, the importance of the 

user, the current available resources, the result of inter-broker communication and the tolerant 

adaptability of the application to network level parameters to allocate the flow. It achieves better 

admission control by implementing content aware policy engines. 

3.4. An Illustrative Example 

The operation of CABB is illustrated using the sample diffserv configuration shown in Figure 3. 

This network includes two diffserv domains, two sources in domain 1 and a destination in domain 2. The 

two diffserv domains are required to show the inter-domain interaction between the broker agents to 

provide end-to-end resource allocation for a source-destination pair. We assume static routes in this 

example. 

Source 1 in diffserv domain 1 (DS1) requests a flow setup to destination 2 in diffserv domain 2 

(DS2). It provides its requirements such as average and peak transmission rates, delay and jitter, along 

with the flow type (e.g. multimedia audio) to CABB1 in DS1. CABB1 uses its policy engines to 

determine the required bandwidth and PHB based on the agreed upon SLA, the current available 

resources, and the flexibility of the application. The flexibility for various multimedia applications is 
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encoded into the policy engine as a flexibility number based on their tolerance to the above mentioned 

network level parameters [22]. CABB1 forwards the flow’s parameters, either as is or reduced, to the 

downstream broker CABB2 in DS2. On receiving a positive acknowledgement from CABB2, it assigns a 

DSCP to the traffic flow between this source-destination pair in its policy table. If the available resources 

are insufficient or CABB2 returns a negative acknowledgement, CABB1 re-attempts the flow setup by 

assigning it a lower but still acceptable quality and correspondingly lower DSCP. It also informs the 

application of this adaptation. 

Figure 3: Sample Differentiated Services Configuration 

Source 2 in DS1 requests a multimedia video flow also to destination 2 and provides its 

parameters such as peak transmission rates, delay, jitter, packet loss and required resources. As before, 

CABB1 invokes its policy engines to determine the resources to be allocated. Note that the flexibility 

number will be different in this case as multimedia video is more flexible to packet loss than audio. It 

once again sets up the flow after receiving a positive acknowledgement from CABB2. In this example, 

Source 1 is given EF PHB and Source 2 is given AF PHB. The timing diagram in Figure 4 shows the 

steps involved in setting up a connection when a flow requests transmission. It describes the sequence of 

interactions after the Host (Source 1) initiates transmission request to Dest (Destination 2). 

The CABB, prevents congestion by effectively ordering the flows in such a manner that they 

conform to the traffic profile as agreed in the SLA. An appropriate number of flows are allowed at a time 

so that the network is not unduly loaded. We can now control multimedia traffic at the edge router; i.e. 

keep the core simple and move all complexity to the edge router. The CABB ensures that all applications 

get a fair share of bandwidth according to their SLA and that the bandwidth for various service classes is 
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efficiently utilized. When the network is congested, the CABB may allow a multimedia application to go 

through, but with reduced service. As CABB is content aware and knows the flexibility of the 

applications, it takes it into account while allocating flow rate. Note that it is finally up to the application 

to accept the reduced service or not. The application may opt to retry later to get a richer set of services. 

In case of premium service with EF flows, the broker guarantees that this flow will not face any queuing 

delay along the way and will be delivered within the constraints of its QoS parameters, giving it the 

impression of a virtual leased line. Such flows will rarely experience any packet drops (early or late) at 

the routers.  

Figure 4: CABB timing sequence diagram. 

From the results in Section 4, we see that queue management and diffserv policing work in such 

a manner that in the case of a non-conforming flow, only that particular queue to which the flow belongs 

will be penalized. The other flow aggregates are not affected. If for any reason the broker is not able to 
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allow a flow, it will log a report indicating the flow’s requirements, source, destination and time the flow 

was requested.  

3.5. CABB Implementation 

We have implemented the bandwidth broker on the Network Simulator-2 (NS-2) toolkit. The 

NS-2 toolkit has substantial functionality for simulating different network topologies and traffic models. 

