Autonomic Runtime Manager for Large Scale Adaptive Distributed Applications

Jingmei Yang, Huoping Chen, Salim Hariri
University of Arizona
Emails:
{jm_yang,hpchen,hariri}@ece.arizona.edu

Abstract

Large-scale distributed applications are highly adaptive
and heterogeneous in terms of their computational
requirements. The computational complexity associated
with each computational region or domain varies
continuously and dramatically both in space and time
throughout the whole life cycle of the application
execution. Consequently, static scheduling techniques are
inefficient to optimize the execution of these applications
at runtime. In this paper, we present an Autonomic
Runtime Manager (ARM) that uses the application spatial
and temporal characteristics as the main criteria to self-
optimize the execution of distributed applications at
runtime. The wildfire spread simulation is used as a
running example to demonstrate the ARM effectiveness to
control and manage the application’s execution. The
behavior of the wildfire simulation depends on many
complex factors that contribute to the adaptive and
heterogeneous behaviors such as fuel characteristics and
configurations, chemical reactions, balances between
different modes of heat transfer, topography, and
fire/atmosphere interactions. Consequently, the
application execution cannot be predicted a priori and
that makes static parallel or distributed algorithms very
inefficient. The ARM is implemented using two modules:
1) Online Monitoring and Analysis Module, and 2)
Autonomic Planning and Scheduling Module. The online
monitoring and analysis module interfaces with different
kinds of application and system sensors that collect
information to accurately determine the current state of
the fire simulation in terms of the number and locations
of burning and unburned cells as well as the states of the
resources, and decides whether the autonomic planning
and scheduling module should be invoked. The
autonomic planning and scheduling module uses the
resource capability models as well as the current state of
the computations to repartition the whole computational
workload into available processors. Our experimental
results show that by using ARM the performance of the
wildfire simulation has been improved by 45% when

Manish Parashar
Rutgers, The State University of New Jersey
Email: parashar@caip.rutgers.edu

compared with a static partitioning algorithm. We also
evaluate the performance of ARM using two partitioning
strategies. One approach is to partition the wildfire
simulation domain into Natural Regions (NR), where
each region has the same temporal and spatial
characteristics (e.g., burned (NR1), burning (NR2), and
unburned regions (NR3)), and schedule each region into
available processors. The second approach is to view the
wildfire domain as a graph and use a graph partitioning
tool (e.g., ParMetis tool) to partition the graph into
different domains.

1. Introduction

Large-scale distributed applications are highly
adaptive and heterogeneous in terms of their
computational requirements. The computational
complexity associated with each computational region or
domain varies continuously and dramatically both in
space and time throughout the whole life cycle of the
application execution. An example of such an application
is a wildfire simulation of a national park, which
simulates the wildfire spread behavior by taking into
considerations many factors such as fuel characteristics
and configurations, chemical reactions, balances between
different modes of heat transfer, topography, and
fire/atmosphere interactions. The computational load
associated with “burning” cells is much larger than that
for “unburned” cells that will lead to load imbalance
conditions if that difference in computational
requirement is not taken into consideration when the
application computational load assigned to the processors
at runtime. Consequently, static scheduling techniques
are very inefficient to optimize the execution of
applications that continuously change their temporal and
spatial characteristics. The wildfire spread behavior is an
example of this class of adaptive distributed applications.

Optimizing the performance of parallel applications
through load balancing algorithms is well studied in the
literature and they can be classified as either static or

dynamic algorithms. The compile-time static approaches
[B1[9][10][11] assign work to processors before the
computation starts and can be efficient if we know how
the computations will progress a priori. On the other
hand, if the workload cannot be estimated beforehand,
dynamic load balancing strategies have to be used [12]
[13][14][15]. For example, the diffusion-based methods
[14][15] divide the processor pool into small and
overlapping neighborhoods. The underloaded processor
requests work levels from its neighbors and then
determine how much work to request from each neighbor.
Because of the overlapping neighborhood, the work will
eventually diffuse throughout the system to achieve
global load balancing. However, the local schemes are
inadequate for heterogeneous and adaptive distributed
applications because they lack a global view of the
current state of the application. Some global schemes
[16][17][18] predict future performance based on past
information or based on some prediction tools, such as
Network Weather Service (NWS)[19]. In [18], the
authors use the predicted CPU information provided by
NWS to guide scheduling decisions. Dome [17] remaps
the computation based on the time each processor spends
on computing during the last computational phase. Other
optimization techniques are based on application-level
scheduling [20][21][22]. AppLeS in [20][21] assumes
the application performance model is static and provided
by users and GHS system [22] assumes the total
computation load of applications is a constant.

