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Abstract The increasing complexity, heterogeneity, and
dynamism of emerging pervasive Grid environments and ap-
plications has necessitated the development of autonomic
self-managing solutions, that are inspired by biological sys-
tems and deal with similar challenges of complexity, het-
erogeneity, and uncertainty. This paper introduces Project
AutoMate and describes its key components. The overall
goal of Project Automate is to investigate conceptual models
and implementation architectures that can enable the devel-
opment and execution of such self-managing Grid applica-
tions. Illustrative autonomic scientific and engineering Grid
applications enabled by AutoMate are presented.
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1. Introduction

The emergence of pervasive wide-area distributed comput-
ing, such as pervasive information systems and the compu-
tational Grid, has enabled a new generation of applications
that are based on seamless aggregations and interactions.
For example, it is possible to conceive of a new generation of
scientific and engineering simulations of complex physical
phenomena that symbiotically and opportunistically com-
bine computations, experiments, observations, and real-time
data, and can provide important insights into complex sys-
tems such as interacting black holes and neutron stars, forma-
tions of galaxies, and subsurface flows in oil reservoirs and
aquifers, etc. Other examples include pervasive applications
that leverage the pervasive information Grid to continuously
manage, adapt, and optimize our living context, crisis man-
agement applications that use pervasive conventional and un-
conventional information for crisis prevention and response,
medical applications that use in-vivo and in-vitro sensors and
actuators for patient management, and business applications
that use anytime-anywhere information access to optimize
profits.

However, the underlying Grid computing environment
is inherently large, complex, heterogeneous and dynamic,
globally aggregating large numbers of independent comput-
ing and communication resources, data stores and sensor
networks. Furthermore, emerging applications are similarly
complex and highly dynamic in their behaviors and inter-
actions. Together, these characteristics result in application
development, configuration and management complexities
that break current paradigms based on passive components
and static compositions. Clearly, there is a need for a fun-
damental change in how these applications are developed
and managed. This has led researchers to consider alterna-
tive programming paradigms and management techniques
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that are based on strategies used by biological systems to
deal with complexity, dynamism, heterogeneity and uncer-
tainty. The approach, referred to as autonomic computing,
aims at realizing computing systems and applications capa-
ble of managing themselves with minimal human interven-
tion. An autonomic system/application has the capabilities
of being contexually aware, self-defining, self-healing, self-
configuring, self-optimizing and self-protecting.

Project AutoMate aims at building solutions to investigate
key technologies, including programming models, frame-
works, and middleware services, to enable the development
of autonomic Grid applications that can address the chal-
lenges of complexity, dynamism, heterogeneity and uncer-
tainty in Grid environments. Its overall goal is to develop
conceptual models and implementation architectures that can
enable the development and execution of such self-managing
Grid applications. Specific issues addressed by Project Au-
toMate include:

Definition of Autonomic Elements: The definition of pro-
gramming abstractions and supporting infrastructure that
will enable the definition of autonomic elements (compo-
nents/services). In addition to the interfaces exported by
traditional elements, autonomic elements provide enhanced
profiles (and contracts) that encapsulate their functional, op-
erational, and control aspects. These aspects enhance the
interfaces to export information and policies about their
behavior, resource requirements, performance, interactiv-
ity and adaptability to system and application dynamics.
Furthermore, they encapsulate sensors, actuators, access
policies and a policy-engine. Together, aspects, policies, and
policy engine allow autonomic elements to consistently con-
figure, manage, adapt and optimize their execution.
Dynamic Composition of Autonomic Applications: The de-
velopment of mechanisms and supporting infrastructure to
enable autonomic applications to be dynamically and oppor-
tunistically composed from autonomic elments. The compo-
sition will be based on policies and constraints that are de-
fined, deployed, and executed at run time, and will be aware
of available resources (systems, services, storage, data) and
elements, and their current states, requirements, and capabil-
ities.
Autonomic Middleware Services: The design, development,
and deployment of key services on top of the Grid middle-
ware infrastructure to support the policy, content and con-
text driven execution and management of autonomic appli-
cations. These include decentralized content-based services
for coordination, messaging, discovery, peer-to-peer multi-
agent substrates and deductive engines, service for security,
access management and self-protection, etc.