NS-2 also has an open architecture that allows users to add new functionalities. We implemented a 

scheduler that allowed us to implement and service various types of queues for EF, AF and Best-Effort 

service classes. This scheduler enables setting up and serving various FIFO queues such as non-

preemptive priority queues, weighted round-robin queues and best effort queues for the various edge 

routers. Using the diffserv patch provided by Nortel Networks [9] and extending it with our scheduler and 

the CABB, we can generate diffserv domains and create suitable test networks as shown in the 

experimental evaluation in Section 4. 

Figure 5: CABB internal block diagram and interactions 

The diffserv implementation has three modules, two of them are related to the edge router and 

core routers, and the third module is the policy and resource manager. The policy class handles the 

creation, manipulation, and enforcement of edge router policies. A policy defines the treatment that 

packets will receive at an edge router. Policies are set using Tcl scripts [9]. The policy class uses a policy 

table to store the parameter values. The packet that arrives at the edge router is classified to decide to 

which traffic aggregate it belongs, and a specified meter is used to check the average traffic rate of that 

client to make sure it corresponds to the current sending rate. If it does not conform, it gets downgraded to 

a lower DSCP. 
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As shown in Figure 5, the CABB is used to configure the policy module of the diffserv. Our 

CABB implementation consists of four modules: user interface module through which the user/network 

operator can allocate resources, a database module that stores all the parameters required to make the 

reservation decisions, a service policy manager module, and a central entity called the broker manager 

that handles inter-broker communication. The policy manager module creates a particular policy module 

for EF, AF or Best-Effort flows and updates the policy at all the other edge routers in its domain. 

The CABB makes the provisioning based on the SLA agreed upon by client/user (through the 

user interface module) using Tcl scripts and in compliance with other parameters in the database module. 

These include the current reservations and the router configurations. Configuration changes are made to 

the policy module. Within the policy module every source-destination flow is associated with a policy 

type, meter type, current rate of traffic (the rate agreed upon with the client) and other policer specific 

parameters. The CABB’s policy table has only one entry for a particular source-destination pair. Any 

change in that entry is then communicated to all the edge-routers in that domain. We associate a set of 

DSCPs with each flow. Each DSCP corresponds to a different traffic rate and PHB and is internally 

implemented as a specific queue that will serve the packet.  

To aid the broker in it’s DSCP mapping, we have implemented a priority queue for EF PHB 

(also called EF code points) and weighted round-robin queues for AF and Best-Effort PHB (also called 

AF and Best-Effort code points respectively). The key idea is that EF flows should receive guaranteed 

service, and should not face any queuing delay in their path to the destination. A priority queue staves off 

other traffic while it is being served. The diffserv-capable edge router also takes care of shaping and 

policing the EF flows which ensures that the flows downstream confirm to their profile. The weighted 

round robin queues are serviced according to their weights. We put higher weights for AF flows and 

lower weights for Best-Effort flows.  

For interbroker communication, the CABB looks up its database and routing table to identify the 

downstream edge router and peer broker. It communicates the flows’ parameters to the peer broker. The 

downstream broker then uses these parameters along with the link’s latest characteristics and resources to 

decide whether to allow the flow to continue or not. If the allocation is not successful, it informs the 

broker upstream. The flow is then allowed to retry once it is rejected. If the allocation is successful, this 

process continues on another downstream edge router and broker till the destination is reached. This is a 

one-way communication from host to destination and does not imply that the destination has resources 

reserved at the same time. CABB gives us the advantage of setting up a flow using RSVP type signaling 

without the overheads of keeping and refreshing up-to date network state information. 
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4. Experimental Evaluation 

In this section we present an experimental evaluation of the performance and effectiveness of CABB. 

The evaluation consisted of a series of simulations using different network topologies. The simulations 

are designed to evaluate the performance and effectiveness of CABB under various network conditions. 

