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Abstract 

 
Large-scale distributed applications are highly adaptive 
and heterogeneous in terms of their computational 
requirements. The computational complexity associated 
with each computational region or domain varies 
continuously and dramatically both in space and time 
throughout the whole life cycle of the application 
execution. Consequently, static scheduling techniques are 
inefficient to optimize the execution of these applications 
at runtime. In this paper, we present an Autonomic 
Runtime Manager (ARM) that uses the application spatial 
and temporal characteristics as the main criteria to self-
optimize the execution of distributed applications at 
runtime. The wildfire spread simulation is used as a 
running example to demonstrate the ARM effectiveness to 
control and manage the application’s execution. The 
behavior of the wildfire simulation depends on many 
complex factors that contribute to the adaptive and 
heterogeneous behaviors such as fuel characteristics and 
configurations, chemical reactions, balances between 
different modes of heat transfer, topography, and 
fire/atmosphere interactions. Consequently, the 
application execution cannot be predicted a priori and 
that makes static parallel or distributed algorithms very 
inefficient. The ARM is implemented using two modules: 
1) Online Monitoring and Analysis Module, and 2) 
Autonomic Planning and Scheduling Module. The online 
monitoring and analysis module interfaces with different 
kinds of application and system sensors that collect 
information to accurately determine the current state of 
the fire simulation in terms of the number and locations 
of burning and unburned cells as well as the states of the 
resources, and decides whether the autonomic planning 
and scheduling module should be invoked. The 
autonomic planning and scheduling module uses the 
resource capability models as well as the current state of 
the computations to repartition the whole computational 
workload into available processors. Our experimental 
results show that by using ARM the performance of the 
wildfire simulation has been improved by 45% when 

compared with a static partitioning algorithm. We also 
evaluate the performance of ARM using two partitioning 
strategies. One approach is to partition the wildfire 
simulation domain into Natural Regions (NR), where 
each region has the same temporal and spatial 
characteristics (e.g., burned (NR1), burning (NR2), and 
unburned regions (NR3)), and schedule each region into 
available processors.  The second approach is to view the 
wildfire domain as a graph and use a graph partitioning 
tool (e.g., ParMetis tool) to partition the graph into 
different domains. 

 
 
1. Introduction 
 

Large-scale distributed applications are highly 
adaptive and heterogeneous in terms of their 
computational requirements. The computational 
complexity associated with each computational region or 
domain varies continuously and dramatically both in 
space and time throughout the whole life cycle of the 
application execution. An example of such an application 
is a wildfire simulation of a national park, which 
simulates the wildfire spread behavior by taking into 
considerations many factors such as fuel characteristics 
and configurations, chemical reactions, balances between 
different modes of heat transfer, topography, and 
fire/atmosphere interactions. The computational load 
associated with “burning” cells is much larger than that 
for “unburned” cells that will lead to load imbalance 
conditions if that difference in computational 
requirement is not taken into consideration when the 
application computational load assigned to the processors 
at runtime. Consequently, static scheduling techniques 
are very inefficient to optimize the execution of 
applications that continuously change their temporal and 
spatial characteristics. The wildfire spread behavior is an 
example of this class of adaptive distributed applications.   

Optimizing the performance of parallel applications 
through load balancing algorithms is well studied in the 
literature and they can be classified as either static or 



dynamic algorithms.  The compile-time static approaches 
[8][9][10][11] assign work to processors before the 
computation starts and can be efficient if we know how 
the computations will progress a priori. On the other 
hand, if the workload cannot be estimated beforehand, 
dynamic load balancing strategies have to be used [12] 
[13][14][15]. For example, the diffusion-based methods 
[14][15] divide the processor pool into small and 
overlapping neighborhoods. The underloaded processor 
requests work levels from its neighbors and then 
determine how much work to request from each neighbor. 
Because of the overlapping neighborhood, the work will 
eventually diffuse throughout the system to achieve 
global load balancing. However, the local schemes are 
inadequate for heterogeneous and adaptive distributed 
applications because they lack a global view of the 
current state of the application. Some global schemes 
[16][17][18] predict future performance based on past 
information or based on some prediction tools, such as 
Network Weather Service (NWS)[19]. In [18], the 
authors use the predicted CPU information provided by 
NWS to guide scheduling decisions. Dome [17] remaps 
the computation based on the time each processor spends 
on computing during the last computational phase. Other 
optimization techniques are based on application-level 
scheduling [20][21][22].  AppLeS in [20][21] assumes 
the application performance model is static and provided 
by users and GHS system [22] assumes the total 
computation load of applications is a constant. 