In this paper we introduce AutoMate, and describe its
underlying conceptual models and implementations. Specif-
ically, we describe the Accord programming system, the Rud-

der decentralized coordination framework and agent-based
deductive engine, the Meteor content-based middleware that
provides support for content-based routing, discovery and as-
sociative messaging, and the SESAME access management
system. We also illustrate the use of AutoMate for enabling
autonomic scientific and engineering Grid applications

The rest of this paper is organized as follows. Section 2
outlines the programming requirements of Grid applications.
Section 3 gives an overview of the design and architecture
of AutoMate. Section 4 describes the Accord programming
system and the autonomic composition engine. Section 5 de-
scribes the structure and operation of the Rudder coordina-
tion engine. Section 6 presents Squid, a P2P system provid-
ing flexible information discovery and content-based routing
services. Section 7 describes the Meteor content-based mid-
dleware. Section 8 describes the PAWN messaging substrate.
Section 9 presents the design and operation of the Sesame
context aware access control engine. Section 10 briefly dis-
cusses the use of AutoMate in enabling autonomic science
and engineering applications. Section 11 presents some con-
cluding remarks.

2. Grid computing – challenges and requirements

The goal of the Grid concept is to enable a new genera-
tion of applications that combine intellectual and physical
resources and span many disciplines and organizations, pro-
viding vastly more effective solutions to important scientific,
engineering, business, and government problems. These new
applications must be built on seamless and secure discovery,
access to, and interactions among resources, services, and ap-
plications owned by many different organizations. Key char-
acteristics of Grid execution environments and applications
are:

Heterogeneity: Grid environments aggregate large num-
bers of independent and geographically distributed computa-
tional and information resources, including supercomputers,
workstation-clusters, network devices, data-storages, sen-
sors, services, and idle personal computers on the Internet.
Similarly, applications typically combine multiple indepen-
dent and distributed software elements such as components,
services, real-time data, experiments and data sources.

Dynamism: The Grid computation, communication and
information environment is continuously changing during
the lifetime of an application. This includes the availability
and state of resources, services and data. Applications simi-
larly have dynamic runtime behaviors in that the organization
and interactions of the components/services can change.

Uncertainty: Uncertainty in Grid environment is caused
by multiple factors, including (1) dynamism, which intro-
duces unpredictable and changing behaviors that can only be
detected and resolved at runtime, (2) failures, which have an
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increasing probability of occurrence as system/application
scales increase; and (3) incomplete knowledge of global sys-
tem state, which is intrinsic to large decentralized and asyn-
chronous distributed environments.

Security: A key attribute of Grids is flexible and se-
cure hardware/software resource sharing across organization
boundaries, which makes security (authentication, authoriza-
tion and access control) and trust critical challenges in these
environments.

2.1. Requirements for Grid programming systems

The characteristics listed above impose requirements on the
programming systems for Grid applications. Grid program-
ming systems must be able to specify applications, which can
detect and dynamically respond during execution to changes
in both the state of execution environment and the state and
requirements of the application. This requirement suggests
that: (1) Grid applications should be composed from discrete,
self-managing components that incorporate separate speci-
fications for all functional, non-functional and interaction-
coordination behaviors. (2) The specifications of computa-
tional (functional) behaviors, interaction and coordination
behaviors and non-functional behaviors (e.g. performance,
fault detection and recovery, etc.) should be separated so that
their combinations are composable. (3) The interface defi-
nitions of these components should be separated from their
implementations to enable heterogeneous components to in-
teract and to enable dynamic selection of components.

Given these features of a programming system, a Grid
application requiring a given set of computational behaviors
may be integrated with different interaction and coordination
models or languages (and vice versa) and different specifi-
cations for non-functional behaviors such as fault recovery
and QoS to address the dynamism and heterogeneity of the
application and the environments.

2.2. Self-managing applications on the Grid

As outlined above, the inherent scale, complexity, hetero-
geneity, and dynamism of emerging Grid environments re-
sult in application programming and runtime management
complexities that break current paradigms. This is primarily
because the programming models and the abstract machine
underlying these models make strong assumptions about
common knowledge, static behaviors and system guaran-
tees that cannot be realized by Grid virtual machines and
which are not true for Grid applications. Addressing these
challenges requires redefining the programming framework
to address the separations outlined above. Specifically, it re-
quires (1) static (defined at the time of instantiation) appli-
cation requirements and system and application behaviors to
be relaxed, (2) the behaviors of elements and applications to

be sensitive to the dynamic state of the system and the chang-
ing requirements of the application and be able to adapt to
these changes at runtime, (3) required common knowledge
be expressed semantically (ontology and taxonomy) rather
than in terms of names, addresses and identifiers, and (4) the
core enabling middleware services (e.g., discovery, messag-
ing) be driven by such a semantic knowledge. In the rest of
this paper we describe Project AutoMate, which addresses
these challenges by enabling autonomic self-managing Grid
applications.

