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Abstract. The increasing complexity, heterogeneity and dynamism of networks,
systems and applications have made our computational and information infras-
tructure brittle, unmanageable and insecure. This has necessitated the investiga-
tion of an alternate paradigm for system and application design, which is based on
strategies used by biological systems to deal with similar challenges of complex-
ity, heterogeneity, and uncertainty, i.e. autonomic computing. Project AutoMate
investigates conceptual models and implementation architectures to enable the
development and execution of self-managing applications. It supports the defi-
nition of autonomic elements, the development of autonomic applications as the
dynamic and opportunistic composition of these autonomic elements, and the pol-
icy, content and context driven execution and management of these applications.
This paper introduces AutoMate architecture and describes the Rudder coordina-
tion framework and its use in enabling autonomic behaviors.

1 Introduction

The emergence of wide-area distributed and decentralized “Grid” environments, such
as pervasive information systems, peer-to-peer systems, and distributed computational
infrastructures, has enabled a new generation of applications that are based on seam-
less access, aggregation and interactions. Examples include pervasive applications that
leverage the pervasive information Grid to continuously manage, adapt, and optimize
our living context, crisis management applications that use pervasive conventional and
unconventional information for crisis prevention and response, medical applications
that use in-vivo and in-vitro sensors and actuators for patient management, scientific
and engineering simulations of complex physical phenomena that symbiotically and
opportunistically combine computations, experiments, observations, and real-time data
to provide important insights into complex systems, and business applications that use
anytime-anywhere information access to optimize profits.

However, these emerging Grid computing environments are inherently large, het-
erogeneous and dynamic, globally aggregating large numbers of independent comput-
ing and communication resources, data stores and sensor networks. Further, emerging
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Grid applications are similarly large and highly dynamic in their behaviors and inter-
actions. Together, these characteristics result in application development, configuration
and management complexities and uncertainties that break current paradigms based
on passive elements and static compositions and interactions. This has led researchers
to consider alternative programming paradigms and management techniques that are
based on strategies used by biological systems to deal with complexity, dynamism, het-
erogeneity and uncertainty. The approach, referred to as autonomic computing [8], aims
at realizing computing systems and applications capable of managing themselves with
minimal human intervention.

Enabling autonomic systems and applications presents many conceptual and im-
plementation challenges, primarily due to the highly dynamic, context and content-
dependent behaviors. A key challenge is supporting coordination in a robust and scal-
able manner. Coordination is the management of runtime dependencies and interactions
among the elements in the system. In case of autonomic systems/applications, these de-
pendencies and interactions can be complex and various (e.g. peer-to-peer, client-server,
producer-consumer, collaborative, at-most/at-least/exactly, etc.), and both, the coordi-
nated entities and the nature of the relationships and interactions between them can be
ad hoc and opportunistic.

Project AutoMate investigates autonomic solutions to deal with the challenges of
complexity, dynamism, heterogeneity and uncertainty in Grid environments. The over-
all goal of Project AutoMate is to develop conceptual models and implementation ar-
chitectures that can enable the development and execution of such self-managing Grid
applications. These include programming models, frameworks and middleware services
that support definition of autonomic elements, the development of autonomic applica-
tions as the dynamic and opportunistic composition of these autonomic elements, and
the policy, content and context driven execution and management of these applications.
This paper introduces AutoMate and its key components. Specifically, this paper fo-
cuses on the design and implementation of the Rudder coordination framework. Rud-
der provides software agents that enable application/system self-managing behaviors,
and a fully decentralized coordination middleware that enables flexible and scalable
interaction and coordination among agents and autonomic elements. The operation of
AutoMate and Rudder is illustrated using an autonomic oil reservoir optimization ap-
plication that is enabled by the framework.