Some researchers [23][24][25][26][27][28] have 
explored the load balancing issues for adaptive 
applications. The applications in [23][24][25] are 
adaptive mesh refinement either on unstructured or 
structured grid and load balancing is achieved by 
repartitioning the computations among processors after 
each refinement phase. [26] assumes the adaptation are 
infrequent and the load remains relatively stable between 
adaptations. [27][28] introduce a load balancing 
framework for asynchronous adaptive applications. 
However the wildfire simulation represents such 
applications which are loosely synchronous and 
constantly adapting, and requires more adaptive and 
efficient runtime optimization techniques. In this paper, 
we present an Autonomic Runtime Manager (ARM) that 
continuously monitors and analyzes the current state of 
the application as well as the computing and networking 
resources and then makes the appropriate planning and 
scheduling actions. The ARM control and management 
activities are overlapped with the application execution to 
minimize the overhead incurred using the ARM runtime 
optimization algorithm. 

The reminder of this paper is organized as follows: 
Section 2 gives an overview of the ARM system and a 
detailed analysis of the wildfire simulation. Results from 
the experimental evaluation of the ARM runtime 
optimization are presented in Section 3. We compare the 
performance of the wildfire simulation with and without 
the ARM system by using different partitioning 
approaches. A conclusion and outline of future research 
directions are presented in Section 4. 

 
2. Autonomic Runtime Manager (ARM): An 
Overview 
 

The Autonomic Runtime Manager (ARM) is 
responsible for controlling and managing the execution 
environment for large-scale distributed adaptive 
applications at runtime. Once the application is running, 
ARM will optimize the application execution to improve 
performance dynamically. The ARM main modules 
include (see Figure 1): 1) Online Monitoring and 
Analysis and 2) Autonomic Planning and Scheduling. 
Online monitoring and analysis module interfaces with 
different kinds of sensors that collect information about 
the fire propagation and environmental data as well as the 
information about the states of the underlying resources. 
These current state conditions are then used by the ARM 
to steer the simulation into the direction that maximizes 
the performance or any other desired property (e.g., 
accuracy).  Based on the objectives of the analysis (e.g., 
accurate vs. approximate but fast simulations), the 
planning engine will use the resource capability models 
as well as the performance models associated with the 
computations, and the knowledge repository to select the 
appropriate models and partitions for each region 
(empirical-based, physics-based) and then decompose the 
computational workloads into schedulable Computational 
Units (CUs). Based on the availability of computing 
resources and their access policies, the scheduler will 
dynamically schedule the CUs on available Resource 
Units (RUs) that can be clusters of high performance 
workstations, massive parallel computers, and/or 
distributed/shared memory multiprocessor systems. 

It is to be noted here that the ARM hides the 
underlying heterogeneity of the execution environment 
from the application and can interface the application to 
different types of execution models and different types of 
resources harnessing the maximum utilization of features 
and capabilities of the underlying environment.  In this 
paper, we will use the wildfire simulation as a running 
example to explain the main operations of the ARM 
modules and the performance gains that can be achieved. 
 



 
Figure 1. Autonomic Runtime Manager (ARM) Architecture 

 
 
2.1. An Illustrative Example - Wildfire 
Simulation  
 

In the wildfire simulation model, the entire area is 
represented as a 2-D cell-space composed of cells of 
dimensions l x b (l: length, b:  breadth). For each cell, 
there are eight major wind directions N, NE, NW, S, SE, 
SW, E, W as shown in Figure 2. The weather and 
vegetation conditions are assumed to be uniform within a 
cell, but may vary in the entire cell space. A cell interacts 
with its neighbors along all the eight directions. 
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Figure 2. Fire direction after ignition 

 
When a cell is ignited, its state will change from 

“unburned” to “burning”. During its “burning” phase, the 
fire will propagate to its eight neighbors along the eight 
directions. The direction and the value of the maximum 
fire spread rate within the burning cell can be computed 
using Rothermel’s fire spread model [3], which takes into 
account the wind speed and direction, the vegetation type, 
the fuel moisture and terrain type, such as slope and 
aspect, in calculating the fire spread rate. The fire 
behavior in eight directions including the spread rate, the 
time for fire to spread to eight neighbors, and the flame 
length could be determined using the elliptical growth 

model developed by Anderson [4]. When the simulation 
time advances to the ignition times of neighbors, the 
neighbor cells will ignite and their states will change 
from “unburned” to “burning”.  In a similar way, the fire 
would propagate to the neighbors of these cells. With 
different terrain, vegetation and weather conditions, the 
fire propagation could form very different spread patterns 
within the entire region.   