3. Project AutoMate: enabling self-managing Grid
applications

Project AutoMate [1] investigates autonomic solutions that
are inspired by biological systems and deals with similar
challenges of complexity, dynamism, heterogeneity and un-
certainty. The goal is to realize systems and applications
that are capable of managing (i.e., configuring, adapting,
optimizing, protecting, healing) themselves. Project Auto-
Mate aims at developing conceptual models and imple-
mentation architectures that can enable the development
and execution of such self-managing Grid applications.
Specifically, it investigates programming models, frame-
works and middleware services that support (1) the def-
inition of autonomic elements, (2) the development of
autonomic applications as the dynamic and opportunis-
tic composition of these autonomic elements, and (3) the
policy, content and context driven definition, execution
and management of these applications. Project AutoMate
builds on three fundamental concepts:

– Separation of policy from mechanism to distill out the
aspects [11, 21] of components and enable them to or-
chestrate a repertoire of mechanisms for responding to the
heterogeneity and dynamics, both of the applications and
the Grid infrastructure. The policies that drive these mech-
anisms are specified separately. Examples of mechanisms
are alternative numerical algorithms, domain decomposi-
tions, and communication protocols; an example of a pol-
icy is to select a latency-tolerant algorithm when network
load is above certain thresholds.

– Context, constraint, and aspect based composition tech-
niques applied to applications and middleware as an
alternative to the current processes for translating the ap-
plication’s dynamic requirements for functionality, perfor-
mance, quality of service, into sets of components and Grid
resource requirements.

– Dynamic, proactive, and reactive component management
to optimize resource utilization and application perfor-
mance in situations where computational characteristics
and/or resource characteristics may change.
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Fig. 1 A schematic overview of
AutoMate.

A schematic overview of AutoMate is presented in
Fig. 1. It is composed of the following components:

Accord Programming Layer: The Accord programming
layer [14] extends existing distributed programming models
and frameworks to addresses the definition, execution and
runtime management of autonomic elements, as well as the
formulation of autonomic applications as the dynamic and
opportunistic composition of these elements.

Rudder Coordination Layer: The Rudder coordination
layer [12] provides a coordination framework and agent-
based deductive engine to support autonomic behaviors. The
coordination framework defines protocols and mechanisms
and builds on a scalable implementation of a decentralized
tuple space. The deductive engine is composed of element,
system and compostion agents and supports the collective
decision making.

Meteor/Pawn Middleware Layer: The Meteor [7] mid-
dleware substrate provides a content-based middleware with
support for content-based routing, discovery and associative
messaging. It includes the Squid routing and discovery en-
gine and the ARMS messaging substrate. The Pawn [19]
peer-to-peer messaging layer provides higher level messag-
ing abstractions in a decentralized environment.

Sesame Access Management Layer: The Sesame [30]
access control engine is composed of access control agents
and provides dynamic context-aware control.

Project AutoMate also includes the DAIS [29]
cooperative-protection services and the Discover collabo-
ratory [4, 15] services for collaborative monitoring, inter-
action and control, which are not described in this paper.
Additionally, AutoMate portals provide users with secure,
pervasive (and collaborative) access to the different entities.
Using these portals users can access resources, monitor, in-
teract with, and steer components, compose and deploy ap-
plications, configure and deploy rules. The key components
are described in the following sections.

4. Accord, a programming framework for
autonomic applications

The Accord programming system [14] addresses Grid pro-
gramming challenges by extending existing programming
systems to enable autonomic Grid applications. Accord real-
izes three fundamental separations: (1) a separation of com-
putations from coordination and interactions; (2) a separation
of non-functional aspects (e.g. resource requirements, per-
formance) from functional behaviors, and (3) a separation of
policy and mechanism. Policies in the form of rules are used
to orchestrate a repertoire of mechanisms to achieve context-
aware adaptive runtime computational behaviors and coordi-
nation and interaction relationships based on functional, per-
formance, and QoS requirements. The components of Accord
are described below.

