
Autonomic Computing: An Overview�

Manish Parashar1 and Salim Hariri2

1 The Applied Software Systems Laboratory,
Rutgers University, Piscataway NJ, USA

2 High Performance Distributed Computing Laboratory,
University of Arizona, Tucson, AZ, USA

parashar@caip.rutgers.edu, hariri@ece.arizona.edu

Abstract. The increasing scale complexity, heterogeneity and dynamism of net-
works, systems and applications have made our computational and information
infrastructure brittle, unmanageable and insecure. This has necessitated the in-
vestigation of an alternate paradigm for system and application design, which is
based on strategies used by biological systems to deal with similar challenges –
a vision that has been referred to as autonomic computing. The overarching goal
of autonomic computing is to realize computer and software systems and ap-
plications that can manage themselves in accordance with high-level guidance
from humans. Meeting the grand challenges of autonomic computing requires
scientific and technological advances in a wide variety of fields, as well as new
software and system architectures that support the effective integration of the
constituent technologies. This paper presents an introduction to autonomic com-
puting, its challenges, and opportunities.

1 Introduction

Advances in networking and computing technology and software tools have resulted in
an explosive growth in networked applications and information services that cover all
aspects of our life. These sophisticated applications and services are extremely com-
plex, heterogeneous and dynamic. Further, the underlying information infrastructure
(e.g., the Internet) globally aggregates large numbers of independent computing and
communication resources, data stores and sensor networks, and is itself similarly large,
heterogeneous, dynamic and complex. The combination has resulted in application de-
velopment, configuration and management complexities that break current computing
paradigms based on static requirements, behaviors, interactions and compositions. As
a result, applications, programming environments and information infrastructures are
rapidly becoming brittle, unmanageable and insecure. This has necessitated the inves-
tigation of an alternate paradigm for system and application design, which is based on
strategies used by biological systems to deal with similar challenges of scale, complex-

� The research presented in this paper is supported in part by the National Science Foundation
via grants numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495,
CNS 0426354 and IIS 0430826.

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 247–259, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



248 M. Parashar and S. Hariri

ity, heterogeneity, and uncertainty – a vision that has been referred to as autonomic
computing [5].

The Autonomic Computing Paradigm has been inspired by the human autonomic
nervous system. Its overarching goal is to realize computer and software systems and
applications that can manage themselves in accordance with high-level guidance from
humans. Meeting the grand challenges of autonomic computing requires scientific and
technological advances in a wide variety of fields, as well as new programming paradigm
and software and system architectures that support the effective integration of the con-
stituent technologies. This paper presents an introduction to autonomic computing, its
challenges, and opportunities. In this paper, we first give an overview of the architec-
ture of the nervous system and use it to motivate the autonomic computing paradigm.
We then outline the key challenges of autonomic computing and present an overview of
existing autonomic computing systems and applications.

2 The Autonomic Nervous System

The human nervous system is, to the best of our knowledge, the most sophisticated
example of autonomic behavior existing in nature today. It is the body’s master con-
troller that monitors changes inside and outside the body, integrates sensory inputs,
and effects appropriate response. In conjunction with the endocrine system, the nervous
system is able to constantly regulate and maintain homeostasis. A homeostatic system
(e.g., a large organization, an industrial firm, a cell) is an open system that maintains
its structure and functions by means of a multiplicity of dynamic equilibriums that are
rigorously controlled by interdependent regulation mechanisms. Such a system reacts
to every change in the environment, or to every random disturbance, through a series of
modifications that are equal in size and opposite in direction to those that created the
disturbance. The goal of these modifications is to maintain internal balances.