The wildfire simulation model used in this paper is 
based on fireLib[1], which is a C function library for 
predicting the spread rate and intensity of free-burning 
wildfires. It is derived directly from the BEHAVE [2] fire 
behavior algorithms for predicting fire spread in two 
dimensions, but is optimized for highly iterative 
applications such as cell- or wave-based fire growth 
simulation. We parallelized the sequential version of the 
fire simulation using MPI[5]. This parallelized fire 
simulation divides the entire cell space among multiple 
processors such that each processor works on its own 
portion and exchanges the necessary data with each 
others after each simulation time step.  The parallel 
wildfire simulation is a loosely synchronous iterative 
application. Each processor performs the computation on 
part of the whole space, maintains the ignition map which 
is the ignition times of all cells, and proceeds to the next 
ignition cell as the simulation advances.  

Because of the synchronization between iterations, the 
execution time during one iteration is effectively 
determined by the execution time of the slowest, or most 
heavily loaded processor. Consequently, the application 
performance will be severely degraded if the 
computational loads on all the processors are not well 
balanced at runtime. In the following sections, we present 



how the ARM system can effectively maximize the 
performance of the wildfire simulation at runtime. 
 
2.2. Online Monitoring and Analysis 
 

The online monitoring module monitors the current 
state of the fire simulation in terms of the number and the 
locations of burning cells and unburned cells. By 
profiling the application behavior at runtime, the 
computation time spent on each iteration can be obtained. 
In addition, the online monitoring module monitors the 
states of the resources involving in the execution of the 
fire simulation, such as the CPU load, available memory, 
network load etc. The runtime state information is stored 
in a database.  The online analysis module analyzes the 
runtime information and the load imbalance of the 
wildfire simulation and then determines whether or not 
the current allocation of workloads need to be changed.  

We use a metric that we refer to as the Imbalance 
Ratio (IR) to quantify the load imbalance that can be 
computed as:   
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Where Tcomp(pi, t) is the computation time at time step t on 
processor pi,  and, P denotes the number of processors.  
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=

is the computation time spent on the most 

lightly-loaded processor. We use a predefined threshold 
IRthreshold to measure how severe the load imbalance value 
is. If IR exceeds the specified threshold, the imbalance 
conditions are considered severe and repartitioning is 
required. Then the autonomic planning and scheduling 
module will be invoked to carry the appropriate actions to 
repartition the simulation workload. 

The selection of the threshold IRthreshold can 
significantly impact the effectiveness of the repartitioning 
algorithm. If the threshold chosen is too low, too many 
load repartitions will be triggered and the high overhead 
produced outweigh the expected performance gains. On 
the other hand, when the threshold is high, the load 
imbalance cannot be detected quickly and consequently 
the performance improvement will be reduced. In the 
experimental results subsection, we show how we can 
experimentally determine the appropriate threshold value.  
 
2.3. Autonomic Planning and Scheduling 
 

The autonomic planning and scheduling module 
partitions the whole fire simulation domain into several 
sub-domains based on the state of the application and the 
current loads on the underlying processors. To reduce the 
rescheduling overhead, we use a dedicated processor to 

run the autonomic planning and scheduling engine and 
overlap that with the worker processors executing the 
workload of the distributed wildfire simulation. Once the 
new partition assignments are finalized, a message is sent 
to all the worker processors to read the new assignments 
after they are done with the current computations. 
Consequently, the ARM runtime optimization activities 
are completely overlapped with the application execution 
and the overhead is less than 4% as will be discussed 
later. 
 
2.3.1 Partitioning Strategy 
 

We have developed and experimented with two 
partitioning strategies in our ARM prototype. 
Natural Region Partitioning Approach:  

This method uses the runtime information associated 
with the application current state to partition the fire 
simulation domain into several Natural Regions (NRs), 
where each region has the same temporal and spatial 
characteristics (e.g., burning (NR1), and unburned regions 
(NR2)) and assign each region to processors according to 
their capabilities.  