The rest of this paper is organized as follows. Section 2 outlines the challenges and
requirements of pervasive Grid systems and applications. Section 3 introduces Project
AutoMate, presents its overall architecture and describes its key components. Section
4 presents the describes the design, implementation and evaluation of the Rudder coor-
dination framework, including the Rudder agent framework and the COMET coordina-
tion middleware. Section 5 presents the autonomic oil reservoir application enabled by
AutoMate and Rudder. Section 6 presents a conclusion.

2 Enabling Grid Applications — Challenges and Requirements

The goal of the Grid concept is to enable a new generation of applications combin-
ing intellectual and physical resources that span many disciplines and organizations,
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providing vastly more effective solutions to important scientific, engineering, business
and government problems. These new applications must be built on seamless and se-
cure discovery, access to, and interactions among resources, services, and applications
owned by many different organizations.

Attaining these goals requires implementation and conceptual models. Implementa-
tion models address the virtualization of organizations which leads to Grids, the creation
and management of virtual organizations as goal-driven compositions of organizations,
and the instantiation of virtual machines as the execution environment for an applica-
tion. Conceptual models define abstract machines that support programming models
and systems to enable application development. Grid software systems typically pro-
vide capabilities for: (i) creating a transient “virtual organization” or virtual resource
configuration, (ii) creating virtual machines composed from the resource configuration
of the virtual organization (iii) creating application programs to execute on the vir-
tual machines, and (iv) executing and managing application execution. Most Grid soft-
ware systems implicitly or explicitly incorporate a programming model, which in turn
assumes an underlying abstract machine with specific execution behaviors including
assumptions about reliability, failure modes, etc. As a result, failure to realize these as-
sumptions by the implementation models will result in brittle applications. The stronger
the assumptions made, the greater the requirements for the Grid infrastructure to real-
ize these assumptions and consequently its resulting complexity. In this section we first
highlight the characteristics and challenges of Grid environments, and outline key re-
quirements for programming Grid applications. We then introduce self-managing Grid
applications that can address these challenges and requirements.

2.1  Characteristics of Grid Execution Environments and Applications

Key characteristics of Grid execution environments and applications include:

Heterogeneity: Grid environments aggregate large numbers of independent and geo-
graphically distributed computational and information resources, including supercom-
puters, workstation-clusters, network elements, data-storages, sensors, services, and In-
ternet networks. Similarly, applications typically combine multiple independent and
distributed software elements such as components, services, real-time data, experiments
and data sources.

Dynamism: The Grid computation, communication and information environment is
continuously changing during the lifetime of an application. This includes the avail-
ability and state of resources, services and data. Applications similarly have dynamic
runtime behaviors in that the organization and interactions of the components/services
can change.

Uncertainty: Uncertainty in Grid environment is caused by multiple factors, including
(1) dynamism, which introduces unpredictable and changing behaviors that can only be
detected and resolved at runtime, (2) failures, which have an increasing probability of
occurrence and frequencies as system/application scales increase; and (3) incomplete
knowledge of global system state, which is intrinsic to large decentralized and asyn-
chronous distributed environments.
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Security: A key attribute of Grids is flexible and secure hardware/software resource
sharing across organization boundaries, which makes security (authentication, autho-
rization and access control) and trust critical challenges in these environments.

2.2 Requirements for Programming Systems and Middleware Services

The characteristics outlined above require that Grid programming systems and mid-
dleware services must be able to specify and support applications that can detect and
dynamically respond to the changes in the runtime environment and application states.
This requirement suggests that (1) Grid applications should be formulated from dis-
crete composable elements, which incorporate separate specifications for all of func-
tional, non-functional, and interaction and coordination behaviors; (2) The interface
definitions of these elements should be separated from their implementations to enable
heterogeneous elements to interact and to enable dynamic selection of elements; (3)
Specifications of composition, coordination and interaction should be separated from
computation behaviors, and may be dynamically specified and implemented.