Some researchers [23][24][25][26][27][28] have
explored the load balancing issues for adaptive
applications. The applications in [23][24][25] are
adaptive mesh refinement either on unstructured or
structured grid and load balancing is achieved by
repartitioning the computations among processors after
each refinement phase. [26] assumes the adaptation are
infrequent and the load remains relatively stable between
adaptations. [27][28] introduce a load balancing
framework for asynchronous adaptive applications.
However the wildfire simulation represents such
applications which are loosely synchronous and
constantly adapting, and requires more adaptive and
efficient runtime optimization techniques. In this paper,
we present an Autonomic Runtime Manager (ARM) that
continuously monitors and analyzes the current state of
the application as well as the computing and networking
resources and then makes the appropriate planning and
scheduling actions. The ARM control and management
activities are overlapped with the application execution to
minimize the overhead incurred using the ARM runtime
optimization algorithm.

The reminder of this paper is organized as follows:
Section 2 gives an overview of the ARM system and a
detailed analysis of the wildfire simulation. Results from
the experimental evaluation of the ARM runtime
optimization are presented in Section 3. We compare the
performance of the wildfire simulation with and without
the ARM system by using different partitioning
approaches. A conclusion and outline of future research
directions are presented in Section 4.

2. Autonomic Runtime Manager (ARM): An
Overview

The Autonomic Runtime Manager (ARM) is
responsible for controlling and managing the execution
environment for large-scale distributed adaptive
applications at runtime. Once the application is running,
ARM will optimize the application execution to improve
performance dynamically. The ARM main modules
include (see Figure 1): 1) Online Monitoring and
Analysis and 2) Autonomic Planning and Scheduling.
Online monitoring and analysis module interfaces with
different kinds of sensors that collect information about
the fire propagation and environmental data as well as the
information about the states of the underlying resources.
These current state conditions are then used by the ARM
to steer the simulation into the direction that maximizes
the performance or any other desired property (e.g.,
accuracy). Based on the objectives of the analysis (e.g.,
accurate vs. approximate but fast simulations), the
planning engine will use the resource capability models
as well as the performance models associated with the
computations, and the knowledge repository to select the
appropriate models and partitions for each region
(empirical-based, physics-based) and then decompose the
computational workloads into schedulable Computational
Units (CUs). Based on the availability of computing
resources and their access policies, the scheduler will
dynamically schedule the CUs on available Resource
Units (RUs) that can be clusters of high performance
workstations, massive parallel computers, and/or
distributed/shared memory multiprocessor systems.

It is to be noted here that the ARM hides the
underlying heterogeneity of the execution environment
from the application and can interface the application to
different types of execution models and different types of
resources harnessing the maximum utilization of features
and capabilities of the underlying environment. In this
paper, we will use the wildfire simulation as a running
example to explain the main operations of the ARM
modules and the performance gains that can be achieved.

Autonomic Runtime Manager (ARM)

Online Monitoring and Analysis

Monitor I \-
-
e

Analysis
Module

Autonomic Planning and Scheduling

Graph
Partitioning

Knowledge
Repository

~ ¥

Invoke

®7 Planning

| P
diiy kg o
line
-
Heterogeneous, lynamic |y
& it

Environment

vy [Capability

Bandwidth
e,

System

Module

Runtime
Performance

Model

Computational
Unit

Figure 1. Autonomic Runtime Manager (ARM) Architecture

21. An
Simulation

lllustrative Example - Wildfire

In the wildfire simulation model, the entire area is
represented as a 2-D cell-space composed of cells of
dimensions | x b (I: length, b: breadth). For each cell,
there are eight major wind directions N, NE, NW, S, SE,
SW, E, W as shown in Figure 2. The weather and
vegetation conditions are assumed to be uniform within a
cell, but may vary in the entire cell space. A cell interacts
with its neighbors along all the eight directions.

