
Dynamic Context-aware Access Control for Grid Applications∗

Guangsen Zhang, Manish Parashar
The Applied Software Systems Laboratory

Department of Electrical and Computer Engineering
Rutgers University

{gszhang,parashar}@caip.rutgers.edu

Abstract

The emerging Grid infrastructure presents many chal-
lenges due to its inherent heterogeneity, multi-domain char-
acteristic, and highly dynamic nature. One critical chal-
lenge is providing authentication, authorization and access
control guarantees. In this paper, we present the SESAME
dynamic context-aware access control mechanism for per-
vasive Grid applications. SESAME complements current
authorization mechanisms to dynamically grant and adapt
permissions to users based on their current context. The un-
derling dynamic role based access control (DRBAC) model
extends the classic role based access control (RBAC). We
also present a prototype implementation of SESAME and
DRBAC with the Discover computational collaboratory and
an experimental evaluation of its overheads.

Keywords: Grid security, authorization and access con-
trol, context-aware, pervasive applications, Grid comput-
ing.

1 Introduction

Grid computing is rapidly emerging as the dominant
paradigm of wide area distributed computing [1]. It’s pri-
mary objective is to provide a service-oriented infrastruc-
ture that leverages standardized protocols and services to
enable pervasive access to, and coordinated sharing of geo-
graphically distributed hardware, software, and information
resources.

The Grid community and the Global Grid Forum [15] are
investing considerable effort in developing and deploying
standard architectures and protocols that enable seamless
and secure discovery, access to, and interactions among re-
sources, services, and applications. This potential for seam-

∗The research presented in this paper is supported in part by NSF via
grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA-
0120934 (ITR), and by DOE ASCI/ASAP (Caltech) via grant numbers
PC295251 and 1052856.

less aggregation, integration, and interactions has made it
possible to conceive a new generation of Grid applications
that are based on ad hoc, symbiotic and opportunistic in-
teractions, where users, application components, Grid ser-
vices, resources (systems, CPUs, instruments, storage) and
data (archives, sensors) interact as peers. However, real-
izing such a pervasive Grid infrastructure presents many
challenges due to its inherent heterogeneity, multi-domain
characteristic, and highly dynamic nature. One critical chal-
lenge is providing authentication, authorization and access
control guarantees.

The Grid Security Infrastructure(GSI) [5] has been ac-
cepted as the primary authentication mechanism for the
Grid. Developed as part of the Globus project [16], GSI de-
fines single sign-on algorithms and protocols, cross-domain
authentication protocols, and temporary credentials called
proxy credentials. GSI is widely used and has been inte-
grated into a number of Grid environments and applications.

However, the authorization and access control challenges
are not fully addressed by existing approaches. The Ak-
enti [4] access control system enables multiple owners and
administrators to define fine-grained usage policies in a
widely distributed system. The Akenti policy engine then
gathers use-conditions certificate defined by the resource
owners and attribute certificates from the various stake hold-
ers, and grants access to a resource by matching of these
two certificates. In the Community Authorization Service
(CAS) [3], resource providers grant access to a community
accounts as a whole. The CAS server is designed to main-
tain authorization information for all entities in the com-
munity. It keeps track of fine-grained access control infor-
mation and grants restricted GSI proxy certificates (PCs)
to community members. M. Lorch et al [6] propose a fine
grained authorization services to support ad-hoc collabo-
rations using attribute certificates. Similarly, L. Ramakr-
ishnan et al [7] present an authorization infrastructure for
component-based Grid applications by providing authoriza-
tion at the component interface.