Let ACW(t) be the predicted Application 
Computational Workload at time t in terms of the number 
of cells in the “burning” region NB(t) and  “unburned” 
region NU(t).  ACW(t) can be defined as follows: 

( ) ( ) ( )B UACW t N t N t= +                    (2) 
We use Processor Load Ratio (PLR) metric to quantify 
the computing capacity for each processor such that 
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Let L(Pi,t) be the system load on processor Pi at time t  
which can be measured by using the CPU queue length. 
If L(Pi,t) <= 1, then there is only one process running on 
processor Pi and the estimated execution time of one 
burning cell on processor Pi at time t is given by: 

( , )B iT p t T= B
                                  (4) 

where TB is the estimated computation time of one 
burning cell on a dedicated processor. If L(Pi,t) > 1, there 
are other applications running on processor Pi. The 
expected computation time of one burning cell will be 
longer due to multiprogramming and can be estimated as 
follows: 

( , ) ( , )*B i iT p t L p t T= B
                        (5) 

Consequently, the average execution time for a burning 
cell at time t is computed as: 
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To balance the load on each processor, we define an 
adjustment factor, Processor Allocation Factor (PAF), 
which is inversely proportional to the processor execution 



time with respect to the average execution time. The PAF 
for processor pi can be computed as: 
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By normalizing the PAF, we could obtain the PLR for 
processor pi as follows: 
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Therefore the Processor Computational Load (PCL) to be 
assigned to processor pi is given as: 

( , ) ( , ) ( )i iPCL p t PLR p t ACW t= ×       (9) 
Then the corresponding workload of each natural region 
will be assigned to processors according to their PCLs. 
 
Graph Partitioning Approach 

The wildfire simulation domain can be represented as 
an undirected weighted graph G(V, E) of V vertices and E 
edges. The cells of the domain are the vertices of the 
graph and an edge exists between two graph vertices if 
these cells are neighbors. Each graph vertex has a weight 
associated with it, which indicates the workload of the 
corresponding cell. Burning cells have a larger weight 
than the unburned cells because of the difference in their 
computational complexities. Each edge of the graph also 
has a weight that models the interprocessor 
communication. Thus a graph partitioning for the fire 
simulation domain yields the assignment of cells to 
processors.  

There are several graph partitioning tools that can be 
used [24][29]. The objective of the graph partitioning 
algorithm is to find a reasonable load balance that 
minimizes the edgecut and the interprocessor 
communication; where edgecut is defined as the total 
weight of edges that cross the partitions. In our ARM 
prototype, we have implemented the ParMetis[29] graph 
partitioning tool. The ParMetis is a widely used graph 
partitioning program that is developed at the University 
of Minnesota. We use ParMETIS_V3_PartKway() 
routine to initially partition the fire simulation domain 
into sub-domains and use 
ParMETIS_V3_AdaptiveRepart() routine to repartition 
the domain when the distribution results in load 
imbalance ratio larger than the predetermine threshold. 
ParMETIS_V3_AdaptiveRepart routine makes use of a 
Unified Repartitioning Algorithm [30] for adaptive 
repartitioning that combines the best characteristics of 
remapping and diffusion-based repartitioning schemes. 
Repartitioning is performed on the graph using the 
weights of the vertices and edges that are computed by 
the online monitoring and analysis module to reflect the 
current state of the fire simulation in terms of the 
locations of burning cells and unburned cells. 

 
2.3.2 Predictive Model 
 

As discussed in section 2.1, the wildfire simulation 
maintains an ignition map to store the ignition time of 
each cell. As the fire simulation proceed, it will calculate 
the time that fire spreads from the current burning cell to 
its eight neighbors and update the ignition times of those 
neighbors accordingly. Therefore, at any given time step, 
based on the ignition map of the domain, we can predict 
what are the next N cells that will be ignited.  