Accord Programming Model: Accord extends exist-
ing distributed programming models, i.e., object, compo-
nent and service based models, to support autonomic self-
management capabilities. Specifically it extends the entities
and composition rules defined by the underlying program-
ming model to enable computational and composition/
interaction behaviors to be defined at runtime using high-
level rules. The resulting autonomic elements and their au-
tonomic composition are described below. Note that other
aspects of the programming model, i.e., operations, model
of computation and rules for composition are inherited and
maintained by Accord.

Autonomic Elements: An autonomic element extends pro-
gramming elements (i.e., objects, components, services) to
define a self-contained modular software unit with specified
interfaces and explicit context dependencies. Additionally,
an autonomic element encapsulates rules, constraints and
mechanisms for self-management, and can dynamically in-
teract with other elements and the system. An autonomic
element is illustrated in Fig. 2 and is defined by 3 ports:
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Fig. 2 An autonomic component

The functional port defines a set of functional behaviors
that are provided and used by the element.

The control port is a set of tuples, that is composed of
a set of sensors and actuators exported by the element, and
a constraint set that controls access to the sensors/actuators.
Sensors are interfaces that provide information about the el-
ement while actuators are interfaces for modifying the state
of the element. Constraints are based on state, context and/or
high-level access polices.

The operational port defines the interface to formulate,
dynamically inject and manage rules that are used for the run-
time behavior of the elements and the interactions between
elements, between elements and their environments, and the
coordination within an application.

The control and operational ports (specified in XML) en-
hance element interfaces to export information about their
behaviors and adaptability to system and application dynam-
ics. Each autonomic element is associated with an element
manager (possibly embedded) that is delegated to manage
its execution. The element manager monitors the state of
the element and its context, and controls the execution of
rules. Note that element managers may cooperate with other
element managers to fulfill application objectives.

Rules in Accord: Rules incorporate high-level guidance
and practical human knowledge in the form of if-then ex-
pressions, i.e., IF condition THEN actions, similar to pro-
duction rule, case-based reasoning and expert systems. Con-
dition is a logical combination of element (and environment)
sensors, function interfaces and events. Actions consist of a
sequence of invocations of element and/or system sensors/
actuators, and other interfaces. A rule fires when its condition
expression evaluates to be true and causes the correspond-
ing actions to be executed. A priority based mechanism is
used to resolve conflicts [13]. Two classes of rules are de-
fined: (1) Behavioral rules that control the runtime functional
behaviors of an autonomic element (e.g., the dynamic selec-
tion of algorithms, data representation, input/output format
used by the element). (2) Interaction rules that control the
interactions between elements, between elements and their
environment, and the coordination within an autonomic ap-
plication (e.g., communication mechanism, composition and
coordination of the elements). Note that behaviors and inter-
actions expressed by these rules are defined by the model of
computation and the rules for composition of the underlying
programming model.

Behavioral rules are executed by an element manager em-
bedded within a single element without affecting other ele-
ments. Interaction rules define interactions among elements.
For each interaction pattern, a set of interaction rules are
defined and dynamically injected into the interacting ele-
ments. The coordinated execution of these rules results in the
desired interaction and coordination behaviors between the
elements.

Dynamic composition in Accord: Dynamic composition
enables relationships between elements to be established and
modified at runtime. Operationally, dynamic composition
consists of a composition plan or workflow generation and
execution. Plans may be created at runtime, possibly based
on dynamically defined objectives, policies and applications
and system context and content. Plan execution involves dis-
covering elements, configuring them and defining interaction
relationships and mechanisms. This may result in elements
being added, replaced or removed or the interaction relation-
ships between elements being changed.

In Accord, composition plans may be generated using the
Accord Composition Engine (ACE) [2] (described in the
following section) or using other approaches, and are ex-
pressed in XML. Element discovery uses the Meteor content-
based middleware. Plan execution is achieved by a peer-to-
peer control network of element managers and agents within
Rudder [12]. A composition relationship between two ele-
ments is defined by the control structure (e.g., loop, branch)
and/or the communication mechanism (e.g., RPC, shared-
space) used. A composition agent translates this into a suite
of interaction rules, which are then injected into correspond-
ing element managers. Element managers execute the rules
to establish control and communication relationships among
these elements in a decentralized manner. Rules can be sim-
ilarly used to add or delete elements. Note that the interac-
tion rules must be based on the core primitives provided by
the system. Accord defines a library of rule-sets for com-
mon control and communications relationships between el-
ements. The decomposition procedure will guarantee that
the local behaviors of individual elements will coordinate
to achieve the application’s objectives. Runtime negotiation
protocols provided by Accord address runtime conflicts and
conflicting decisions caused by a dynamic and uncertain
environment.