NW N NE
A

W < » E
v

SW S SE

Figure 2. Fire direction after ignition

When a cell is ignited, its state will change from
“unburned” to “burning”. During its “burning” phase, the
fire will propagate to its eight neighbors along the eight
directions. The direction and the value of the maximum
fire spread rate within the burning cell can be computed
using Rothermel’s fire spread model [3], which takes into
account the wind speed and direction, the vegetation type,
the fuel moisture and terrain type, such as slope and
aspect, in calculating the fire spread rate. The fire
behavior in eight directions including the spread rate, the
time for fire to spread to eight neighbors, and the flame
length could be determined using the elliptical growth

model developed by Anderson [4]. When the simulation
time advances to the ignition times of neighbors, the
neighbor cells will ignite and their states will change
from “unburned” to “burning”. In a similar way, the fire
would propagate to the neighbors of these cells. With
different terrain, vegetation and weather conditions, the
fire propagation could form very different spread patterns
within the entire region.

The wildfire simulation model used in this paper is
based on fireLib[1], which is a C function library for
predicting the spread rate and intensity of free-burning
wildfires. It is derived directly from the BEHAVE [2] fire
behavior algorithms for predicting fire spread in two
dimensions, but is optimized for highly iterative
applications such as cell- or wave-based fire growth
simulation. We parallelized the sequential version of the
fire simulation using MPI[5]. This parallelized fire
simulation divides the entire cell space among multiple
processors such that each processor works on its own
portion and exchanges the necessary data with each
others after each simulation time step. The parallel
wildfire simulation is a loosely synchronous iterative
application. Each processor performs the computation on
part of the whole space, maintains the ignition map which
is the ignition times of all cells, and proceeds to the next
ignition cell as the simulation advances.

Because of the synchronization between iterations, the
execution time during one iteration is effectively
determined by the execution time of the slowest, or most
heavily loaded processor. Consequently, the application
performance will be severely degraded if the
computational loads on all the processors are not well
balanced at runtime. In the following sections, we present

how the ARM system can effectively maximize the
performance of the wildfire simulation at runtime.

2.2. Online Monitoring and Analysis

The online monitoring module monitors the current
state of the fire simulation in terms of the number and the
locations of burning cells and unburned cells. By
profiling the application behavior at runtime, the
computation time spent on each iteration can be obtained.
In addition, the online monitoring module monitors the
states of the resources involving in the execution of the
fire simulation, such as the CPU load, available memory,
network load etc. The runtime state information is stored
in a database. The online analysis module analyzes the
runtime information and the load imbalance of the
wildfire simulation and then determines whether or not
the current allocation of workloads need to be changed.

We use a metric that we refer to as the Imbalance
Ratio (IR) to quantify the load imbalance that can be
computed as:

Maxizgl (Tcomp (pi ’t)) - Minii?)l comp (pi ,t))
Minip=;)1 comp(pi't))

Where Teomp(pi, t) is the computation time at time step t on

processor p;, and, P denotes the number of processors.

So Max™'T,. (p,,t) represents the computation time spent

i=1 ' comp
on the most heavily-loaded processor and
Min™'T,(p,,t) is the computation time spent on the most

i=1 comp
lightly-loaded processor. We use a predefined threshold
IRthreshold t0 Measure how severe the load imbalance value
is. If IR exceeds the specified threshold, the imbalance
conditions are considered severe and repartitioning is
required. Then the autonomic planning and scheduling
module will be invoked to carry the appropriate actions to
repartition the simulation workload.

The selection of the threshold IRyyeshoq Can
significantly impact the effectiveness of the repartitioning
algorithm. If the threshold chosen is too low, too many
load repartitions will be triggered and the high overhead
produced outweigh the expected performance gains. On
the other hand, when the threshold is high, the load
imbalance cannot be detected quickly and consequently
the performance improvement will be reduced. In the
experimental results subsection, we show how we can
experimentally determine the appropriate threshold value.

IR(t) = «100% (1)

2.3. Autonomic Planning and Scheduling

The autonomic planning and scheduling module
partitions the whole fire simulation domain into several
sub-domains based on the state of the application and the
current loads on the underlying processors. To reduce the
rescheduling overhead, we use a dedicated processor to

run the autonomic planning and scheduling engine and
overlap that with the worker processors executing the
workload of the distributed wildfire simulation. Once the
new partition assignments are finalized, a message is sent
to all the worker processors to read the new assignments
after they are done with the current computations.
Consequently, the ARM runtime optimization activities
are completely overlapped with the application execution
and the overhead is less than 4% as will be discussed
later.