The manifestation of the phenomenon of homeostasis is widespread in the human
system. As an example, consider the mechanisms that maintain the concentration of
glucose in the blood within limits - if the concentration should fall below about 0.06
percent, the tissues will be starved of their chief source of energy; if the concentra-
tion should rise above about 0.18 percent, other undesirable effects will occur. If the
blood-glucose concentration falls below about 0.07 percent, the adrenal glands secrete
adrenaline, which causes the liver to turn its stores of glycogen into glucose. This passes
into the blood and the blood-glucose concentration drop is opposed. Further, a falling
blood-glucose also stimulates appetite causing food intake, which after digestion pro-
vides glucose. On the other hand, if the blood-glucose concentration rises excessively,
the secretion of insulin by the pancreas is increased, causing the liver to remove the
excess glucose from the blood. Excess glucose is also removed by muscles and skin,
and if the blood-glucose concentration exceeds 0.18 percent, the kidneys excrete excess
glucose into the urine. Thus, there are five activities that counter harmful fluctuations in
blood-glucose concentration [2].

The above example focuses on the maintenance of the blood-glucose concentration
within safe or operational limits that have been ‘predetermined’ for the species. Similar
control systems exist for other parameters such as systolic blood pressure, structural



Autonomic Computing: An Overview 249

integrity of the medulla oblongata, severe pressure of heat on the skin, and so on. All
these parameters have a bearing on the survivability of the organism, which in this case
is the human body. However, all parameters are not uniform in their urgency or their
relations to lethality. Parameters that are closely linked to survival and are closely linked
to each other so that marked changes in one leads sooner or later to marked changes in
the others, have been termed as essential variables by Ashby in his study of the design
for a brain [2]. This is discussed below.

2.1 Ashby’s Ultrastable System

Every real machine embodies no less than an infinite number of variables, and for our
discussion we can safely think of the human system as represented by a similar sets
of variables, of which we will consider a few. In order for an organism to survive,
its essential variables must be kept within viable limits (see Figure 1). Otherwise the
organism faces the possibility of disintegration and/or loss of identity (i.e., dissolution
or death) [14].

The body’s internal mechanisms continuously work together to maintain its essential
variables within their limits. Ashby’s definition of adaptive behavior as demonstrated
by the human body follows from this observation. He states that a form of behavior is
adaptive if it maintains the essential variables within physiological limits [2] that define
the viability zone. Two important observations can be made:

1. The goal of the adaptive behavior is directly linked with the survivability of the
system.

2. If the external or internal environment pushes the system outside its physiological
equilibrium state the system will always work towards returning to the original
equilibrium state.

Ashby observed that many organisms undergo two forms of disturbances: (1) fre-
quent small impulses to the main variables and (2) occasional step changes to its param-
eters. Based on this observation, he devised the architecture of the Ultra-Stable system
that consists of two closed loops (see Figure 2): one that controls small disturbances
and a second that is responsible for longer disturbances.

Fig. 1. Essential variables



250 M. Parashar and S. Hariri

Reacting Part R

Environment

Step Mechanisms/Input Parameter S

Essential Variables

Motor
channels

Sensor
channels

 

Fig. 2. The Ultra-Stable system architecture [2]

As shown in Figure 2, the ultrastable system consists of two sub-systems, the en-
vironment and the reacting part R. R represents a subsystem of the organism that is
responsible for overt behavior or perception. It uses the sensor channels as part of its
perception capability and motor channels to respond to the changes impacted by the
environment. These set of sensors and motor channels constitute the primary feedback
between R and the environment. We can think of R as a set of behaviors of the organ-
ism that gets triggered based on the changes affected by the environment. S represents
the set of parameters that triggers changes in relevant features of this behavior set. Note
that in Figure 2, S triggers changes only when the environment affects the essential vari-
ables in a way that causes them to go outside their physiological limits. As mentioned
above, these variables need to be maintained within physiological limits for any adap-
tive system/organism to survive. Thus we can view this secondary feedback between
the environment and R as responsible for triggering the adaptive behavior of the organ-
ism. When the changes impacted by the environment on the organism are large enough
to throw the essential variables out of their physiological limits, the secondary feedback
becomes active and changes the existing behavior sets of the organism to adapt to these
new changes. Notice that any changes in the environment tend to push an otherwise
stable system to an unstable state. The objective of the whole system is to maintain the
subsystems (the environment and R) in a state of stable equilibrium. The primary feed-
back handles finer changes in the environment with the existing behavior sets to bring
the whole system to stable equilibrium. The secondary feedback handles coarser and
long-term changes in the environment by changing its existing behavior sets and even-
tually brings back the whole system to stable equilibrium state. Hence, in a nutshell,
the environment and the organism always exist in a state of stable equilibrium and any
activity of the organism is triggered to maintain this equilibrium.