While these research efforts listed above do address im-

portant aspects of the overall authorization and access con-
trol problem in a Grid environment, these efforts focus on
relatively static scenarios where access depends on identity
of the subject. They do not address access control issues
for pervasive Grid applications where the access capabili-
ties and privileges of a subject not only depend on its iden-
tity but also on its current context (i.e. current time, loca-
tion, system resources, network state, etc.) and state. For
example, consider a user accessing a remote resource or a
data archive using a pervasive portal on her PDA. In such
an application, the user’s access privileges depend on who
she is, where she is (in a secure or insecure environment),
her context (current connectivity, current load), the state of
the resource or data archive she is accessing, etc. Further-
more, her privileges will change as her context changes -
for example, if she moves from a secure wireless link to an
insecure one. Similarly, when a Grid service interacts with
another service on the Grid, the access privileges of the ser-
vice will also depend on the credential of the service as well
as the context and state of the service, which are dynamic.

In this paper, we present the SESAME1 dynamic
context-aware access control mechanism for pervasive Grid
applications. SESAME complements current authorization
mechanisms to dynamically grant and adapt permissions to
users based on their current context. The underling dynamic
role based access control (DRBAC) model extends the clas-
sic role based access control (RBAC) [2, 8], while retaining
its advantages (i.e. ability to define and manage complex
security policies). The model dynamically adjustsRole As-
signments andPermission Assignments based on context in-
formation. In DRBAC, each subject is assigned a role sub-
set from the entire role set by the authority service. Simi-
larly, each object has permission subsets for each role that
will access it. During a secure interaction, state machines
are maintained by delegated access control agents at the
subject (Role State Machine) to navigate the role subset, and
the object (Permission State Machine) to navigate the per-
mission subset for each active role. These state machines
navigate the role/permission subsets to react to changes in
context and define the currently active role at the subject
and its assigned permissions at the object.

A prototype of SESAME and the DRBAC model has
been implemented as part of the Discover [11, 12] com-
putational collaboratory. Discover enables geographically
distributed scientists and engineers to collaboratively ac-
cess, monitor and control applications, services, resources
and data on the Grid using pervasive portals. The feasibility,
performance and overheads of SESAME are experimentally
evaluated.

The rest of this paper is organized as follows. Sec-
tion 2 presents the SESAME dynamic access control model
and describes its operation. Section 3 describes the pro-

1Scalable, Environment Sensitive Access Management Engine

totype implementation within the Discover collaboratory.
Section 4 presents an experimental evaluation. Section 5
presents a summary and conclusions.

2 Dynamic Role-based Access Control

As mentioned above, a key requirement for pervasive
Grid applications is the support for dynamic, seamless and
secure interactions between the participating entities, i.e.
components, services, applications, data, instruments, re-
sources and users. Guaranteeing interaction security re-
quires a fine-grained access control mechanism. Further-
more, in the highly dynamic and heterogeneous Grid en-
vironment, the access privileges of an entity depend on its
credential, context and current state, which are dynamic. In
this section, we present the SESAME Dynamic Role Based
Access Control model(DRBAC) to address these require-
ments. The traditional Role Base Access Control(RBAC)
model is first discussed. The DRBAC model and its opera-
tion are then described in detail.

2.1 RBAC

Role based access control (RBAC) is an alternative to
traditional discretionary (DAC) and mandatory access con-
trol (MAC). In RBAC, users are assigned roles and roles are
assigned permissions. A principle motivation behind RBAC
is the ability to specify and enforce enterprise-specific se-
curity policies in a way that maps naturally to an organi-
zation’s structure. As user/role associations change more
frequently then role/permission associations, in most or-
ganizations, RBAC results in reduced administrative costs
as compared to associating users directly with permissions.
It can be shown that the cost of administrating RBAC is
proportional to U+P while the cost of associating users di-
rectly with permissions is proportional to U*P, where U is
the number of individuals in a role and P is the number of
permissions required by the role [8]. Sandhu [2] defines
a comprehensive framework for RBAC models which are
characterized as follows:

• RBAC0 : the basic model where users are associated
with roles and roles are associated with permissions.

• RBAC1 : RBAC0 with role hierarchies.

• RBAC2 : RBAC1 with constraints on user/role,
role/role, and/or role/permission associations.