Accord Implementation Issues: The Accord abstract ma-
chine assumes the existence of common knowledge in the
form of an ontology and taxonomy that defines the se-
mantics for specifying and describing application name-
spaces, and element interfaces, sensors and actuators, and
system/application context and content. This common se-
mantics is used for formulating rules for autonomic manage-
ment of elements and dynamic composition and interactions
between the elements. Further, the abstract machine assumes
time-asynchronous system behavior with fail-stop failure
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modes. Finally, Accord assumes the existence of an execu-
tion environment that provides (1) an agent-based control
network, (2) support for associative coordination, (3) service
for content-based discovery and messaging, (4) support of
context-based access control and (4) services for construct-
ing and managing virtual machines for a given virtual or-
ganization. These requirements are addressed respectively
by Rudder, Meteor, Sesame/DAIS and the underlying Grid
middleware on which it builds.

Accord decouples interaction and coordination from com-
putation, and enables both these behaviors to be managed
at runtime using rules. This enables autonomic elements
to change their behaviors, and to dynamically establish/
terminate/change interaction relationships with other el-
ements. A prototype implementation and evaluation of
Accord’s performance is presented in [14] and shows that de-
ploying and executing rules does impact performance, how-
ever, it increases the robustness of the applications and their
ability to manage dynamism. Further, our observations in-
dicate that the runtime changes to interaction relationships
are infrequent and their overheads are relatively small. As a
result, the time spent to establish and modify interaction rela-
tionships is small as compared to typical computation times.

4.1. AutoMate autonomic composition engine

Applications are typically composed with well defined objec-
tives. In the case of autonomic applications, however, these
objectives can dynamically change based on the state of the
application and/or the system. As a result, we need to dynam-
ically select elments and compose them at runtime based
on current objectives. Together, the profiles, policies, and
rules allow autonomic components to consistently and se-
curely manage and optimize their executions. Furthermore,
they enable applications to be dynamically composed, con-
figured and adapted. Dynamic application work-flows [16]
can be defined to select the most appropriate elements based
on user/application constraints (highest-performance, low-
est cost, reservation, execution time upper bound, best ac-
curacy), on the current applications requirements, to dy-
namically configure the element’s algorithms and behavior
based on available resources or system and/or applications
state, and to adapt this behavior if necessary. Enabling dy-
namic composition presents significant challenges: (1) How
to specify the changes in the objective to create dynamic
compositions? Static composition can be described using
existing languages, e.g. Petri nets or workflow definition
language (WFDL), however changes in the composition re-
quires a more flexible approach. (2) How to guarantee con-
sistency of environment after submitting “change in plan”?
Dynamic interactions and compositions can corrupt the
element/application and introduce serious errors (e.g. dead-
lock or no termination). The AutoMate dynamic composition

model may be viewed as transforming a given composition or
workflow into a new one by adding or modifying interactions
and participating entities. Its primary goal is to enable dy-
namic (and opportunistic) choreography and interactions of
elements to react to the heterogeneity and dynamics of the ap-
plication and underlying execution environment to produce
the desired user objectives.

The AutoMate dynamic composition model is context
aware and is based on policies and constraints that are de-
fined, deployed and executed at runtime. Composition poli-
cies and constraints are defined as simple rules and execute
on the distributed deductive engine (Section 5) – i.e. there is
no central authority that manages the composition process.
These rules are defined in terms of the ports [11] exported
by Accord elements, the current context of the scenario and
the overall objective of the application. Rules are simple and
non-recursive, and can be composed and aggregated in a
consistent way – based on logic and constraint based pro-
gramming techniques [17]. Users can define and deploy rules
at runtime provided they have the required privileges, and
the rules inherit the priorities and privileges of their owners
[13]. Rules execute in a distributed fashion on a peer-to-
peer deductive shell exported by the autonomic middleware
as described below. Firing of rules causes the elements to
adapt, optimize, interact and compose. Composition meta-
data [16] is defined locally at the component level or globally
at the application or the middleware level using a standard
representation.