2.3.1 Partitioning Strategy

We have developed and experimented with two
partitioning strategies in our ARM prototype.
Natural Region Partitioning Approach:

This method uses the runtime information associated
with the application current state to partition the fire
simulation domain into several Natural Regions (NRs),
where each region has the same temporal and spatial
characteristics (e.g., burning (NR1), and unburned regions
(NR2)) and assign each region to processors according to
their capabilities.

Let ACW(t) be the predicted Application
Computational Workload at time t in terms of the number
of cells in the “burning” region Ng(t) and “unburned”
region Ny(t). ACW(t) can be defined as follows:

ACW (t) = N (t) + N, (t) 2
We use Processor Load Ratio (PLR) metric to quantify
the computing capacity for each processor such that

> " PLR(p, 1) =1 3)
Let L(P;t) be the system load on processor P; at time t
which can be measured by using the CPU queue length.
If L(P;,t) <= 1, then there is only one process running on
processor P; and the estimated execution time of one
burning cell on processor P; at time t is given by:

TB(pivt) :TB (4)
where Tg is the estimated computation time of one
burning cell on a dedicated processor. If L(P;,t) > 1, there
are other applications running on processor P;. The
expected computation time of one burning cell will be
longer due to multiprogramming and can be estimated as
follows:

Ts(pivt) = L(pilt) *TB (5)
Consequently, the average execution time for a burning
cell at time t is computed as:
P-1
T, ()= 2 0 ®
To balance the load on each processor, we define an
adjustment factor, Processor Allocation Factor (PAF),
which is inversely proportional to the processor execution

time with respect to the average execution time. The PAF
for processor p;can be computed as:

T, (t
PAF(pi,t):&L())
To(piot)

By normalizing the PAF, we could obtain the PLR for

processor p; as follows:

PAF(p,,t

PLR(p, 1) = o (Put) (®)
Do PAF(p,.t)

Therefore the Processor Computational Load (PCL) to be

assigned to processor pjis given as:

PCL(p,,t) = PLR(p;,t) x ACW (t) ©)
Then the corresponding workload of each natural region
will be assigned to processors according to their PCLs.

Graph Partitioning Approach

The wildfire simulation domain can be represented as
an undirected weighted graph G(V, E) of V vertices and E
edges. The cells of the domain are the vertices of the
graph and an edge exists between two graph vertices if
these cells are neighbors. Each graph vertex has a weight
associated with it, which indicates the workload of the
corresponding cell. Burning cells have a larger weight
than the unburned cells because of the difference in their
computational complexities. Each edge of the graph also
has a weight that models the interprocessor
communication. Thus a graph partitioning for the fire
simulation domain yields the assignment of cells to
processors.

There are several graph partitioning tools that can be
used [24][29]. The objective of the graph partitioning
algorithm is to find a reasonable load balance that
minimizes the edgecut and the interprocessor
communication; where edgecut is defined as the total
weight of edges that cross the partitions. In our ARM
prototype, we have implemented the ParMetis[29] graph
partitioning tool. The ParMetis is a widely used graph
partitioning program that is developed at the University
of Minnesota. We use ParMETIS_V3_PartKway()
routine to initially partition the fire simulation domain
into sub-domains and use
ParMETIS_V3_ AdaptiveRepart() routine to repartition
the domain when the distribution results in load
imbalance ratio larger than the predetermine threshold.
ParMETIS_V3_AdaptiveRepart routine makes use of a
Unified Repartitioning Algorithm [30] for adaptive
repartitioning that combines the best characteristics of
remapping and diffusion-based repartitioning schemes.
Repartitioning is performed on the graph using the
weights of the vertices and edges that are computed by
the online monitoring and analysis module to reflect the
current state of the fire simulation in terms of the
locations of burning cells and unburned cells.

2.3.2 Predictive Model

As discussed in section 2.1, the wildfire simulation
maintains an ignition map to store the ignition time of
each cell. As the fire simulation proceed, it will calculate
the time that fire spreads from the current burning cell to
its eight neighbors and update the ignition times of those
neighbors accordingly. Therefore, at any given time step,
based on the ignition map of the domain, we can predict
what are the next N cells that will be ignited.