Recently RBAC has been found to be the most attractive
solution for providing security in a distributed computing
infrastructure [8]. Although the RBAC models vary from
very simple to pretty complex, they all share the same basic
structure of subject, role and privilege. Other factors, such

as relationship, time and location, which may be part of an
access decision, are not considered in these models. The
SESAME DRBAC model presented in this paper extends
RBAC to provide context-aware access control mechanisms
for dynamic and pervasive Grid applications.

2.2 Dynamic Role-based Access Control Model

The formalization of the DRBAC model is based on the
RBAC model presented in [9]. The DRBAC model is illus-
trated in Figure 1. It has the following components:

• USERS. A user is an entity whose access is being con-
trolled. USERS represents a set of users.

• ROLES. A role is a job function within the context
of an organization with some associated semantics re-
garding the authority and responsibility conferred on
the user assigned to the role. ROLES represents a set
of roles.

• PERMS. A permission is an approval to access one or
more DRBAC protected resources. PERMS represents
a set of permissions.

• ENVS. ENVS represents the set of context information
for the system. We use an authorized “context agent”
to collect context information in our system.

• SESSIONS. A session is a set of interactions between
subjects and objects. SESSIONS represents a set of
sessions.

• UA. UA is the mapping that assigns a role to a user. In
a session, each user is assigned a set of roles and the
context information is used to determine the active role
among these. The user accesses the resource using this
active role.

• PA. PA is the mapping that assign permissions to a
role. Every role which has privileges to access the re-
source is assigned a set of permissions and the context
information is used to determine the active permissions
for the roles.

In the DRBAC model, a Central Authority (CA) main-
tains the overall role hierarchy for each domain. When the
subject logs into the system, based on her credential and ca-
pability, a subset of the role hierarchy is assigned to her for
the session. The CA then sets up and delegates (using GSI)
a local context agent for the subject. This agent monitors
the context for the subject (using services provided by the
Grid middleware) and dynamically adapts the active role.
Similarly every subject maintains a set of permission hier-
archies for each potential role that will access the resource.
A delegated local context agent at the subject resource will

Figure 1. The dynamic access control model

use environment and state information to dynamically ad-
just the permissions for each role. We formally define the
DRBAC model as follows:

- USERS, ROLES, PERMS, ENVS and SESSIONS
(users, roles, permissions, environments and sessions,
respectively).

- ACT ROLE and ACT PERMISSION (active
role and active permission respectively).

- UA⊆USERS×ROLES, a many-to-many mapping user-
to-role assignment relation.

- PA⊆PERMS×ROLES , a many-to-many mapping
permission-to-role assignment relation.

- Assigned roles(u:USERS, e:ENVS) → 2ROLES , the
mapping of user u onto a set of roles.

- Assigned permissions(r:ROLES, e:ENVS)→
2PERMS , the mapping of role r onto a set of
permissions.

- User sessions(u:USERS) → 2SESSIONS , the map-
ping of user u onto a set of sessions.

- Session roles(s:SESSIONS) → 2ROLESS , the map-
ping of session s onto a set of roles. Formally:
session roles(si) ⊆ {r∈ROLES|(session roles(si),
r)∈UA}

- RH ⊆ ROLES×ROLES is a partial order on ROLES
called the inheritance relation, written as ≥ , where
r1 ≥ r2 only if all permissions of r2 are also permis-
sions of r1, and all users of r1 are also users of r2.

- PH ⊆ PERMS× PERMS is a partial order on PERMS
called the inheritance relation, written as ≥ , where
p1 ≥ p2 only if all roles of p1 are also roles of p2.

In the formal definitions above, UA (user assignment) de-
fines the relationship among roles, users and environments;
PA (permission assignment) defines the relationship among

permissions, roles and environments. RH (role hierarchy)
and PH (permission hierarchy) define the inheritance rela-
tionship among roles and permissions respectively. The fol-
lowing section explains the operation of our model in detail.

2.3 DRBAC Operation

In the DRBAC model, we assign each user a role subset
from the entire role set. Similarly each resource will as-
sign a permission subset from the entire permission set to
each role that has privileges to access the resource. Figure 2
shows the relationship between the role hierarchy main-
tained at the Central Authority (CA) and the subset of this
hierarchy assigned to a particular user.