The ARM system implemented sensors to collect the 
ignition time changes of cells at run time and stores them 
into the ARM database. The autonomic planning and 
scheduling module will compare the ignition times of 
cells with the current time and obtain the next N cells that 
will burn. Thus, the predicted application computational 
workload ACWpred(t) can be computed as follows: 

( ) ( ) ( ) ( ( ) ( ))pred B B pred U B predACW t N t N t N t N t= + + −       (10) 

where NB(t) and NU(t) are the number of burning cells and 
unburned cells at time step t as defined in Equation (2). 
NBpred(t) denotes the predicted next N burning cells at time 
step t. The automatic planning and scheduling module 
will use the predicted application workload to partition 
the fire simulation domain and assign the corresponding 
workload to available processors.  

In the next section, we evaluate the performance of 
these two partitioning techniques for different problem 
sizes and different number of processors. 

 
3. Performance Evaluation 
 

The experiments were performed on two problem 
sizes for the fire simulation. The first problem size is a 
256*256 cell space with 65536 cells. The second problem 
has a 512*512 cell domain with 262144 cells. To 
introduce a heterogeneous fire patterns, the fire is started 
in the southwest region of the domain and then 
propagates northeast along the wind direction until it 
reaches the edge of the domain. In order to make the 
evaluation for different problem sizes accurate, we 
maintain the same ratio of burning cells to 17%; that is 
the total number of burning cells when the simulation 
terminates is about 17% of the total cells for both 
problem sizes. 

We begin with an examination of the effects of the 
imbalance ratio threshold on application performance. 
We ran the fire simulation with a problem size of 65536 
on 16 processors and varied the IRthreshold values to 
determine the best value that minimizes the execution 
time.



 
Figure 3. The sensitivity of the fire simulation to the 
IRthreshold value 
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Figure 4. Imbalance ratios for 2000 time steps of the fire 
simulation for a problem size = 65536, number of 
processors = 16, IRthreshold = 50% 

 
Table 1. 

Workload Distribution Quality for Problem Size with 65536 cells 
8 Processors 16 Processors Runtime Optimization Approach 

Max/Min 
Computation 

Std 
Dev 

Max/Min 
Computation 

Std 
Dev 

Static Scheduling 1841/259 sec 626 921/129 316 
Natural Region Approach 940/ 693 sec 86 464/299 53 
Graph Partitioning Approach 923/633 sec 104 463/285 59 

Table 2. 
Workload Distribution Quality for Problem Size with 262144 cells 

16 Processors 32 Processors Runtime Optimization Approach 
Max/Min 

Computation 
Std 
Dev 

Max/Min 
Computation 

Std 
Dev 

Static Scheduling 16339/2042 sec 5289 8950/1031 sec 2097 
Natural Region Approach 8375/6603 sec 382 3662/2340 sec 467 
Graph Partitioning Approach 8441/5163 sec 807 3744/2038 sec 570 

 
 
The results of this experiment are shown in Figure 3. The 
execution times are taken as the average for three runs. 
We observed that the best execution time, 713 seconds, 
was achieved when the IRthreshold is equal to 30%.  We 
need to do more research to determine the relationship 
between the number of processors and problem size to the 
threshold value. In the experimental results, we assume 
that once the load imbalance ratio becomes above 30%, 
the repartitioning is triggered. 

It is important to notice that the online monitoring and 
analysis and autonomic planning and scheduling 
activities are all carried out on a separate processor and 
completely overlapped with the worker processor 
computations. 

Figure 4 shows how the imbalance ratios increase 
linearly as the simulation progresses using static 
partitioning algorithm and compare that with our runtime 

optimization algorithm. For example, at 2000 time steps 
of the simulation, the imbalance ratio for static 
scheduling is about 450% while it is around 25% in our 
approach. In fact, using our approach, the imbalance ratio 
is kept bound within a small range. 

We now evaluate the ARM’s performance in 
optimizing the execution time of the wildfire simulation 
using the following three metrics: 1) the quality of the 
workload distribution for all processors; 2) the overall 
execution time of the wildfire simulation; and 3) the 
overhead incurred by the ARM system.  