The ARM system implemented sensors to collect the
ignition time changes of cells at run time and stores them
into the ARM database. The autonomic planning and
scheduling module will compare the ignition times of
cells with the current time and obtain the next N cells that
will burn. Thus, the predicted application computational
workload ACW,peq(t) can be computed as follows:

ACW,, () = Ng (t) + Ng e () + (N () = Ng g (©) (10)

where Ng(t) and Ny(t) are the number of burning cells and
unburned cells at time step t as defined in Equation (2).
Neprea(t) denotes the predicted next N burning cells at time
step t. The automatic planning and scheduling module
will use the predicted application workload to partition
the fire simulation domain and assign the corresponding
workload to available processors.

In the next section, we evaluate the performance of
these two partitioning techniques for different problem
sizes and different number of processors.

3. Performance Evaluation

The experiments were performed on two problem
sizes for the fire simulation. The first problem size is a
256*256 cell space with 65536 cells. The second problem
has a 512*512 cell domain with 262144 cells. To
introduce a heterogeneous fire patterns, the fire is started
in the southwest region of the domain and then
propagates northeast along the wind direction until it
reaches the edge of the domain. In order to make the
evaluation for different problem sizes accurate, we
maintain the same ratio of burning cells to 17%; that is
the total number of burning cells when the simulation
terminates is about 17% of the total cells for both
problem sizes.

We begin with an examination of the effects of the
imbalance ratio threshold on application performance.
We ran the fire simulation with a problem size of 65536
on 16 processors and varied the IRgyeshoiq Values to
determine the best value that minimizes the execution
time.

1300
1200 |

1100 4

1000 +

900
800 o
700 +

600 +—t——t——t " —
0~ 50 100 150 200 250 300 350 400 450
IRthreshold (%)

Average Execution Time (secs

Figure 3. The sensitivity of the fire simulation to the
IRthreshold value

450
& 400 —&— Without Self-
o P .
*g 350 Optimization
g 3007 o with seff-
© 250 Optimization peé¢
2 200 1
% 150 A
e 100 +
—_— 50 ,
0 ‘ ‘ ‘
0 500 1000 1500 2000
Time Step

Figure 4. Imbalance ratios for 2000 time steps of the fire
simulation for a problem size = 65536, number of
processors = 16, IRreshold = 50%0

Table 1.
Workload Distribution Quality for Problem Size with 65536 cells

Runtime Optimization Approach

8 Processors

16 Processors

Max/Min Std Max/Min Std
Computation Dev Computation Dev
Static Scheduling 1841/259 sec 626 921/129 316
Natural Region Approach 940/ 693 sec 86 464/299 53
Graph Partitioning Approach 923/633 sec 104 463/285 59
Table 2.

Workload Distribution Quality for Problem Size with 262144 cells

Runtime Optimization Approach

16 Processors

32 Processors

Max/Min Std Max/Min Std

Computation Dev Computation Dev

Static Scheduling 16339/2042 sec 5289 8950/1031 sec 2097
Natural Region Approach 8375/6603 sec 382 3662/2340 sec 467
Graph Partitioning Approach 8441/5163 sec 807 3744/2038 sec 570

The results of this experiment are shown in Figure 3. The
execution times are taken as the average for three runs.
We observed that the best execution time, 713 seconds,
was achieved when the IRyyeshoid 1S equal to 30%. We
need to do more research to determine the relationship
between the number of processors and problem size to the
threshold value. In the experimental results, we assume
that once the load imbalance ratio becomes above 30%,
the repartitioning is triggered.

It is important to notice that the online monitoring and
analysis and autonomic planning and scheduling
activities are all carried out on a separate processor and
completely overlapped with the worker processor
computations.

Figure 4 shows how the imbalance ratios increase
linearly as the simulation progresses using static
partitioning algorithm and compare that with our runtime

optimization algorithm. For example, at 2000 time steps
of the simulation, the imbalance ratio for static
scheduling is about 450% while it is around 25% in our
approach. In fact, using our approach, the imbalance ratio
is kept bound within a small range.

We now evaluate the ARM’s performance in
optimizing the execution time of the wildfire simulation
using the following three metrics: 1) the quality of the
workload distribution for all processors; 2) the overall
execution time of the wildfire simulation; and 3) the
overhead incurred by the ARM system.