Figure 2. Role hierarchy state machine

We use state machines at the subject (Role State Ma-
chine) to maintain the role subset for a user, and at the ob-
ject (Permission State Machine) to maintain the permission
subset for each role. A state machine consists of state vari-
ables (a role or permission) that encode state, and events
that transform its state. The delegated local context agent
uses middleware services to monitor context and generates
events to trigger a transition of the state machine when nec-
essary.

A permission hierarchy is shown in the Figure 3. Note
that the null permission signifies no access privileges. A
transition is defined asT(Initial State, Destination State).
So T(P1, P2) represents the transition from P1 to P2 and
T(P2, P1) represents the transition from P2 to P1. In this
example, P2 is the current active permission. Role transi-
tions in the Role State Machine are similarly defined.

Key concerns in the implementation of the proposed
state machine based access control mechanism include its
performance overheads and the reliability and security of
the context information. In a typical organization, the num-
ber of roles and permissions is relatively small, no more
than 20. As a result, with the increasing computational
capability of systems, maintaining the state machine will
have little if any impact on performance. Also, there are a
number of research and commercial efforts [14] developing
context toolkits that can provide reliable and secure context
services.

Figure 3. Permission hierarchy state machine

3 SESAME/DRBAC Prototype Implementa-
tion

A prototype of SESAME and the DRBAC model has
been implemented as part of the Discover [11, 10] compu-
tational collaboratory. Discover is a Grid-based computa-
tional collaboratory that enables geographically distributed
scientists and engineers to collaboratively access, monitor,
and control distributed applications, services, resources and
data on the Grid using pervasive portal. Key components of
the Discover collaboratory include:

• Discover Collaborative Portals [11] that provide
users with pervasive and collaborative access to Grid
applications, services and resources. Using these por-
tals, users can discover and allocate resources, config-
ure and launch applications and services, and monitor,
interact with, and steer their execution.

• Discover Middleware Substrate [12, 10] that enables
global collaborative access to multiple, geographically
distributed instances of the Discover computational
collaboratory, and provides interoperability between
Discover and external Grid services such as those pro-
vided by Globus [16].

• DIOS Interactive Object Framework (DIOS) [13]
that enables the runtime monitoring, interaction and
computational steering of Grid applications and ser-
vices. DIOS enables application objects to be en-
hanced with sensors and actuators so that they can be
interrogated and controlled.

An overview of the integration of SESAME and DR-
BAC with Discover is presented in Figure 4. SESAME
ensures the users can access, monitor and steer Grid re-
sources/applications/services only if they have appropriate
privileges and capabilities. As Discover portals are perva-
sive and the Grid environment is dynamic, this requires dy-
namic context aware access management. Note that authen-

tication services are provided by GSI [5] in our prototype
implementation.

Figure 4. Dynamic access control in discover

In our implementation, users entering the Discover col-
laboratory using the portal are assigned a set of roles when
they log in. ARole State Machine is then locally set up for
each user, which dynamically adjusts the active role based
on events from the local context agent. Similarly, thePer-
mission State Machines are set up at the application (or ser-
vice/resource) for each role that will access it. ThePer-
mission State Machines similarly adjust the active permis-
sions based on events from the local context agent. The
context agents are authorized by the central authority us-
ing GSI delegation mechanisms. The access control policy
is stored in the policy repository, which is maintained by
anAuthentication & Authorization Service within Discover
Middleware Substrate. Polices are specified in XML and
define role/permission assignments and transitions as illus-
trated in Figure 5. Policies defined for our implementa-
tion includeUserPolicy, RoleHierarchyPolicy, RoleAssign-
mentPolicy, PermissionAssignmentPolicy, EventPolicy, Ro-
leTransitionPolicy andPermissionTransitionPolicy.