2.2 The Nervous System as a Subsystem of Ashby’s Ultrastable System

The human nervous system is adaptive in nature. In this section we apply the concepts
underlying the Ashby’s ultrastable system to the human nervous system. The nervous
system is divided into the Peripheral Nervous System (PNS) and the Central Nervous
System (CNS). The PNS consists of sensory neurons running from stimulus receptors
that inform the CNS of the stimuli and motor neurons running from the CNS to the
muscles and glands, called effectors, which take action. CNS is further divided into two
parts: sensory-somatic nervous system and the autonomic nervous system. Figure 3
shows the architecture of the autonomic nervous system as an Ashby utrastable system.



Autonomic Computing: An Overview 251

S = f (change in EV)

Internal 
environment

External
environmentReacting Part R

Sensory Neurons

Motor Neurons

Sensor Channels 

Motor Channels 

Environment

Essential Variables

Step Mechanisms/Input Parameter S

(EV)

 

Fig. 3. Nervous system as part of an ultrastable system

As shown in Figure 3, the Sensory and Motor neurons constitute the Sensor and Mo-
tor channels of the ultrastable system. The triggering of essential variables, selection of
the input parameter S and translation of these parameters to the reacting part R consti-
tute the workings of the Nervous System. Revisiting the management of blood-glucose
concentration within physiological limits discussed earlier, the five mechanisms that get
triggered when the essential variable (i.e., concentration of glucose in blood) goes out of
the physiological limits change the normal behavior of the system such that the reacting
part R works to bring the essential variable back within limits. It uses its motor chan-
nels to effect changes so that the internal environment and the system (organism) come
into the state of stable equilibrium. It should be noted that the environment here is di-
vided into the internal environment and external environment. The internal environment
represents changes impacted internally within the human system and the external envi-
ronment represents changes impacted by the external world. However, the goal of the
organism is to maintain the equilibrium of the entire system where all the sub-systems
(the organism or system itself, and the internal and external environments) are in stable
equilibrium.

3 The Autonomic Computing Paradigm

An autonomic computing paradigm, modeled after the autonomic nervous system, must
have a mechanism whereby changes in its essential variables can trigger changes in the
behavior of the computing system such that the system is brought back into equilibrium
with respect to the environment. This state of stable equilibrium is a necessary condition
for the survivability of the organism. In the case of an autonomic computing system, we
can think of survivability as the system’s ability to protect itself, recover from faults,
reconfigure as required by changes in the environment, and always maintain its oper-
ations at a near optimal performance. Its equilibrium is impacted by both the internal
environment (e.g., excessive memory/CPU utilization) and the external environment
(e.g., protection from an external attack).

An autonomic computing system requires: (a) sensor channels to sense the changes
in the internal and external environment, and (b) motor channels to react to and counter
the effects of the changes in the environment by changing the system and maintaining



252 M. Parashar and S. Hariri

equilibrium. The changes sensed by the sensor channels have to be analyzed to deter-
mine if any of the essential variables has gone out of their viability limits. If so, it has
to trigger some kind of planning to determine what changes to inject into the current
behavior of the system such that it returns to the equilibrium state within the new en-
vironment. This planning would require knowledge to select the right behavior from a
large set of possible behaviors to counter the change. Finally, the motor neurons execute
the selected change. ‘Sensing’, ‘Analyzing’, ‘Planning’, ‘Knowledge’ and ‘Execution’
are in fact the keywords used to identify an autonomic system [7, 3]. We use these con-
cepts to present the architecture of an autonomic element and autonomic applications
and systems.