First we evaluate the quality of the workload
distribution. In Figure 5a, we see a processor-by-
processor breakdown of the wildfire simulation’s
performance on 32 processors with a problem size of
262144 cells. Most of the computation is clustered within
the range from processor 5 through 15. Figure 5b and 5¢

16000 16000

B Communiation
W Sy nchronization
O Computation

14000 14000 |

12000 12000 -
10000 10000 |
8000 -

6000 -

o
o o
S o
S o

16000

W Ov erhead

@ Communication
W Sy nchronization
O Computation

W Overhead

@ Communication
W Sy nchronization
O Computation

14000

12000

10000

8000

Time (Seconds’

6000

Time (Seconds)
Time (Seconds)

4000 4000 1

2000 2000

4000

2000

o +rrrrrrrrrrrr
1 4 7 10 13 16 19 22 25 28 31 1 4
Processor ID

@)

7 10 13 16 19 22 25 28 31
Processor ID

(b)

o """
1 4 7 10 13 16 19 22 25 28 31
Processor ID

(©

Figure 5. Breakdown of the Execution time for different optimization techniques applied to an application with
22144 cells running on 32 processors. (a) Static scheduling. (b) Runtime optimization with natural region
partitioning approach. (c) Runtime optimization with graph partitioning approach.

2500
W Static Scheduling

2000 7 ERuntime Optimization with

NR approach
ORuntime Optimization with

1500 | Graph Partitioning

1000

Overall Execution Time(seconds)
o
o
o

P=8

P=16
Number of Processors

@

20000
18000 1 W Static Scheduling

16000 ERuntime Optimization with

NR approach = .)
O Runtime Optimization with

Graph Partitioning

14000 |
12000 |
10000 |
8000
6000
4000 1

2000

Overall Execution Time(seconds)

P=16 P=32
Number of Processors

(b)

Figure 6. Overall performance of different optimization approaches on different processor configurations. (a)

Problem size 65536 cells. (b) Problem size 262144 cells.

provide the results for runtime optimization using the
natural region partitioning approach and the graph
partitioning approach, respectively. As we can see, for
both approaches, the computational load is distributed
evenly across the processors. The computation time has a
standard deviation of roughly 467 for natural region
partitioning approach, and 570 for the graph partitioning
approach, compared with 2097 for the static scheduling
approach. Table 1, 2 summarizes the standard deviations
of the computation time for two problem sizes on
different processor configurations.

Our second metric is the overall execution time of the
wildfire simulation. Figure 6 demonstrates the overall
execution time with different runtime optimization
approaches as well as the static scheduling algorithm on
two problem sizes and different processor configurations.
For problem size 65536 cells on 8 processors, the ARM
system with graph partitioning approach provides an
improvement of 45 percent over static scheduling, 3
percent over runtime optimization with the natural region

partitioning approach. On 16 processors, these numbers
are 45 percent and 6 percent. For problem size 262144
cells on 16 processors, the numbers are 44 percent and 3
percent, while, on 32 processors, they are 41 percent and
5 percent.

As we can see in Tables 1 and 2, the natural region
partitioning approach is more successful than the graph
partitioning approach in terms of data distribution quality
with a smaller standard deviation for the processor
computation times. However, as shown in Figure 6, the
overall execution time with the natural region partitioning
approach is slightly larger than that of the graph
partitioning approach. The reason is that graph
partitioning approach partitions the graph in a way that
both balances the workload and minimizes the
communication time between sub-domains, which
eventually reduces the overall execution time.

Table 3.

Overhead imposed by ARM system for problem size 65536 cells

Number of ARM overhead
Processors | Data Collecting Time | Reading New Partition Time Prent.
8 1.8 sec 8.9 sec 0.8%
16 1.9 sec 15.5 sec 2.4%
Table 4.

Overhead imposed by ARM system for problem size 262144 cells

Number of ARM overhead

Processors | Data Collecting Time | Reading New Partition Time Prent.
16 21.6 sec 70 sec 0.9%
32 23.1 sec 165.9 sec 3.4%

Finally we show that the overhead incurred by the
ARM system is small and does not have a negative
impact on the application performance. In our
implementation, one processor is dedicated to run the two
ARM modules: the online monitoring and analysis and
the autonomic planning and scheduling modules. That
means the ARM computations are completely overlapped
with the computations of the distributed fire simulation.
Consequently, the only overhead incurred in our
approach is the time spent by the fire simulation to send
its current state information to ARM sensors and the time
spent in reading the new assigned simulation loads to the
worker processors. To quantify the overhead on the
whole application performance, we conducted
experiments to measure the overhead introduced by our
algorithm. Tables 3 and 4 summarize the overheads
caused by the ARM system for two problem sizes
running on different processor configurations. In all
cases, the overhead cost is less than 4% of the overall
execution time.