<ROLE_TRANSITION>

<POLICY>

<SUBJECTID>gszhang</SUBJECTID>

<BEGIN_ROLE>Super User</BEGIN_ROLE>

<EVENT>Unsecure Link</EVENT>

<END_ROLE>General User</END_ROLE>

</POLICY>

</ROLE_TRANSITION>

Figure 5. Sample RoleTransition policy in
XML

In our prototype implementation, we assume that a secu-
rity administrator will guarantee the correctness of a policy
for a object or subject - i.e. SESAME sets up theRole State
Machines andPermission State Machines without consider-
ing checking them for errors or conflicts. There are no in-
herent constraints on the number of roles and permissions,
or on the relationships betweens the roles or permissions.
To illustrate our implementation, consider a simple exam-
ple with a single user with three roles and a Grid resource
with three permissions, as shown in Table 1 and Table 2
respectively. The role and permission hierarchies for this
example are shown in Figure 6.

Table 1. Permission assignments for the ex-
ample.

Role Permissions

Super User P1, P2, P3

Basic User P2, P3

Guest P3

Table 2. Permission definition for the exam-
ple.

Permission Privileges

P1 Steer Object, View Object, Basic
P2 View Object, Basic
P3 Basic

Figure 6. Role and permission hierarchies for
the example.

We consider two types of context information in our im-
plementation: (1) Object context such as a user’s location,
time, local resource state and link state, and (2) Subject con-
text, such as the current load, availability, connectivity for a

resource. Context agents build on existing Grid middleware
services. For example object context can be collected using
the Context Toolkit [14] and subject context can be obtained
using NWS [17].

3.1 SESAME/DRBAC Operation

The operation of the prototype is illustrated using a set
of simple scenarios. These scenarios, although somewhat
contrived, demonstrate the effectiveness and utility of the
DRBAC model for Grid applications. For each of these
scenarios, consider a user (sayN) equipped with a mobile
devices such as a PDA, and involved in collaboration sci-
entific investigation using Discover. Assume that the user’s
environment is part of the pervasive Grid environment with
appropriate middleware services.

Assume that userN logs into the system using her PDA.
Based on her credentials, theAuthentication & Authoriza-
tion service assigns her a set of roles. TheAuthority Ser-
vice also sets up an access control agent on her PDA, which
maintains the role state machine. A DRBAC policy defined
to select an appropriate role based on the level of security
of her wireless connection, i.e. her active role isSuper User
while the network is secure (e.g. in her laboratory or office)
and isBasic User if it is insecure. The correspondingEvent-
Policy andRoleTransitionPolicy may be defined as follow:

- EventPolicy - Generate eventinsecure whenN’s link
has no encryption.

- RoleTransitionPolicy - Transit role fromSuper User to
Basic User when eventinsecure is generated.

A corresponding permission state machine is maintained
on the application side as shown in Figure 7. As seen in
the figure each role has its own permission state machine.
The dashed circle represents the current active permission
for each role. A DRBAC policy is defined so that the active
permission of the roleSuper User is P1 while load is low
andP2 when the system load increases above some thresh-
old, as there is a possibility that the application may get
corrupted. The correspondingEventPolicy andPermission-
TransitionPolicy may be defined as follow:

- EventPolicy - Generate eventhighload when load in-
creases aboveThreshold.

- PermissionTransitionPolicy - Transit permission from
P1 to P2 when eventhighload is generated.

Based on the policies defined above, the following sce-
narios illustrate the operation of the SESAME DRBAC
model.

Figure 7. Permission hierarchy for the appli-
cation

• When userN moves out of her laboratory, the context
agent will detect (using middleware context services)
that the wireless network no longer has the level of en-
cryption required and will generate theinsecure event.
This event will trigger a transition in the role state ma-
chine and downgrade her active role toBasic user. As
a result of this transition,N will not be able to control
and steer applications as she did while in her labora-
tory. When she reaches her office where the network
is once again secure, the agent will detect this and will
once again makeSuper User the active role.