3.1 Autonomic Computing – A Holistic View

As motivated above, the emerging complexity in computing systems, services and ap-
plications requires the system/software architectures to be adaptive in all its attributes
and functionality (performance, security, fault tolerance, configurability, maintainabil-
ity, etc.).

We have been successful in designing and implementing specialized computing
systems and applications. However, the design of general purpose dynamically pro-
grammable computing systems and applications that can address the emerging needs
and requirements remains a challenge. For example, distributed (and parallel) comput-
ing has evolved and matured to provide specialized solutions to satisfy very stringent
requirements in isolation, such as security, dependability, reliability, availability, perfor-
mance, throughput, efficiency, pervasive/amorphous, automation, reasoning, etc. How-
ever, in the case of emerging systems and applications, the specific requirements, objec-
tives and choice of specific solutions (algorithms, behaviors, interactions, etc.) depend
on runtime state, context, and content, and are not known a priori. The goal of auto-
nomic computing is to use appropriate solutions based on current state/context/content
and on specified policies.

The computer evolution have gone through many generations starting from single
process single computer system to multiple processes running on multiple geographi-
cally dispersed heterogeneous computers that could span several continents (e.g., Grid).
The approaches for designing the corresponding computing systems and applications
have been evolutionary and ad hoc. Initially, the designers of such systems were mainly
concerned about performance, and focused intensive research on parallel processing
and high performance computer architectures and applications to address this require-
ment. As the scale and distribution of computer systems and applications evolved, the
reliability and availability of the systems and applications became the major concern.
This, in turn has led to separate research in fault tolerance and reliability, and to system
and applications that were ultra reliable and resilient, but not high performance. In a
similar way, ultra secure computing systems and applications have been developed to
meet security requirement in isolation.

This ad hoc approach has resulted in the successful design and development of spe-
cialized computing systems and applications that can optimize a few of the attributes
or functionalities of computing systems and applications. However, as we highlighted
before, the emerging systems and applications and their contexts are dynamic. Con-



Autonomic Computing: An Overview 253

sequently, their requirements will change during their lifetimes and may include high
performance, fault tolerance, security, availability, configurability, etc. Consequently,
what is needed is a new computing architecture and programming paradigm that takes
a holistic approach to the design and development of computing systems and appli-
cations. Autonomic computing provides such an approach by enabling the design and
development of systems/applications that can adapt themselves to meet requirements
of performance, fault tolerance, reliability, security, etc., without manual intervention.
Every element in an autonomic system or application consists of two main modules:
the functional unit that performs the required services and functionality, and the man-
agement/control unit that monitors the state and context of the element, analyze its cur-
rent requirements (performance, fault-tolerance, security, etc.) and adapts to satisfy the
requirement(s).

3.2 Architecture of an Autonomic Element

An autonomic element (see Figure 4) is the smallest unit of an autonomic application
or system. It is a self-contained software or system module with specified input/output
interfaces and explicit context dependencies. It also has embedded mechanisms for self-
management, which are responsible for implementing its functionalities, exporting con-
straints, managing its behavior in accordance with context and policies, and interacting
with other elements. Autonomic systems and applications are constructed from auto-
nomic elements as dynamic, opportunistic and/or ephemeral compositions. These com-
positions may be defined by policies and context, and may be negotiated. The key parts
of an autonomic element are described below.