4. Conclusions and Future Work

In this paper, we described an architecture for an
autonomic runtime manager that maximizes the parallel
execution of large scale applications at runtime by
continuously monitoring and analyzing the state of the
computations and the underlying resources, and
efficiently exploit the physics of the application. In our
approach, the physics of the problem (e.g., how fire
propagates and how it is impacted by wind speed and
direction, fuel, moisture, etc.) and its current state are the
main criterion used in our runtime optimization
algorithm. The Autonomic Runtime Manager (ARM)
main modules are the Online Monitoring and Analysis,
and Autonomic Planning and Scheduling modules. The
execution of the ARM modules is overlapped with the
distributed application being self-optimized to reduce the
overhead. We show that the overhead of our ARM

system is less than 4%. We have also evaluated the ARM
performance on a large wildfire simulation for different
problem sizes. The experimental results show that using
the ARM runtime optimization, the performance of the
wildfire simulation can be improved by up to 45% when
compared to the static parallel partitioning algorithm. We
also evaluated different partitioning methods such as the
natural region partitioning approach and the graph
partitioning approach.

References

[1]<http://www.fire.org>

[2]P. L. Andrews, “BEHAVE: Fire Behavior Prediction and
Fuel Modeling System - BURN Subsystem”, Part 1. General
Technical Report INT-194. Ogden, UT: U.S. Department of
Agriculture, Forest Service, Intermountain Research Station;
1986. 130 p.

[3]R. C. Rothermel, “A Mathematical Model for Predicting Fire
Spread in Wildland Fuels”, Research Paper INT-115. Ogden,
UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station; 1972.
40 p.

[4]H. E. Anderson, “Predicting Wind-Driven Wildland Fire
Size and Shape”, Research Paper INT-305. Ogden, UT: U.S.
Department of Agriculture, Forest Service, Intermountain
Forest and Range Experiment Station; 1983. 26 p.

[5]M. Snir, S. Otto, S. Huss-Lederman, and D. Walker, “MPI
the Complete Reference”, MIT Press, 1996

[6]S. Hariri, L. Xue, H. Chen etc., "AUTONOMIA: an
autonomic computing environment", Conference Proc. of the
2003 IEEE IPCCC

[7]1S. Hariri, B. Khargharia, H. Chen, Y. Zhang, B. Kim, H. Liu
and M. Parashar; "The Autonomic Programming Paradigm",
Submitted to IEEE computer 2004.

[8]P.E. Crandall, and M. J. Quinn, “Block Data Decomposition
for Data-parallel Programming on a Heterogeneous
Workstation Network”, 2nd IEEE HPDC, pp. 42-49, 1993

[9]Y. F. Hu, and R. J. Blake, “Load Balancing for Unstructured
Mesh Applications”, Parallel and Distributed Computing
Practices, vol. 2, no. 3, 1999

[10] S. Ichikawa, and S. Yamashita, “Static Load Balancing of
Parallel PDE Solver for Distributed Computing
Environment”, Proc. 13" Int’l Conf. Parallel and
Distributed Computing Systems, pp. 399-405, 2000

[11] M. Cierniak, M. J. Zaki, and W. Li, “Compile-Time
Scheduling Algorithms for Heterogeneous Network of
Workstations”, Computer Journal, vol. 40, no. 6, pp. 256-
372, 1997

[12] M. Willebeek-LeMair, and A.P. Reeves, “Strategies for
Dynamic Load Balancing on Highly Parallel Computers”,
IEEE Trans. Parallel and Distributed Systems, vol.4, no. 9,
pp. 979-993, Sept. 1993.