Given these requirements, a Grid application requiring a given set of computational
behaviors may be integrated with different interaction and coordination models or lan-
guages (and vice versa) and different specifications for non-functional behaviors such
as fault recovery and QoS to address the dynamism and heterogeneity of the application
and the underlying environments.

2.3 Self-managing Applications on the Grid

As outlined above, the inherent scale, complexity, heterogeneity, and dynamism of
emerging Grid environments and applications result in significant programming and
runtime management challenges, which break current approaches. This is primarily be-
cause the programming models and the abstract machine underlying these models make
strong assumptions about common knowledge, static behaviors and system guarantees
that cannot be realized by Grid virtual machines and, which are not true for Grid ap-
plications. Addressing these challenges requires redefining Grid programming frame-
works and middleware services to address the separations outlined above. Specifically,
it requires (1) static (defined at the time of instantiation) application requirements and
system and application behaviors to be relaxed, (2) the behaviors of elements and appli-
cations to be sensitive to the dynamic state of the system and the changing requirements
of the application and be able to adapt to these changes at runtime, (3) required common
knowledge be expressed semantically (ontology and taxonomy) rather than in terms of
names, addresses and identifiers, and (4) the core enabling middleware services (e.g.,
discovery, messaging) be driven by such a semantic knowledge. In the rest of this paper
we describe Project AutoMate, which attempts to address these challenges by enabling
autonomic self-managing Grid applications.

3  Project AutoMate: Enabling Self-managing Grid Applications

Project AutoMate [17, 16] investigates autonomic computing approaches to realize sys-
tems and applications that are capable of managing (i.e., configuring, adapting, optimiz-
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Fig. 1. A schematic overview of AutoMate

ing, protecting, healing) themselves. The overall goal is to investigate the conceptual
models and implementation architectures that can enable the development and execu-
tion of such self-managing Grid applications. Specifically, it investigates programming
frameworks and middleware services that support the development of autonomic appli-
cations as the dynamic and opportunistic composition of autonomic elements, and the
execution and management of these applications.

A schematic overview of AutoMate is presented in Figure 1. Components of Au-
toMate include the Accord [10, 11] programming system, the Rudder [9] decentralized
coordination framework and agent-based deductive engine, which is the focus of this
paper, and the Meteor [7, 6] content-based middleware providing support for content-
based routing, discovery and associative messaging. Project AutoMate additionally
includes the Sesame [21] context-based access control infrastructure, the DAIS [20]
cooperative-protection services and the Discover collaboratory [4, 12, 13] services for
collaborative monitoring, interaction and control, which are not described here.

The Accord programming system [10, 11] extends existing programming systems to
enable autonomic element definitions, self-managing Grid application formulation and
development. Specifically it extends the entities and composition rules defined by the
underlying programming model to enable computational and composition/interaction
behaviors to be defined at runtime using high-level rules. Autonomic Elements in Ac-
cord extend programming elements (i.e., objects, components, services) to define a self-
contained modular software unit with specified interfaces and explicit context depen-
dencies. Additionally, an autonomic element encapsulates rules, constraints and mech-
anisms for self-management, and can dynamically interact with other elements and the
system.

Each autonomic element is associated with an element manager (possibly embed-
ded) that is delegated to manage its execution. The element manager monitors the state
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of the element and its context, and controls the execution of rules. Rules incorporate
high-level guidance and practical human knowledge. Behavioral rules control the run-
time functional behaviors of an autonomic element (e.g., the dynamic selection of al-
gorithms, data representation, input/output format used by the element), while Interac-
tion rules control the interactions between elements, between elements and their envi-
ronment, and the coordination within an autonomic application (e.g., communication
mechanism, composition and coordination of the elements).