– Managed Element: This is the smallest functional unit of the application and con-
tains the executable code (program, data structures) (e.g., numerical model of a
physical process). It also exports its functional interfaces, its functional and behav-

E

Internal External

Environment

A

KE
programmed 

behavior

PE

M&A
S

E

KE
autonomic
behavior

cardinal

M & A Cardinals

PE

M&A

L G

Managed Element
S

E

Control

Input ports Output ports

Fig. 4. An autonomic element



254 M. Parashar and S. Hariri

ioral attributes and constraints, and its control mechanisms. At runtime, the man-
aged element can be affected in different ways, for example, it can encounter a
failure, run out of resources, be externally attacked, or may hit a bottleneck impact-
ing performance.

– Environment: The environment represents all the factors that can impact the man-
aged element. The environment and the managed element can be viewed as two
subsystems forming a stable system. Any change in the environment causes the
whole system to go from a stable state to an unstable state. This change is then offset
by reactive changes in the managed element causing the system to move back from
the unstable state to a different stable state. Notice that the environment consists
of two parts - internal and external. The internal environment consists of changes
internal to the managed element, which reflects the state of the application/system.
The external environment reflects the state of the execution environment.

– Control: Each autonomic element has its own manager that (1) accepts user-
specified requirements (performance, fault tolerance, security, etc.), (2) interro-
gates the element and characterizes its state, (3) senses the state of the overall
system/application, (4) determines state of the environment, and (5) uses this in-
formation to control the operation of the managed element in order to effectively
achieve the specified behaviors. This control process repeats continuously through-
out the lifetime of the autonomic element. As shown in Figure 4, the control part
consists of two control loops - the local loop and the global loop.

The local loop can only handle known environment states and is based on knowl-
edge that is embedded in the element. Its knowledge engine contains the mapping
of environment states to behaviors. For example, when the load on the local system
goes above the threshold value, the local control loop will work towards balancing
the load by either controlling the local resources available to the managed element
or by reducing the size of the problem handled by this element. This will work only
if the local resources can handle the computational requirements. However, the lo-
cal loop is blind to the overall behavior of the entire application or system and thus
can not achieve the desired global objectives. In a scenario where the entire sys-
tem is affected, the local loop will continue repeating local optimization that may
lead to degradation in performance and result in sub-optimal or chaotic behavior.
At some point, one of the essential variables of the system (in this case, a perfor-
mance cardinal) may overshoot their limits. This is when the global loop comes
into action.

The global loop can handle unknown environment states and may involve ma-
chine learning, artificial intelligence and/or human intervention. It uses four cardi-
nals for the monitoring and analysis of the managed elements. These are perfor-
mance, configuration, protection and security. These cardinals are like the essential
variables described in Ashby’s ultrastable system. This control loop results in new
knowledge being introduced into the managed element to enable it to adapt its ex-
isting behaviors to respond to the changes in the environment. For example, the
desired load-balancing behavior of the managed element (as directed by the local
loop) requires its local load to be within prescribed limits. However, the local loop
might not be able to maintain the local load within these acceptable limits, which
in turn might degrade the performance of the overall system. Consequently, this-



Autonomic Computing: An Overview 255

change in the overall performance cardinal triggers the global loop, which then
selects an alternate behavior pattern that can address the new load conditions.
The new plan is then introduced into the managed element and used to adapt its
behavior.

3.3 Autonomic Computing Systems and Applications

Autonomic applications and systems are composed from autonomic elements, and are
capable of managing their behaviors and their relationships with other systems/
applications in accordance with high-level policies. Autonomic systems/applications
exhibit eight defining characteristics [7]:

– Self Awareness: An autonomic application/system “knows itself” and is aware of
its state and its behaviors.

– Self Configuring: An autonomic application/system should be able configure and
reconfigure itself under varying and unpredictable conditions.

– Self Optimizing: An autonomic application/system should be able to detect sub-
optimal behaviors and optimize itself to improve its execution.

– Self-Healing: An autonomic application/system should be able to detect and re-
cover from potential problems and continue to function smoothly.

– Self Protecting: An autonomic application/system should be capable of detecting
and protecting its resources from both internal and external attack and maintaining
overall system security and integrity.