• While in her office,N’s active role isSuper User and
she can monitor, interact with and steer applications
under normal circumstances (load at the application
server is low). However if the load on the application
server increases as more users join the session, the lo-
cal agent generates thehighload event, which triggers
a transition in the permission state machine and change
from P1 to P2. As a resultSuper User will no longer
be able to steer the application.

A screen dump from theDiscover Portal during these
scenarios is illustrated in Figure 8. As shown in this figure,
due to the transitions, the portal displays “You don’t have
the permission to access”. Note that for these scenar-
ios and the experiments presented in the following section,
context information was simulated.

In our current implementation of the DRBAC model, the
active role of the user and the active permission of the role
change independently. As a result, it is possible that even
though the active role of user has been changed to match the
current context, the user has certain permission(s) based on
the previous role. We are currently addressing this potential
consistency issue.

4 Experimental Evaluation

We use the prototype implementation of SESAME in
Discover to measure the overheads of the DRBAC model.

Figure 8. Dynamic access control in discover

The experiments were conducted on two PC using PII-
200MHZ processors, running Windows NT 4.0, and one
PC using PIII-500MHZ processor, running RedHat Linux
7.2. The machines were connected by a 100 Mb Ethernet
switch. TheDiscover Middleware was installed on the ma-
chines running Windows NT 4.0, while theApplication was
installed on the machine running RedHat Linux 7.2. The
Discover portal ran on the other machine running Windows
NT 4.0. The following factors affect overhead of the DR-
BAC model.

- The number of roles assigned to the object.

- The frequency of the events (generated by the context
agent at the object) that trigger transitions in the role
state machine.

- The number of permissions assigned to each role.

- The frequency of the events (generated by the context
agent at the subject) that trigger transitions in the per-
mission state machine.

In the first set of experiments, we assigned each user 5
roles, and the role with highest privileges had 5 permissions.
The events that triggered transitions in the role state ma-
chine were generated at different time interval. The times
required to generate a request at theDiscover Portal and get
a response from theApplications, i.e. the interaction times,
for different event frequencies are listed in Table 3. The
first row is for the case without DRBAC.

In the second set of experiments, we randomly generate
events to trigger transitions in the role state machine and
vary the number of roles assigned. The role with the highest
privileges is still assigned 5 permissions. Table 4 shows the
interaction times for different number of roles.

In the last set of experiments, the user had a state ma-
chine with 5 roles and the role with the highest privileges
was set as the active role. Events were randomly generated

Table 3. Interaction time in ms. for different
context event frequencies.

Event frequency Time (ms.)

- 2300
1min 4732
2min 4403
3min 4102
4min 3482
5min 3104

Table 4. Interaction time in ms. for different
number of roles.

Number of Roles Time (ms.)

- 2300
5 2520
6 2608
7 2804
8 2920
9 3004

at the application server to trigger transitions in the permis-
sion state machine. The number of permissions assigned to
the active role was varied. The interaction times for differ-
ent number of permissions are listed in Table 5.

Table 5. Interaction time in ms. for different
number of permissions.

Number of Permissions Time (ms.)

- 2300
5 2500
6 2602
7 2698
8 2804
9 2912

These preliminary results show that in general the over-
heads of the DRBAC implementation are reasonable. The
primary overheads were due to the event generated by the
context agent - the higher the frequency, the larger was the
overhead. The context agent can be implemented as an in-
dependent thread and as a result, the transition overheads at
the object and subject are not significant.

5 Summary and Conclusions

In this paper, we presented the SESAME dynamic
context-aware access control mechanism for pervasive Grid
applications. SESAME complements current authorization
mechanisms to dynamically grant and adapt permissions to
users based on their current context. The underling dynamic
role based access control (DRBAC) model extends the clas-
sic role based access control (RBAC). A prototype imple-
mentation of SESAME and the DRBAC model within the
Discover computational collaboratory was presented. The
feasibility, performance and overheads of SESAME were
experimentally evaluated. The results show that the over-
heads of the model are reasonable and the model can be
effectively used for dynamic context-aware access control
for Grid applications.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy
of the Grid: Enabling Scalable Virtual Organizations”,
International Journal of Supercomputer Applications,
15(3): pp.200-222, 2001.