Meteor [7,6] is a scalable content-based middleware infrastructure that provides
services for content routing, discovery, and associative interactions. The Meteor stack
consists of 3 key components: (1) a self-organizing overlay, (2) a content-based routing
engine and discovery service (Squid), and (3) the Associative Rendezvous Messaging
Substrate (ARMS). The Meteor overlay is composed of Rendezvous Peer (RP) nodes,
which may be any node on the Grid (e.g., gateways, access points, message relay nodes,
servers or end-user computers). RP nodes can join or leave the overlay network at any
time. The overlay topology is based on standard structured overlays. The content over-
lay provides a single operation, lookup(identifier), which requires an exact identifier
(e.g., name). Given an identifier, this operation locates the peer node where the content
should be stored. Squid [18] is the Meteor content-based routing engine and decen-
tralized information discovery service. It supports flexible content-based routing and
complex queries containing partial keywords, wildcards, and ranges, and guarantees
that all existing data elements that match a query will be found.

The ARMS layer [7] implements the Associative Rendezvous (AR) interaction
paradigm. AR is a paradigm for content-based decoupled interactions with
programmable reactive behaviors, and extends the conventional name/identifier-based
rendezvous in two ways. First, it uses flexible combinations of keywords (i.e, keyword,
partial keyword, wildcards and ranges) from a semantic information space, instead of
opaque identifiers (names, addresses) that have to be globally known. Interactions are
based on content described by these keywords. Second, it enables the reactive behav-
iors at the rendezvous points to be encapsulated within messages increasing flexibility
and enabling multiple interaction semantics (e.g., broadcast multicast, notification, pub-
lisher/subscriber, mobility, etc.).

Rudder [9] is an agent-based decentralized coordination framework for enabling
self-managing Grid applications, and provides the core capabilities for supporting au-
tonomic compositions, adaptations, optimizations, and fault-tolerance. It enables com-
position, coordination and interaction behaviors to be separated from computational
behaviors, and allows them to be semantically separately expressed and efficiently im-
plemented. Rudder and its components are described in more detail in the following
sections.

4 Rudder Coordination Framework

Rudder consists of two key components: an agent framework and the COMET coordi-
nation middleware. The agent framework provides protocols for coordination and co-
operation to enable peer agents to individually and collectively achieve self-managing
behaviors. COMET implements the coordination abstractions and mechanisms and pro-
vides a decentralized and associative shared coordination-space.



266 Z. Li and M. Parashar

4.1  The Rudder Agent Framework

The Rudder agent framework is composed of a dynamic network of software agents
existing at different levels, ranging from individual system/application elements to the
overall system/application. These agents monitor the element states, manage the ele-
ment behaviors and dependencies, coordinate element interactions, and cooperate to
manage overall system application behaviors.

Agent Classification: The Rudder agent framework consists of three types of peer
agents: Component Agent (CA), System Agent (SA), and Composition Agent (CSA).
CAs and SAs are part of the system/application elements, while CSAs are transient and
are generated to satisfy specific application requirements. CAs manage the computa-
tions performed locally within application elements and their interaction and commu-
nication behaviors and mechanisms. They are integrated with the Accord element man-
agers. SAs are embedded within Grid resource units (e.g., compute resources, instru-
ment, data store). CSAs enable dynamic composition of autonomic elements by defin-
ing and executing workflow-selection and element-selection rules. Workflow-selection
rules are used to select appropriate composition plans to enact. Element-selection rules
are used to semantically discover and select registered elements. CSAs negotiate to
select interaction patterns for a specific application workflow, and coordinate with as-
sociated element agents to define and execute associated interaction rules at runtime.
This enables autonomic applications to dynamically change flows, elements and ele-
ment interactions to address application and system dynamics and uncertainty.

Agent Coordination Protocols: Rudder provides a set of common discovery and con-
trol protocols to all agents. Discovery protocols support the registering, unregistering,
and discovery of system/application elements. Control protocols allow the agents to
query element states, control their behaviors and orchestrate their interactions. These
protocols include negotiation, notification, and mutual exclusion. The agent coordina-
tion protocols are scalably and robustly implemented in logically decentralized, physi-
cally distributed Grid environments using the abstractions provided by COMET, which
are described below.