– Context Aware: An autonomic application/system should be aware of its execution
environment and be able to react to changes in the environment.

– Open: An autonomic application/system must function in an heterogeneous world
and should be portable across multiple hardware and software architectures. Con-
sequently it must be built on standard and open protocols and interfaces.

– Anticipatory: An autonomic application/system should be able to anticipate to the
extent possible, its needs and behaviors and those of its context, and be able to
manage itself proactively.

Sample self-managing system/application behaviors include installing software
when it is detected that the software is missing (self-configuration), restarting a failed
element (self-healing), adjusting current workload when an increase in capacity is ob-
served (self-optimization) and taking resources offline if an intrusion attempt is detected
(self-protecting). Each of the characteristics listed above represents an active research
area. Generally, self-management is addressed in four primary system/application as-
pects, i.e., configuration, optimization, protection, and healing. Further, self-
management solutions typically consists of the steps outlined above: (1) the application
and underlying information infrastructure provide information to enable context and
self awareness; (2) system/application events trigger analysis, deduction and planning
using system knowledge; and (3) plans are executed using the adaptive capabilities of
the application/system. An autonomic application or system implements self-managing
attributes using the control loops described above to collect information, make deci-
sions, and adapt, as necessary.



256 M. Parashar and S. Hariri

4 Autonomic Computing Research Issues and Challenges

Meeting the grand challenges of autonomic computing presents fundamental and sig-
nificant research challenges that span all levels, from the conceptual level to architec-
ture, middleware, and applications. Key research issues and challenges are presented
below.

Conceptual Challenges: Conceptual research issues and challenges include (1) defin-
ing appropriate abstractions and models for specifying, understanding, controlling, and
implementing autonomic behaviors; (2) adapting classical models and theories for ma-
chine learning, optimization and control to dynamic and multi agent system; (3) pro-
viding effective models for negotiation that autonomic elements can use to establish
multilateral relationships among themselves; and (4) designing statistical models of
large networked systems that will let autonomic elements or systems detect or predict
overall problems from a stream of sensor data from individual devices.

Architecture Challenges: Autonomic applications and systems will be constructed
from autonomic elements that manage their internal behavior and their relationships
with other autonomic elements in accordance with policies that humans or other el-
ements have established. As a result, system/application level self-managing behav-
iors will arise from the self-managing behaviors of constituent autonomic elements and
their interactions. System and software architectures in which local as well as global
autonomic behaviors can be specified, implemented and controlled in a robust and pre-
dictable manner remains a key research challenge.

Middleware Challenges: The primary middleware level research challenge is provid-
ing the core services required to realize autonomic behaviors in a robust, reliable and
scalable manner, in spite of the dynamism and uncertainty of the system and the ap-
plication. These include discovery, messaging, security, privacy, trust, etc. Autonomic
systems/applications will require autonomic elements to identify themselves, discover
and verify the identities of other entities of interest, dynamically establish relationships
with these entities, and to interact in a secure manner. Further the middleware itself
should be secure, reliable and robust against new and insidious forms of attack that use
self-management based on high-level policies to their own advantage.

Application Challenges: The key challenges at the application level is the formula-
tion and development of systems and applications that are capable of managing (i.e.,
configuring, adapting, optimizing, protecting, healing) themselves. This includes pro-
gramming models, frameworks and middleware services that support the definition of
autonomic elements, the development of autonomic applications as the dynamic and
opportunistic composition of these autonomic elements, and the policy, content and
context driven definition, execution and management of these applications.

5 The Autonomic Computing Landscape

There have been a number of research efforts in both academia and industry addressing
autonomic computing concepts and investigating the issues outlined above. Existing



Autonomic Computing: An Overview 257

Table 1. Systems incorporating autonomic properties

System Application area Key autonomic issues addressed
OceanStore [4, 9] Global, consistent,

highly-available persis-
tent data storage.