[13] F. C. H. Lin, and R. M. Keller, “The Gradient Model Load
Balancing Method”, IEEE Trans. on Software Engineering,
vol. 13, no. 1, pp. 32-38, Jan. 1987

[14] G. Cybenko, “Dynamic Load Balancing for Distributed
Memory Multiprocessors”, Journal of Parallel and
Distributed Computing, vol. 7, no.2, pp. 279-301, 1989

[15] G. Horton, “A Multi-Level Diffusion Method for Dynamic
Load Balancing”, Parallel Computing, vol.19, pp. 209-229,
1993

[16] N. Nedeljkovic, and M. J. Quinn, “Data-Parallel
Programming on a Network of Heterogeneous
Workstations”, 1% IEEE High Performance Distributed
Computing Conference, pp. 152-160, Sep. 1992

[17] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M.
Starkey, and P. Stephan, “ Dome: Parallel Programming in a
Heterogeneous Multi-User Environment,” Proc. 10th Int’l
Parallel Processing Symp., pp. 218-224, 1996.

[18] C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and
Evaluation of a Resource Selection Framework for Grid
Applications”, 11" IEEE High Performance Distributed
Computing Conference. Edinburgh. Scotland, 2002

[19] R. Wolski, N. Spring, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing”, Journal of Future Generation
Computing Systems, pp. 757-768, 1998

[20] F. Berman, R. Wolski, S. Figueria, J. Schopf, and G. Shao,
“Application-Level Scheduling on Distributed
Heterogeneous Networks”, Supercomputing’96, 1996

[21] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M.
Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G.
Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov,

“Adaptive Computing on the Grid Using AppLeS”, IEEE
Trans. on Parallel and Distributed Systems, vol 14, no 4, pp
369--382, April, 2003

[22] X.-H. Sun and M. Wu, "Grid Harvest Service: A System
for Long-Term, Application-Level Task Scheduling,” Proc.
of 2003 IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2003), Nice, France, April,
2003.

[23] L. Oliker, and R. Biswas, “Plum: Parallel Load Balancing
for Adaptive Unstructured Meshes”, Journal of Parallel and
Distributed Computing, vol. 52, no. 2, pp. 150-177, 1998

[24] C. Walshaw, M. Cross, and M. Everett, “Parallel Dynamic
Graph Partitioning for Adaptive Unstructured Meshes”,
Journal of Parallel and Distributed Computing, vol. 47, pp.
102-108, 1997

[25] Y. Zhang, J. Yang, S. Chandra, S. Hariri and M. Parashar,
“Autonomic Proactive Runtime Partitioning Strategies for
SAMR Applications”, Proceedings of the NSF Next
Generation Systems Program Workshop, IEEE/ACM 18th
International Parallel and Distributed Processing
Symposium, Santa Fe, NM, USA, 8 pages. April 2004

[26] M. A. Bhandarkar, R. K. Brunner, L. V. Kale, “Run-time
Support for Adaptive Load Balancing”, Proceedings of the
15th IPDPS 2000 Workshops on Parallel and Distributed
Processing, Lecture Notes In Computer Science; Vol. 1800,
pp. 1152 — 1159, 2000

[27] K. Barker, N. Chrisochoides, “An Evaluation of a
Framework for the Dynamic Load Balancing of Highly
Adaptive and Irregular Parallel Applications”, Proceedings
of the ACM/IEEE SC2003 Conference, 2003

[28] K. Barker, A. Chernikov, N. Chrisochoides, K. Pingali, “A
Load Balancing Framework for Adaptive and Asynchronous
Applications”, IEEE Trans. on Parallel and Distributed
Systems, vol. 15, no. 2, pp. 183-192, Feb. 2004

[29] K. Schloegel, G. Karypis, V. Kumar, “Parallel Multilevel
Diffusion Schemes for Repartitioning of Adaptive Meshes”,
Technical Report 97-014, Univ. of Minnesota, 1997

[30] K. Schloegel, G. Karypis, V. Kumar, “A Unified Algorithm
for Load-Balancing Adaptive Scientific Simulations”,
Proceedings of the International Conference on
Supercomputing, 2000

	1. Introduction
	2. Autonomic Runtime Manager (ARM): An Overview
	2.1. An Illustrative Example - Wildfire Simulation
	2.2. Online Monitoring and Analysis
	2.3. Autonomic Planning and Scheduling
	2.3.1 Partitioning Strategy

	Graph Partitioning Approach
	2.3.2 Predictive Model

	3. Performance Evaluation
	Workload Distribution Quality for Problem Size with 65536 ce
	8 Processors
	16 Processors
	Workload Distribution Quality for Problem Size with 262144 c
	32 Processors

	4. Conclusions and Future Work
	References