4.2 COMET Coordination Middleware

The overall goal of COMET is to enable scalable peer-to-peer content-based coordi-
nation in large-scale decentralized distributed environments. The COMET implements
a global Linda-like shared-space [5], which is constructed from a globally known se-
mantic multi-dimensional information space. The information space is defined by the
ontology used by the coordinated entities, and is deterministically mapped, using a lo-
cality preserving mapping, to a dynamic set of peer nodes in the system. The resulting
peer-to-peer information lookup system maintains content locality and guarantees that
content-based information queries, using flexible content descriptors in the form of key-
words, partial keywords and wildcards, are delivered with bounded costs.

The COMET Model. The COMET model consists of layered abstractions prompted
by a fundamental separation of communication and coordination concerns.
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The communication abstraction provides an associative communication service and
guarantees that content-based information queries, specified using flexible content de-
scriptors, are served with bounded costs. It supports content-based discovery, routing
and messaging. This layer essentially maps the virtual information space in a deter-
ministic way on to the dynamic set of currently available peer nodes in the system,
while maintaining content locality. It thus manages system scale, heterogeneity and dy-
namism. The communication abstraction provides a single operator: deliver (M). The
message M consists of (1) a semantic selector that is flexibly defined using keywords
from the information space, and specifies a region in this space, and (2) a payload con-
sisting of the data and operation to be performed at the destination.

The coordination abstraction extends the traditional data-driven model with event-
based reactivity to changes in system state and to data access operations. It defines a
reactive tuple, which consists of 2 additional components: a condition that associates re-
action to events, and a guard that specifies how and when the reaction will be executed
(e.g., immediately, once). This abstraction provides the basic Out, In, and Rd prim-
itives. These basic operations operate on regular as well as reactive tuples and retain
the Linda semantics. The operations are directly implemented on the deliver operator
provided by the communication abstraction.

Transient Spaces in COMET. Coordination middlewares based on the model outlined
above are naturally suitable for context-transparent applications that are developed and
executed without explicit knowledge of the system context. Furthermore, since the un-
derlying implementation maintains content locality in the information space, it is both
scalable and flexible. However, certain applications, e.g., mobile applications, require
context locality to be maintained in addition to content locality, i.e., they impose re-
quirements for context-awareness. The uniform operators provided by COMET do not
distinguish between local and remote components of a space. While this is a convenient
abstraction, it does not maintain context locality and may have a detrimental effect on
system efficiency for these applications. To address this issue, COMET defines transient
spaces that have a specific scope definition (e.g., within the same geographical region
or the same physical subnet). The transient spaces have exactly the same structure and
semantics as the original space, and can be dynamically created. An application can
switch between spaces at runtime and can simultaneously use multiple spaces.

The COMET Design and Implementation. A schematic overview of the COMET
system architecture is shown in Figure 2. The current prototype has been implemented
on Project JXTA [2], a general-purpose peer-to-peer framework. The coordination space
is provided as a JXTA peergroup service that can be concurrently exploited by multiple
applications. The design and implementation of the COMET coordination and commu-
nication layers are described below.

Communication Layer: The communication layer of COMET is built on the Meteor
messaging substrate[7], which provides scalable content-based routing and data deliv-
ery operations. Meteor consists of a structured self-organizing overlay and the Squid
content-based routing engine.