Self-healing, self-optimization, self-
configuration, self-protection. Policy-
based caching, routing substrate
adaptation, autonomic replication,
continuous monitoring, testing, and
repairing.

Storage Tank [11] Multi-platform, univer-
sally accessible storage
management.

Self-optimization, self-healing. Policy-
based storage and data management,
server redirection and log-based recov-
ery.

Oceano [20] Cost effective scalable
management of com-
puting resources for
software farms.

Self-optimization, self-awareness. Au-
tonomic demands distribution, constant
component monitoring.

SMART DB2 [10] Reduction of human in-
tervention & cost for
DB2.

Self-optimization, self-configuration
Autonomic index determination, disas-
ter recovery, continuous monitoring of
DB2’s health and alerting the DBA.

AutoAdmin [13] Reducing Total Cost of
Ownership (TCO)

Self-tuning, self-administration. Usage
tracking, index tuning and recommend-
ing based on workload.

Sabio [17] Autonomically Classi-
fies Large Number of
documents

Self-organization, self-awareness.
Group documents according to the
word and phrase usage.

Q-Fabric [16] System Support for
Continuous Online
Management.

Self-organization. Continuous online
quality management through ”cus-
tomizability” of each application’s
QoS.

projects and products can be broadly classified as (1) systems that incorporate auto-
nomic mechanisms for problem determination, monitoring, analysis, management, etc.,
into systems, and (2) systems that investigate models, programming paradigms and de-
velopment environments to support the development of autonomic systems and applica-
tions. A sampling of systems belonging to these categories are summarized in Tables 1
and Table 2 respectively.

6 Summary and Conclusion

In this paper, we introduced the autonomic computing paradigm, which is inspired
by biological systems such as the autonomic human nervous system, and enables the
development of self-managing computing systems and applications. The
systems/applications use autonomic strategies and algorithms to handle complexity
and uncertainties with minimum human intervention. An autonomic application/system
is a collection of autonomic elements, which implement intelligent control loops to



258 M. Parashar and S. Hariri

Table 2. Systems supporting development of autonomic applications and systems

System Focus Autonomic issues ad-
dressed

KX (Kinesthetics eXtreme) [8] Retrofitting automicity. Enabling autonomic
properties in legacy
systems.

Anthill [12] P2P systems based on
Ant colonies.

Complex adaptive be-
havior of P2P systems.

Astrolabe [18] Distributed information
management.

Self-configuration,
monitoring and to
control adaptation.

Gryphon [19] Publish/subscribe mid-
dleware.

Large communication.

Smart Grid [21] Autonomic principles
applied to solve Grid
problems.

Autonomic Grid com-
puting.

Autonomia [6] Model and infrastruc-
ture for enabling auto-
nomic applications.

Autonomic applica-
tions.

AutoMate [1, 15] Execution environment
for autonomic applica-
tions.

Autonomic applica-
tions.

monitor, analyze, plan and execute using knowledge of the environment. Several re-
search efforts focused on enabling the autonomic properties address four main ar-
eas: self-healing, self-protection, self-configuration, and self-optimization. Projects in
both industry and academia, have addressed autonomic behaviors at all levels, from
the hardware level to software systems and applications. At the hardware level, sys-
tems may be dynamically upgradable, while at the operating system level, active op-
erating system code may be replaced dynamically. Efforts have also focused on auto-
nomic middleware, programming systems and runtime. At the application level, self-
optimizing databases and web servers dynamically reconfigure to adapt service per-
formance. These efforts have demonstrated both the feasibility and promise of auto-
nomic computing. However, achieving overall autonomic behaviors remains an open
and significant challenge, which will be accomplished through a combination of pro-
cess changes, skills evolution, new technologies and architecture, and open industry
standards.