They evaluate CABB adaptations in cases of congested links, out-of-profile clients and insufficient 

resources. The evaluations concentrate on multimedia flows and uses different applications types such as 

audio, video, and video conferencing. The network topologies consist of multiple source nodes, 

heterogeneous links and a single sink node. 

Table II – Notations 

Notation Explanation 
PIR Peak Information Rate: Peak rate of transmission. 
CIR Committed Information Rate: Average rate of 

transmission. 
CBS Committed Burst Size: This parameter is used by 

AF policer in conjunction with CIR. 
ABW Available Bandwidth: Bandwidth currently unused 

and available. 
UBW Usable Bandwidth: Actual allocated bandwidth. 

The notations used in the discussion below are summarized in Table 2. Early drops follow the RED 

algorithm [8], while late drops occur when packet arrival exceeds buffer size. We define -DSCP 10 for EF 

PHB and DSCP 21 for AF PHB. For our experimental purposes, in the case of non-conforming flows, 

DSCP 10 may be downgraded (i.e. allocated reduced bandwidth) to DSCP 11. Similarly DSCP 21 and 23 

may be downgraded to DSCP 22 and 24 respectively. Simple policies for EF and AF flows are show in 

Table 3. We allocate 1/3rd bandwidth to EF flows, 5/12th bandwidth to AF flows and the rest (1/4th) to best 

effort in all the topologies given below [8]. These simple rules/policies, which are centralized at the level 

of CABB, effectively provide it control over flow allocations while being fair to all flow types. 

Table III: EF and AF Policies 

EF Policy AF Policy 
If (ABW > PIR),  
__UBW = function_1(PIR) 
 
If (CIR < ABW < PIR), 
__UBW = function_2(flexibility, CIR, 
PIR),  
 
If (ABW < CIR || UBW) 
    retry with reduced parameters 

If (ABW > CIR), 
__UBW = function_3 (CIR, CBS) 
 
If (ABW < CIR),  
__UBW = function_4 (flexibility, CIR, 
CBS).  
 
If (ABW < UBW),  
    retry with reduced parameters 

The CABB processes requests on a first come first serve. Requests are evaluated on the basis of their 

flexibility, SLA, the availability of resources and interactions with peer brokers, and are either allocated 
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the requested resources, allocated reduced resources or rejected. After the request is successfully 

processed, it is assigned a DSCP, which is then used by the diffserv-enabled router to classify and 

monitor the associated flow. In what follows, we present experimental results for 3 different network 

topologies. The results are for 80 simulation timesteps. Each set of results consists of a pair of plots for 

each source, one showing the number of transmitted packets and the other showing the number of 

dropped packets. Graphs 2 and 3 are for the EF source (DSCP 10) and Graphs 4 and 5 (and possible 6 and 

7) are for the AF source(s) (DHCP 21, 22). The table in the figures lists the diffserv parameters and 

transmission rates for the different sources. The notation used in the figures is as follows: cp –DSCP; 

TotPkts – Total packets, TxPkts – Transmitted packets; edrops – Early Drops and ldrops – Late Drops at 

the core router (Core).   

4.1. Network Topology I 

The first network topology evaluated is shown in Figure 6 and consists of – three routers (one core 

and two edge), and a CABB that manages and configures the edge routers. The goal of this experiment is 

to demonstrate the operation of CABB and its ability to effectively manage resource allocation and to 

limit the effect of unresponsive EF and/or AF flows. The experiments consist of three sources (S0, S1, 

and S2) and one sink (Dest). The three flows are: (1) S0-Dest: audio-- EF PHB, (2) S1-Dest: video – AF 

PHB, (3) S2-Dest: video conference – AF PHB. The Core- E2 link is the bottleneck link with a capacity 

of 5 Mb. The edge routers E1, E2 have two queues, one priority and one WFQ. 