Squid [18] provides a decentralized information discovery and associative messag-
ing service. It uses a locality preserving and dimension reducing indexing scheme,
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Fig. 3. Routing using a simple keyword tuple in Squid: (a) the simple keyword tuple (2, 1) is
viewed as a point in a multi-dimensional space; (b) the keyword tuple is mapped to the index 7,
using Hilbert SFC; (c) the data will be routed in the overlay (an overlay with 5 RP nodes and an
identifier space from O to 26—1) at RP node 13, the successor of the index 7

based on the Hilbert Space Filling Curve (SFC), to effectively map a multi-dimensional
information space to the peer identifier space and to the current peer nodes in the sys-
tem. The peer nodes form a structured overlay. The resulting peer-to-peer information
system supports flexible content-based routing and complex queries containing partial
keywords, wildcards, and ranges, and guarantees that all existing data elements that
match a query will be found. Keywords can be common words or values of globally
defined attributes, and are defined by applications. In the case of COMET, these key-
words are part of the common ontology used by the coordinating entities. The keywords
form the multi-dimensional information space, i.e., keyword tuples represent points or
regions in this space and the keywords are the coordinates. A keyword tuple in Squid
is defined as a list of d keywords, wildcards and/or ranges, where d is the dimension-
ality of the keyword space. A keyword tuple only containing complete keywords is
called simple, and a tuple containing partial keywords, wildcards and/or ranges is called
complex.

Content-based routing in Squid is achieved as follows. SFCs are used to generate
a 1-dimensional index space from the multi-dimensional keyword space. Further, us-
ing the SFC, a query consisting of a simple keyword tuple can be mapped to a point
on the SFC. Similarly, any complex keyword tuple can be mapped to regions in the
keyword space and to corresponding clusters (segments of the curve) in the SFC. The
1-dimensional index space generated from the entire information space is mapped onto
the 1-dimensional identifier space used by the overlay network formed by the peer
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nodes. As a result, using the SFC mapping any simple or complex keyword tuple can
be located. Squid provides a simple abstraction to the layer above consisting of a sin-
gle operation: post(keyword tuple, data), where data is the message payload provided
by the messaging layer above. The routing for simple and complex keyword tuples is
illustrated in Figures 3 and 4 respectively.
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Fig. 4. Routing using a complex keyword tuple (2-3, 1-5): (a) the keyword tuple defines a rectan-
gular region in the 2-dimensional keyword space consisting of 2 clusters (2 segments on the SFC
curve); (b) the clusters (the solid part of the circle) correspond to destination RP nodes 13 and
32, which are routed to
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Fig. 5. Example of the Chord overlay network. Each node stores the keys that map to the segment
of the curve between itself and the predecessor node

The Meteor content overlay is composed of peer nodes, which may be any node in
the system (e.g., gateways, access points, message relay nodes, servers or end-user com-
puters). The peer nodes can join or leave the network at any time. The overlay topology
is based on standard structured overlays. The current implementation of Meteor uses
the Chord [19] overlay network where peer nodes form a ring topology. Advantages of
Chord include its guaranteed performance and logarithmic in number of messages. Ev-
ery node in Chord is assigned a unique identifier and maintains a finger table for routing.
The lookup algorithm in Chord enables the efficient data routing with O(log N) cost,
where N is the number of nodes in the system. An example of a Chord overlay network
with 5 nodes is shown in Figure 5. The Meteor overlay network layer provides a sim-
ple abstraction to the layers above, consisting of a single operation: lookup(identifier).
Given an identifier, this operation locates the node that is responsible for it, i.e, the
node with an identifier that is the closest identifier greater than or equal to the queried
identifier.
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Coordination Layer: The coordination layer implements the coordination abstraction
and primitives. Its main components include a data repository for storing, pending re-
quests, and retrieving tuples, a flexible matching engine, and a message dispatcher that
interfaces with the communication layer to convert the coordination primitives to mes-
saging operations and vice versa. Tuples and templates are represented as simple XML
strings, as they provide small-sized flexible formats that are suitable for efficient infor-
mation exchange in distributed heterogeneous environments.

The COMET Out, Rd and In operations are implemented using Squid routing.
Using the tag and fields of a tuple, each tuple/template is associated with a sequence of
keywords, which are then used to generate the keyword tuple required by the Squid post
operator. It is assumed that all peer nodes agree on the structure and dimension of the
information space used to define the keyword tuples.