5. Rudder, an agent-based coordination middleware

Rudder [12] is an agent-based middleware infrastructure for
autonomic Grid applications. Rudder effectively supports
the Accord programming framework and enables autonomic
self-managing applications. The overall objective of Rudder
is to provide the core capabilities for supporting autonomic
compositions, adaptations, and optimizations. Specifically,
Rudder employs context-aware software agents and a de-
centralized tuple space coordination model to enable context
and self awareness, application monitoring and analysis, and
policy definition and its distributed execution. The overall
architecture builds on two concepts:

Agent framework: Context-aware agents manage con-
text information at different system and application lev-
els to trigger autonomic behaviors. A context-aware agent
is a processing unit that performs tasks to automate the
control and coordination of the autonomic elements. The
context consists of the information such as device profiles
(e.g., CPU, memory, physical location, domain), network re-
sources (e.g., bandwidth, latency, and disconnection rate),
and software components (e.g., reliability, processing ca-
pability). These agents do not have the complex symbolic
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reasoning capability, while they act and interact using prede-
fined preferences and policies to select a plan that optimizes
an appropriate measurement. Agents can control, compose
and manage autonomic components, monitor and analyze
system runtime state, sense changes in environment and ap-
plication requirements, and dynamically define and enforce
rules to locally enable component self-managing behaviors.
The Rudder agent framework consists of three types of peer
agents: Component Agent (CA), System Agent (SA), and
Composition Agent (CSA). CA and SA exist as system ser-
vices, while composition agents are transient and are gener-
ated to satisfy specific application requirements. CAs man-
age the computations performed locally within components
and SAs are embedded within Grid resource units, exist at
different levels of the system, and represent their collective
behaviors. CSAs enable dynamic composition of autonomic
components by defining and executing workflow-selection
and component-selection rules.

Decentralized tuple space: A robust decentralized reac-
tive tuple space can scalably and reliably support distributed
agent-based system coordination. It provides the core se-
mantic resource discovery and event notification services to
enable the dynamic system deployment, composition, mon-
itoring and management. The Rudder decentralized reactive
tuple space extends the traditional tuple space with flexi-
ble matching mechanisms and simple reactivity to enable
global coordination for dynamic and ad hoc agent commu-
nities. Runtime adaptive polices or constrains defined by the
context-aware agents or administrators can be inserted and
executed using reactive tuples to achieve coordinated ap-
plication execution and optimized computational resource
allocation and utilization.

The Rudder tuple space adopts a fully decentralized ar-
chitecture consisting of the following layers implemented
at each peer in the system: (1) a tuple space layer that im-
plements a persistent tuple repository and extends the strict
definition of tuples by exploiting XML strings with flexi-
ble matching mechanisms and coordination interfaces; (2) a
content-based routing layer, which efficiently maps the tuples
to peers nodes; and (3) a resilient self-organizing peer-to-peer
content-based overlay. Programming reactive behaviors en-
able the definition and execution of coordination policies.
Transient tuple spaces, which are context and content spe-
cific, can be dynamically created and destroyed to support lo-
cal coordination needs. The Rudder decentralized tuple space
builds on the Meteor infrastructure.

6. Squid: decentralized discovery service

A fundamental problem in large, decentralized, distributed
resource sharing environments such as the Grid, is the ef-
ficient discovery of information, in the absence of global

knowledge of naming conventions. For example a document
is better described by keywords than by its filename, a com-
puter by a set of attributes such as CPU type, memory, oper-
ating system type than by its host name, and a component by
its aspects than by its instance name. The heterogeneous na-
ture and large volume of data and resources, their dynamism
(e.g. CPU load) and the dynamism of the Grid make the in-
formation discovery a challenging problem. An ideal infor-
mation discovery system has to be efficient, fault-tolerant,
self-organizing, has to offer guarantees and support flexible
searches (using keywords, wildcards, range queries). Decen-
tralized peer-to-peer (P2P) systems, by their inherent prop-
erties (self-organization, fault-tolerance, scalability), provide
an attractive solution.

Squid [25] supports decentralized information discovery
in AutoMate. It is a P2P system that supports complex queries
containing partial keywords, wildcards, and range queries,
and guarantees that all existing data elements that match a
query will be found with bounded costs in terms of num-
ber of messages and number of nodes involved. The key
innovation is a dimension reducing indexing scheme that ef-
fectively maps the multidimensional information space to
physical peers.