Figure 6: Topology 1 (1 EF, 2 AF flows) 

4.1.1. Experiment 1 

In this experiment, S0, S1 and S2 request 4mb (PIR), 1mb (CIR), and 1mb (CIR) and transmit at 

2.5mb, 1mb, and 1mb respectively. The results from this experiment are plotted in Figure 7. As RateS0 > 

UBWS0 (3.33mb), S0’s packets are downgraded to CP 11 and it is allocated a reduced bandwidth (2 Mb). 
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This is shown in graphs 2 and 3 in Figure 7. S1 and S2 are allocated the resource they request, seen in 

graphs 3 and 4. For example, if S1 streams a movie containing uncompressed low-quality images of 320 x 

240 pixels, each encoded by a single byte, leading to video data units of 76,800 bytes each. Assume that 

images are to be displayed at 30 Hz, or one image every 33 msec. It produces data packets at the rate of 

615 Kbps. This rate confirms to its profile and packets belonging to this flow are never downgraded. 

Furthermore, we see from Figure 7 that S0 (audio in this case) goes out-of-profile and gets downgraded 

without affecting the other AF flows. This shows that CABB prevents the out-of-profile EF flow from 

defecting (downgrading or dropping) the in-profile AF flows from S1 and S2 at the edge router. This 

improves the transfer delay that would have resulted without CABB due to congestion at upstream routers 

caused by unchecked flows. 

Graph 1

0

10000

20000

30000

40000

50000

0 5 10 20 30 40 50 60 70 80

Time

Pa
ck

et
s

TotPkts, TxPkts ldrops, edrops

Packets Transmitted
Graph 2

0

5000

10000

15000

20000

25000

0 5 10 20 30 40 50 60 70 80
Time

Pa
ck

et
s

TotPkts,TxPkts(CP 10)
TotPkts, TxPkts(CP 11)

Packets Dropped
Graph 3

0
0.2

0.4
0.6

0.8
1

0 5 10 20 30 40 50 60 70 80
Time

Pa
ck

et
s

ldrops, edrops (CP 10)
ldrops, edrops(CP 11)

Packets Transmitted
Graph 4

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 5 10 20 30 40 50 60 70 80

Time

Pa
ck

et
s

TotPkts, TxPkts(CP 21)

Packets Dropped
Graph 5

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0 5 10 20 30 40 50 60 70 80

Time

Pa
ck

et
s

ldrops, edrops(CP 21)

 
Figure 7. Results of experiment 1 (topology 1) 

4.1.2. Experiment 2 

In this experiment, S0, S1, S2 request 3mb, 1mb, and 1mb and transmit at 2.5mb, 2mb, and 1mb 

respectively. The results from this experiment are plotted in Figure 8. As can be seen from these plots, all 

three sources are allocated full resources. S0 is in-profile and is never downgraded as seen in graphs 2 and 

3. S1 goes out-of-profile and its AF aggregate packets are downgraded to CP22 and are eventually 

dropped (see graphs 4 and 5). As graph 5 shows, edrops are fewer than the corresponding ldrops. Finally, 

we observe that the out-of-profile AF flow does not affect the in-profile EF flow. Here, once again, 

CABB improves throughput and performance of conforming multimedia applications while gracefully 

degrading the performance of rogue flows. For example, if S0 was a critical audio application and S1 was 

a non-critical video (rogue) application, CABB’s polices avoid the video application to hog network 

resources by gracefully degrading its performance and later dropping the video flow’s packets. Audio 

packets from S0, which remain in-profile, are not affected by the rogue nature of the video flow from S1. 



 19

Thus S0’s guaranteed service level agreement is met. This results in the audio application’s improved 

performance inspite of having to compete with rogue flows.  
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Figure 8. Results of experiment 2 (topology 1) 

4.2. Network Topology II 

The second network topology is shown in Figure 9. It builds on network topology I but removes 

source S2. The goal of this set of experiments is to evaluate the ability of CABB to fairly allocate 

resources to flows and to control unresponsive EF flows. The experiments consist of two flows: (1) S0-

Dest: audio-EF PHB, (2) S1-Dest: video – EF PHB. The Core-E2 link is the bottleneck link with a 

capacity of 7 Mb. The edge routers E1, E2 each have one priority queue in this case. 