Tuple distribution consists of the following steps: (1) Keywords are extracted from
the tuple and used to create the keys for the Squid post operation. The payload of the
message consists of the tuple and the coordination operation. (2) Squid uses the SFC
mapping to identify the indices corresponding to the keyword tuple and the correspond-
ing peer id(s). (3) The overlay lookup operator is used to route to the appropriate peer
nodes. This operator maps the logical peer identifer to a Jxtald and sends the tuple using
the JXTA Resolver Protocol. The Out operator only returns after receiving the Resolver
Query Response from the destination to guarantee tuple delivery. In the case of In and
Rd operations, the templates are routed in a similar manner. These two operations block
until a matched tuple is returned by the destination in a peer-to-peer manner.

Experimental Evaluation of COMET. COMET has been deployed in a distributed
network of 64 Linux-based computers in Rutgers University. Each node has an Intel(R)
Pentium-4 1.70GHz CPU with 512MB RAM and is running Linux 2.4.20-8 (kernel
version). Each machine serves as a peer node in COMET overlay. The experiments in-
clude measuring the average run time for each of the coordination primitives provided
by COMET. For an Out operation, the measured time corresponds to the time interval
between when the tuple is posted into the space and when the response from the desti-
nation is received. For a In/Rd operation, the measured time is the time interval between
when the template is posted into the space and when the matched tuple is returned to
the application assuming that a matched tuple exists in the space. This time includes the
duration of template routing, repository matching and returning the matched tuple. The
measurements use the native clocks of the peer nodes.
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Evaluation of the Out Operation. To evaluate the Out operation, regular XML tuples
were used, which consist of randomly generated strings with fixed length. The average
size of a tuple was 110 bytes. Furthermore, network traffic was modelled as poisson
arrival Out operations with different inter-arrival mean time. Figure 6 shows the per-
formance of the Out operations with inter-arrival mean time of 10ms, 100ms, 500ms,
and 1000ms, and a system size of 16 and 48 peer nodes. The Y axis is the average
run time. The figure shows that the Out operation is fairly independent of the traffic
inter-arrival time and scales with system size at the order of O(logN) where N is the
number of nodes in the system. The maximum average time of the 48 peer node system
is approximately 47ms, which we believe is acceptable.

Evaluation of the In/Rd Operation. To study the behavior of the In/Rd operation, two
experiments were conducted. The first experiment evaluated the average time required
for data retrieval and extraction using /n and Rd operations with different system sizes.
The operation latency was measured for 25 Rd operations and 100 In operations. In this
experiment we assumed that the tuples were previously stored into the space by Out
operations. In the second experiment, the average time required for each single opera-
tion was measured for different numbers of tuples, with a fixed system size of 4 nodes.
The lengths of the tuples are fixed at 110 bytes. The tuples were generated with random
strings. The results are shown in Figure 7. The plots show that the In/Rd operations scale
well with the number of nodes and their performance is largely independent of the num-
ber of tuples in the system. The average latency for Rd/In operations is approximately
105ms for experiments with numbers of tuples ranging from 2000 to 12000.

5  An Illustrative Example: Autonomic Oil Reservoir
Optimization

One of the fundamental problems in oil reservoir production is determining the opti-
mal locations of the oil production and injection wells. However, the selection of ap-
propriate optimization algorithms, the runtime configuration and invocation of these
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Fig. 8. Autonomic Oil Reservoir Optimization

algorithms and the dynamic optimization of the reservoir remain challenging problems.
In this example we use AutoMate to support the autonomic compositions, interactions
and adaptations to enable an autonomic self-optimizing reservoir application. The ap-
plication consists of the following elements: (1) sophisticated reservoir simulation com-
ponents (e.g. IPARS [1] factory) that encapsulate complex mathematical models of the
physical interactions in the subsurface; (2) distributed data archives that store histori-
cal, experimental, and observed data; (3) sensors embedded in the instrumented oilfield
providing real-time data about the current state of the oil field; (4) optimization services
based on the Very Fast Simulated Annealing (VFSA) [14] and Simultaneous Perturba-
tion Stochastic Approximation (SPSA) [15]; (5) the economic modeling service.