References

1. M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang,
M. Parashar, B. Khargharia, and S. Hariri. AutoMate: Enabling Autonomic Applications
on the Grid. In Proceedings of Autonomic Computing Workshop The Fifth Annual Interna-
tional Workshop on Active Middleware Services(AMS 2003) IEEE Computer Society Press,
pages 48–57, Seattle, WA, June 25 2003.

2. W. R. Ashby. Design for a Brain. Chapman & Hall Ltd, 1960.



Autonomic Computing: An Overview 259

3. IBM Corporation. An architectural blueprint for autonomic computing. April 2003.
4. UC Berkeley Computer Science Division. The OceanStore Project, Project Overview.

http://oceanstore.cs.berkeley.edu/info/overview.html, July 8 2002. Project Page.
5. S. Hariri and M. Parashar. Handbook of Bioinspired Algorithms and Applications, chapter

The Foundations of Autonomic Computing. CRC Press LLC, 2005.
6. S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri, and S. Rao. Autonomia: an autonomic

computing environment. In Performance, Computing, and Communications Conference,
2003. Conference Proceedings of the 2003 IEEE International, April 9-11 2003.

7. P. Horn. Autonomic Computing:IBM’s perspective on the State of Information Technology.
http://www.research.ibm.com/autonomic/, Oct 2001. IBM Corp.

8. G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto. An Approach to Autonomizing Legacy
Systems. In Workshop on Self-Healing, Adaptive and Self-MANaged Systems, SHAMAN,
New York City, NY, June 23 2002.

9. J. Kubiatowicz. OceanStore: Global-Scale Persistent Storage.
http://oceanstore.cs.berkeley.edu/publications/talks/StanfordOceanStore.pdf, Spring 2001.
Stanford Seminar Series, Stanford University,.

10. G. M. Lohman and S. S. Lightstone. SMART: Making DB2 (More) Autonomic. In VLDB
2002 28th International Conference on Very Large Data Bases , Kowloon Shangri-La Hotel,
Hong Kong, China, August 20-23 2002.

11. J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg. IBM Storage Tank–A
Heterogeneous Scalable SAN file system. IBM Systems Journal, 42(2):250–267, 2003.

12. A. Montresor. The Anthill Project Part II: The Anthill Framework.
http://www.cs.unibo.it/projects/anthill/papers/anthill-4p.pdf, 2001. The Anthill Project
Documentation.

13. V. Narasayya. AutoAdmin: Towards Self-Tuning Databases, November 13 2002. Guest
Lecture at Stanford University.

14. University of Sussex. Adaptive system lectures.
http://www.cogs.susx.ac.uk/users/ezequiel/AS/lectures/AdaptiveSystems3.ppt, 2003.

15. M. Parashar, Z. Li, H. Liu V. Matossian, and C. Schmidt. Self-Star Properties in Complex
Information Systems, volume 3460 of Lecture Notes in Computer Science, chapter Enabling
Autonomic Grid Applications: Requirements, Models and Infrastructures. Springer Verlag,
2005.

16. C. Poellabauer. Q-Fabric. http://www.cc.gatech.edu/systems/projects/ELinux/qfabric.html,
2002. Q-Fabric - System Support for Continuous Online Quality Management.

17. R. Pool. Natural selection. http://domino.watson.ibm.com/comm/wwwr thinkresearch.nsf/-
pages/selection200.html, 2002. A New Computer Program Classifies Documents Automati-
cally.

18. R.V. Renesse, K.P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology
for distributed systems monitoring, management, and data mining. ACM Transaction on
Computer Systems, 21(2):164–206, 2003.

19. IBM Research. The Gryphon Project. http://www.research.ibm.com/gryphon/gryphon.html.
IBM Corp.

20. IBM Research. The Océano Project. http://www.research.ibm.com/oceanoproject/. IBM
Corp.

21. Columbia University Smart Grid. Smart Grid Test Bed.
http://www.ldeo.columbia.edu/res/pi/4d4/testbeds/.