The overall architecture of Squid is a distributed hash ta-
ble (DHT), similar to typical data lookup systems [22, 28].
The key difference is in the way we map data elements1 to
the index space. In existing systems, this is done using con-
sistent hashing to uniformly map data element identifiers to
indices. As a result, data elements are randomly distributed
across peers without any notion of locality. Our approach at-
tempts to preserve locality while mapping the data elements
to the index space. In our system, all data elements are de-
scribed using a sequence of keywords (common words in the
case of P2P storage systems, or values of globally defined at-
tributes - such as memory and CPU frequency - for resource
discovery in computational grids). These keywords form a
multidimensional keyword space where the keywords are
the coordinates and the data elements are points in the space.
Two data elements are “local” if their keywords are lexico-
graphically close or they have common keywords. Thus, we
map documents that are local in this multi-dimensional in-
dex space to indices that are local in the 1-dimensional index
space, which are then mapped to the same node or to nodes
that are close together in the overlay network. This mapping
is derived from a locality-preserving mapping called Space
Filling Curves (SFC) [23]. In the current implementation, we
use the Hilbert SFC [23] for the mapping, and Chord [28] for
the overlay network topology.

1 The term ‘data element’ is used to represent a piece of information that
is indexed and can be discovered. A data element can be a document,
a file, an XML file describing a resource, an URI associated with a
resource, etc.
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Fig. 3 (a) A 2-dimensional
keyword space. The data
element “Document” is
described by keywords
“Computer” and “Network”; (b)
Mapping the 2-dimensional
space to a curve. The query
(011, ∗) defines clusters on the
curve (segments); (c) Recursive
refinement of query (011, ∗)
viewed as a tree. Each node is a
cluster, and the bold characters
are the cluster’s prefixes; (d)
Solving the query: embedding
the leftmost tree path (solid
arrows) and the rightmost path
(dashed arrows) onto the overlay
network topology.

Note that locality is not preserved in an absolute sense in
this keyword space; documents that match the same query
(i.e. share a keyword) can be mapped to disjoint fragments
of the index space, called clusters. These clusters may in
turn be mapped to multiple nodes so a query will have to be
efficiently routed to these nodes. Squid optimizes the query-
ing process using successive refinement and pruning of the
queries. These optimizations significantly reduce the num-
ber of clusters that need to be generated for a query, and as
a consequence, the number of messages sent. The overall
operation of Squid is presented in Fig. 3.

Unlike the consistent hashing mechanisms, SFC does not
necessarily result in uniform distribution of data elements in
the index space - certain keywords may be more popular and
hence the associated index subspace will be more densely
populated. As a result, when the index space is mapped to
nodes load may not be balanced. Squid provides a suite of
relatively inexpensive load-balancing optimizations and ex-
perimentally demonstrate that they successfully reduce the
amount of load imbalance.

7. Meteor: content-based middleware for decoupled
interactions in pervasive environments

Meteor is a content-based middleware infrastructure for de-
coupled interactions in pervasive Grid environments based on
the Associative Redendezvous model. A schematic overview
of the Meteor stack is presented in Fig. 4. It consists of 3
key components: (1) a self-organizing overlay, (2) a content-
based routing infrastructure (Squid), and (3) the Associative

Fig. 4 A schematic overview of the Meteor stack.

Rendezvous Messaging substrate (ARMS). Squid was dis-
cussed in Section 6. The other two components are described
below.

The Overlay Network Layer
The Meteor overlay network is composed of Rendezvous

Peers (RP) nodes, which may be access points or message
forwarding nodes in ad-hoc sensor networks and servers or
end-user computers in wired networks. RP nodes can join or
leave the network at any time.

The current Meteor overlay network is largely built over
Chord [28]. Peer nodes in the Chord overlay form a ring
topology. Every node in the Chord overlay is assigned a
unique identifier ranging from 0 to 2m − 1. While in the orig-
inal Chord implementation this identifier is obtained using
consistent hashing [9], in Meteor it is obtained using Squid.
The identifiers are arranged as a circle modulo 2m . Each node
maintains information about (at most) m neighbors, called
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fingers, in a finger table. The finger table is used for efficient
routing and enables data lookup with O(log N) cost [28],
where N is the number of nodes in the system. The finger
table is constructed when a node joins the overlay, and it is
updated any time a node joins or leaves the system. The cost
of a node join/leave is O(log2N).