Figure 9: Topology 2, Multi EF flows 

4.2.1. Experiment I 

In this experiment, S0, S1 request 8mb and 2.6mb (PIR) and transmit at 8mb and 9mb respectively. 

The results of this experiment are plotted in Figure 10. Using its policy engine, the CABB makes 

decisions as follows: 
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Rate S0 = 8 Mbps, UBW S0 = function (1,3,8). - rejected. 

Rate S1 = 9 Mbps; UBW S1 = function (5, 1, 2.6) = 2.6 Mbps. - accepted. 

S0 is rejected as the request resource cannot be supported by the bottleneck link and the audio 

application is not flexible. This is illustrated in Figure 10. S1 is allocated the requested resources (PIR). 

However, RateS1 >> UBWS1 (3.33 mb). As a result, one flow is rejected despite retrial and a later request 

was allocated full resources, thereby treating flows fairly while allocating among them. S1 exceeds its 

profile and is policed and forced to adhere to its SLA. Although there were sufficient resources 

(bandwidth) to meet S1’s requirements, this source exceeded its allocation. As a result, CABB did not 

allocate extra resources to S1 but downgraded it to remain within profile. Without CABB, S1 would not 

have been downgraded. The resources saved by downgrading S1 can be used to support a new flow, 

which might otherwise have been denied resource. Note that our Active Resource Management (ARM) 

scheme presented in [25] extends this idea to dynamic management. This scheme helps in increasing the 

network’s throughput while actively managing the flow’s resource demands. 
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Figure 10. Results of experiment 1 (topology 2) 

4.2.2. Experiment 2 

In this experiment, S0, S1 request 1.5mb and 2mb (PIR) and transmit at 1.5mb and 1mb respectively. 

The results of this experiment are plotted in Figure 11. Using its policy engine, the CABB makes 

decisions as follows: 

Rate S0 = 1.5 Mbps, UBW S0 = function (1.5) =1.5Mbps  - accepted 

Rate S1 = 1 Mbps; UBW S1 = function (5, 1, 2) = 1 Mbps - accepted. 

AS can be seen from graphs in Figure 11, S0 is allocated full resources. S1 however is allocated 

reduced resources as video being more flexible than audio. We observed that CABB increased flow 

allocations with some flows getting reduced resources arrived at from their flexibility number. 
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Figure 11. Results of experiment 2 (topology 2) 

4.3. Network Topology III 

The third network topology is shown in Figure 12. It consists of: (1) S0-Dest: audio-EF PHB, (2) S1-

Dest: video – EF PHB, (3) S2-Dest: FTP on TCP - AF PHB. The Core-E2 link is the bottleneck link with 

a capacity of 7 Mb. The edge routers E1, E2 each have one priority and two WFQ queues in this case. The 

goal of this experiment is to evaluate the ability of CABB to manage UDP and TCP flows. 

Figure 12. Topology 3: allocation and inter-effects of tcp and udp flows. 

4.3.1. Experiment 1 

In this experiment we observe that all flows are allocated requested resources. Furthermore, the one 

flow aggregate does not affect another. Specifically, we see the effect of TCP going out-of-profile on 

UDP. S0, S1 and S2 request 2.6mb, 5mb and 5mb respectively. S0 and S1 both transmit at 1mb as noted 

in the table in Figure 13. Using its policy engine, the CABB makes decisions as follows: 

Rate S0 = 2.6 Mbps; UBW S0 = function (2.6) = 2.6 Mbps. - accepted. 

Rate S1 = 4 Mbps; UBW S1 = function (1) = 1 Mbps. - accepted. 

Rate S2 = 1 Mbps; UBW S2 = function (1) = 1 Mbps. – accepted. 