First we evaluate the quality of the workload 
distribution. In Figure 5a, we see a processor-by-
processor breakdown of the wildfire simulation’s 
performance on 32 processors with a problem size of 
262144 cells. Most of the computation is clustered within 
the range from processor 5 through 15. Figure 5b and 5c 
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Figure 5. Breakdown of the Execution time for different optimization techniques applied to an application with 
22144 cells running on 32 processors. (a) Static scheduling. (b) Runtime optimization with natural region 
partitioning approach. (c) Runtime optimization with graph partitioning approach. 
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Figure 6. Overall performance of different optimization approaches on different processor configurations. (a) 
Problem size 65536 cells. (b) Problem size 262144 cells. 
 
provide the results for runtime optimization using the 
natural region partitioning approach and the graph 
partitioning approach, respectively. As we can see, for 
both approaches, the computational load is distributed 
evenly across the processors. The computation time has a 
standard deviation of roughly 467 for natural region 
partitioning approach, and 570 for the graph partitioning 
approach, compared with 2097 for the static scheduling 
approach. Table 1, 2 summarizes the standard deviations 
of the computation time for two problem sizes on 
different processor configurations. 

Our second metric is the overall execution time of the 
wildfire simulation. Figure 6 demonstrates the overall 
execution time with different runtime optimization 
approaches as well as the static scheduling algorithm on 
two problem sizes and different processor configurations. 
For problem size 65536 cells on 8 processors, the ARM 
system with graph partitioning approach provides an 
improvement of 45 percent over static scheduling, 3 
percent over runtime optimization with the natural region 

partitioning approach. On 16 processors, these numbers 
are 45 percent and 6 percent. For problem size 262144 
cells on 16 processors, the numbers are 44 percent and 3 
percent, while, on 32 processors, they are 41 percent and 
5 percent. 

As we can see in Tables 1 and 2, the natural region 
partitioning approach is more successful than the graph 
partitioning approach in terms of data distribution quality 
with a smaller standard deviation for the processor 
computation times. However, as shown in Figure 6, the 
overall execution time with the natural region partitioning 
approach is slightly larger than that of the graph 
partitioning approach. The reason is that graph 
partitioning approach partitions the graph in a way that 
both balances the workload and minimizes the 
communication time between sub-domains, which 
eventually reduces the overall execution time. 

 
 



Table 3. 
 Overhead imposed by ARM system for problem size 65536 cells 

ARM overhead Number of 
Processors Data Collecting Time Reading New Partition Time Prcnt. 

8 1.8 sec 8.9 sec 0.8% 
16 1.9 sec 15.5 sec 2.4% 

Table 4. 
Overhead imposed by ARM system for problem size 262144 cells 

ARM overhead Number of 
Processors Data Collecting Time Reading New Partition Time Prcnt. 

16 21.6 sec 70 sec 0.9% 
32 23.1 sec 165.9 sec 3.4% 

 
 
Finally we show that the overhead incurred by the 

ARM system is small and does not have a negative 
impact on the application performance. In our 
implementation, one processor is dedicated to run the two 
ARM modules: the online monitoring and analysis and 
the autonomic planning and scheduling modules. That 
means the ARM computations are completely overlapped 
with the computations of the distributed fire simulation. 
Consequently, the only overhead incurred in our 
approach is the time spent by the fire simulation to send 
its current state information to ARM sensors and the time 
spent in reading the new assigned simulation loads to the 
worker processors.  To quantify the overhead on the 
whole application performance, we conducted 
experiments to measure the overhead introduced by our 
algorithm. Tables 3 and 4 summarize the overheads 
caused by the ARM system for two problem sizes 
running on different processor configurations. In all 
cases, the overhead cost is less than 4% of the overall 
execution time. 
 
4. Conclusions and Future Work 
 

In this paper, we described an architecture for an 
autonomic runtime manager that maximizes the parallel 
execution of large scale applications at runtime by 
continuously monitoring and analyzing the state of the 
computations and the underlying resources, and 
efficiently exploit the physics of the application. In our 
approach, the physics of the problem (e.g., how fire 
propagates and how it is impacted by wind speed and 
direction, fuel, moisture, etc.) and its current state are the 
main criterion used in our runtime optimization 
algorithm. The Autonomic Runtime Manager (ARM) 
main modules are the Online Monitoring and Analysis, 
and Autonomic Planning and Scheduling modules. The 
execution of the ARM modules is overlapped with the 
distributed application being self-optimized to reduce the 
overhead. We show that the overhead of our ARM 

system is less than 4%. We have also evaluated the ARM 
performance on a large wildfire simulation for different 
problem sizes. The experimental results show that using 
the ARM runtime optimization, the performance of the 
wildfire simulation can be improved by up to 45% when 
compared to the static parallel partitioning algorithm. We 
also evaluated different partitioning methods such as the 
natural region partitioning approach and the graph 
partitioning approach. 
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