[2] R. Sandhu, E. Coyne, H. Feinstein and C. Youman,
“Role-Based Access Control Models”, IEEE Com-
puter, 29(2): pp.38-47, 1996.

[3] L. Pearlman, V. Welch, I. Foster, C. Kesselman and
S. Tuecke, “A Community Authorization Service for
Group Collaboration”, Proceedings of the IEEE 3rd
International Workshop on Policies for Distributed
Systems and Networks, p.0050, Monterey, CA, 2002.

[4] W. Johnston, S. Mudumbai, and M. Thompson. “Au-
thorization and Attribute Certificates for Widely Dis-
tributed Access Control”, Proceedings of IEEE 7th In-
ternational Workshops on Enabling Technologies: In-
frastructures for Collaborataive Enterprises, Stanford
University, CA, USA, 1998.

[5] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, “A Se-
curity Architecture for Computational Grids”, Proc.
5th ACM Conference on Computer and Communica-
tions Security Conference, pp.83-92, San Francisco,
CA, USA, 1998.

[6] M. Lorch, D. Kafura, “Supporting Secure Ad-hoc
User Collaboration in Grid Environments”, Proceed-
ings of the 3rd Int. Workshop on Grid Computing,
Springer Press, pp.181-193, Baltimore, MD, USA,
November 2002

[7] L. Ramakrishnan, H. Rehn, J. Alameda, R. Ananthakr-
ishnan, M. Govindaraju, A. Slominski,K. Connelly, V.

Welch, D. Gannon, R. Bramley, and S.Hampton,“An
Authorization Framework for a Grid Based Compo-
nent Architecture”,Proceedings of the 3rd Interna-
tional Workshop on Grid Computing, Springer Press,
pp. 169-180, Baltimore, MD, USA, November 2002

[8] D. F. Ferraiolo , J. F. Barkley and D. R. Kuhn, “A Role
Based Access Control Model and Reference Imple-
mentation Within a Corporate Intranet”, ACM Trans-
actions on Information and System Security, 2(1):
pp.34-64, 1999.

[9] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn
and R. Chandramouli, “Proposed NIST Standard for
Role-Based Access Control”, ACM Transactions on
Information and System Security, 4(3): pp.224-274,
2001.

[10] V. Bhat and M. Parashar, “A Middleware Substrate
for Integrating Services on the Grid”, Technical Re-
port Number TR-268, Center for Advanced Informa-
tion Processing, Rutgers University, November 2002.

[11] V. Mann, V. Matossian, R. Muralidhar and M.
Parashar, “Discover: An Environment for Web-based
Interaction and Steering of High-Performance Scien-
tific Applications”, Concurrency and Computation:
Practice and Experience, John Wiley and Sons, 13(8-
9) :pp.737-754, 2001.

[12] V. Mann and M. Parashar, “Engineering an Interoper-
able Computational Collaboratory on the Grid”, Spe-
cial Issue on Grid Computing Environments, Con-
currency and Computation: Practice and Experience,
John Wiley and Sons, 14(13-15): pp.1569-1593, 2002.

[13] R. Muralidhar and M. Parashar, “A Distributed Object
Infrastructure for Interaction and Steering”, In Con-
currency and Computation: Practice and Experience,
John Wiley and Sons, to appear.

[14] A. K. Dey, G. D. Abowd, “The Context Toolkit: Aid-
ing the Development of Context-Aware Applications”,
In Proceedings of Human Factors in Computing Sys-
tems: CHI 99, Pittsburgh, PA: ACM Press, pp.434-
441, May 1999.

[15] Global Grid Form Web Site, http://www.ggf.org/,
2003.

[16] Globus Project Web Site, http://www.globus.org,
2003.

[17] Network Weather Service, University of Califor-
nia, Santa Barbara, Research Project Web Site,
http://nws.cs.ucsb.edu/, 2003.