These elements need to dynamically discover one another and interact as peers to
achieve the overall application objectives. First, the simulation components should dy-
namically obtain necessary resources, detect current resource state, and negotiate re-
quired qualities of service. Next, the simulation components must interact with one
another, and with archived history and real-time sensor data, to enable a better char-
acterization of the reservoir. Further, the reservoir simulation components interact with
optimization services and with the data to optimize well configuration and operation,
with weather services to control production, and with economic modelling service to
detect current and predicted future oil prices so as to maximize the revenue from the
production.

The operation of this application using AutoMate, and specially Rudder, is illus-
trated in Figure 8. The overall process is achieved by (1) generating composition agents
based on application workflows, (2) agents discovering and composing the involved
components to enable the oil reservoir management process, which includes monitor-
ing oil production behaviors and detecting needs for optimization, and (3) agents using
high-level policies to orchestrate interactions to optimize well operation and oil produc-
tion.

First, the AutoMate composition engine (ACE) [3] generates the following work-
flows to satisfy the application objectives: (i) the optimization service provides the
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IPARS reservoir simulator with an initial guess of well parameters based on the config-
uration of the oil field; (ii) IPARS uses the well parameters along with current market
parameters to periodically compute the current revenue using an Economic Model (EM)
service; and (iii) IPARS iteratively interacts with the optimization service to optimize
well parameters for maximum profit. Based on above workflows, three CSAs are instan-
tiated for the EM, Optimizer, and IPARS respectively. The CSAs dynamically discover
the appropriate autonomic elements with desired functionality and cost/performance
characteristics using the discovery protocol, and configure the workflows using interac-
tion rules. The CAs use the interaction rules to dynamically establish interaction rela-
tionships among the elements and using appropriate communication mechanisms. The
CSAs then coordinate with the CAs using the decentralized tuple-space.

Application self-management and self-optimization behaviors are achieved via the
police-based autonomic behaviors of the agents. Each CA monitors and manages the
execution of its element, while the CSAs discover and compose elements and resources
to satisfy current application objectives. For example, the choice of optimization algo-
rithm depends on the size and nature of the reservoir. In case of reservoirs with many
randomly distributed maxima and minima, the VFSA algorithm can be employed during
the initial optimization phase. Once convergence slows down, VFESA can be replaced by
SPSA, which is suited for larger reservoirs with relatively smooth characteristics. Us-
ing these policies, the Optimizer CSA selects the appropriate optimization service, and
configures it to optimize the application according to the current objectives of the appli-
cation. Similarly, the SAs monitor and manage the runtime utilization of the resource
and dynamically balance workload.

6 Conclusion

In this paper, we introduced Project AutoMate and described Rudder, its coordination
framework. Project AutoMate investigates solutions that are based on the strategies used
by biological systems to deal with challenges of complexity, dynamism, heterogeneity
and uncertainty. This approach, referred to as autonomic computing, aims at realiz-
ing systems and applications that are capable of managing (i.e., configuring, adapting,
optimizing, protecting, healing) themselves. The overall goal of Project AutoMate is
to investigate conceptual models and implementation architectures that can enable the
development and execution of such self-managing Grid applications. Specifically, it
investigates programming models, frameworks and middleware services that support
the definition of autonomic elements, the development of autonomic applications. The
Rudder coordination framework consists of an agent framework and the COMET coor-
dination middleware and enables dynamic discovery, composition and the policy, con-
tent and context driven definition, execution and management of these applications. The
design, implementation and evaluation of Rudder was presented. The operation of Au-
toMate and Rudder was illustrated using an autonomic self-optimization oil reservoir
application.
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