The results from this experiment are plotted in Figure 13. S0, S1 and S2 are allocated full resources. 

From graph 4,5 in Figure 13, we see that S1 is first downgraded and then dropped. Graph 6 and 7 show 

that the FTP application flow is downgraded. However as graphs 2 and 3 show, the EF flow is not 

affected by this flow. Out-of-profile S1, S2 are downgraded while in-profile S0 is unaffected. This 

experiment shows that CABB only admitted flows that do not load the network, giving reduced resources 

to some if necessary. The TCP flow is not starved but is penalized, as it does not conform to its SLA. 

Furthermore, it does not affect in-profile UDP (audio) flow. 
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Figure 13.Results of experiment 1 (topology 3) 

5. Summary of Results 

In the CABB-based diffserv system, multimedia flows are analyzed, allocated resources and regulated 

before being allowed to use the network. CABB effectively orders flows so that they conform to the 

traffic profile as agreed in the original SLA or to the reduced profile defined based on the application’s 

flexibility number. Furthermore, queue management and diffserv policing ensure that when a flow goes 

out-of-profile its packets are downgraded and eventually dropped, thus regulating the flow. EF flows 

serviced by priority queues are allowed to go through with minimal drop. Also, a downgraded DSCP 

faces a harsher penalty as compared to an initially allocated DSCP. The out-of-profile AF flows do not 

affect the throughput of EF flows and vice versa. Multimedia applications, due to their flow requirements, 

are usually assigned to EF flows. However, flows that can tolerate losses may be assigned to AF flows as 

a result of adaptation by the broker. Hence, these flows go through a congested network, with the CABB 

doing coarse tuning of bandwidth requirements (avoiding overallocation) and the application level 

adaptive QoS doing the fine-tuning of the applications response/sensitivity to network changes [3]. As a 

result, the end user perceives a quantifiable QoS even with reduced resource allocation. CABB ensures 

higher flow throughput by identifying and controlling rogue flows. Furthermore, CABB eliminates the 

need for applications to have to deal directly with the diffserv router for resources [27].  

A traditional broker does not account for an application’s adaptability, leading to overallocation of 

resources [25]. Consequently, when compared to a normal broker, the CABB efficiently utilizes the 

network by allowing only those flows that do not congest it. 
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6. Conclusions 

In this paper we presented a content aware bandwidth broker (CABB) that provides adaptive 

brokering for networked multimedia applications. CABB builds on the observation that multimedia 

applications are flexible or tolerant with respect to network parameters such as packet loss, delay and 

jitter [8]. It exploits this flexibility of multimedia flows to network level parameters to adapt the flows 

based on the state of network resources and maintain a quantifiable level of QoS despite unfavorable 

network conditions. Furthermore, in case of network congestion, CABB can adapt to the network state 

and reduce QoS rather than completely disrupting application flows. CABB also prevents non-

conforming flows from affecting the performance of conforming flows by constantly monitoring and 

gradually degrading the level of service of non-conforming flows. Thus it provides incentive to support 

end-to-end congestion control for best effort traffic.  

Experimental results presented show that multimedia flows are better managed and controlled, 

thereby improving perceived QoS and avoiding possible congestion. Furthermore, flow throughputs 

increase as CABB enables a larger number of flows to request for resources without over allocation. 

Results also show that CABB’s policy decisions, based on content awareness, prevent congestion in the 

downstream network. These policy decisions are simple, unbiased, and effective. Furthermore, they admit 

the appropriate number of concurrent flows so that the network is not unduly loaded and hence controls 

traffic at the edge router, keeping the core simple. This design is easily scalable as no state is maintained 

in the routers. Multimedia applications or those that use UDP for data transmission are now coarsely 

controlled by the broker’s policy decision. This work can be extended further. The next step is to integrate 

our work with Active Resource Management (ARM) scheme [25] and to enhance the CABB with a better 

understanding of the usage of multimedia flows and/or users to further optimize these flow allocations. 
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