Advantages of Chord include its guaranteed performance,
logarithmic in number of messages, and its ease of implemen-
tation. Drawbacks include the cost of node join and leave
operations (i.e. key reallocation) and the fact that constant
periodic messages are required to maintain the ring (i.e. up-
date propagation).

The overlay network layer of the Meteor stack provides a
simple abstraction to the layers above, consisting of a single
operation: lookup(identifier). Given an identifier, this oper-
ation locates the node that is responsible for it, i.e., the node
with an identifier that is the closest identifier greater than
or equal to the queried identifier. Application names can be
mapped to identifiers using hashing mechanisms, and then
mapped to nodes in the overlay network.

Associative Rendezvous Messaging Substrate
The matching engine component is essentially respon-

sible for matching profiles. An incoming message profile is
matched against existing interest and/or data profiles depend-
ing on the desired reactive behavior. If the result of the match
is positive, then the action field of the incoming message is
executed first and then the action field of the matched profile
is evaluated.

The ARMS layer implements the Associative Rendezvous
interaction model. At each RP, ARMS consists of two com-
ponents: the profile manager and the matching engine. The
profile manager manages locally stored profiles. Profiles are
implemented as XML files. The managers monitor message
credentials and contexts and ensures that related constraints
are satisfied. For example, a client cannot retrieve data that it
is not authorized to. The profile manager is also responsible
for garbage collection. It maintains a local timer and purges
interest and data profiles when their TTL fields have expired.
Finally, the profile manager executes the action correspond-
ing to a positive match.

8. Pawn: a P2P messaging substrate

Pawn[19] is a peer-to-peer messaging substrate that builds
on project JXTA[8] to support peer-to-peer interactions on
the Grid. Pawn provides a stateful and guaranteed messag-
ing to enable key application-level interactions such as syn-
chronous/asynchronous communication, dynamic data injec-
tion, and remote procedure calls. It exports these interaction
modalities through services at every step of the scientific
investigation process, from application deployment, to in-
teractive monitoring and steering, and group collaboration.

Fig. 5 Pawn requirements stack

A conceptual overview of the Pawn P2P substrate is pre-
sented in Fig. 5 and is composed of peers (computing, stor-
age, or user peers), network and interaction services, and
mechanisms. These components are layered to represent the
requirements stack enabling interactions in a Grid environ-
ment. The figure can be read from bottom to top as: “Peers
compose messages handled by services through specific
interaction modalities”.

JXTA defines unicast pipes that provide a communica-
tion channel between two endpoints, and propagate pipes
that can multicast a message to a peergroup. It also defines
the Resolver Service that sends and receives messages in an
asynchronous manner. The recipient of the message can be
a specific peer or an entire peergroup. The pipe and resolver
service use one or any of the available underlying transport
protocols (TCP, HTTP, TLS, etc. . . ) to transport messages
from point to point. Pawn extends the pipe and resolver ser-
vices to provide stateful and guaranteed messaging. This
messaging is then used to enable the key application-level
interactions such as synchronous/asynchronous communi-
cation, dynamic data injection, and remote procedure calls.
Stateful Messages: In Pawn, messages are platform-
independent, and are composed of source and destination
identifiers, a message type, a message identifier, a payload,
and a handler tag. The handler tag uniquely identifies the
service that will process the message. State is maintained by
making every message a self-sufficient and self-describing
entity that, in case of a link failure, can be resent to its des-
tination by an intermediary peer without the need to be re-
composed by its original sender. In addition, messages can
include system and application parameters in the payload to
maintain application state.
Message Guarantees: Pawn implements application-level
communication guarantees by combining stateful messages
and a per-message acknowledgment table maintained at ev-
ery peer. Message queues are used to handle all incoming and
outgoing messages. Every outgoing message that expects a
response is flagged in the table as awaiting acknowledgment.
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This flag is removed once the message is acknowledged. Mes-
sages contain a default timeout value representing an upper
limit on the estimated response time. If an acknowledgment
is not received and/or the timeout value expires, the message
is resent. The message identifier is a composition of the desti-
nation and sender’s unique peer identifiers. It is incremented
for every transaction during a session (interval between a peer
joining and leaving a peergroup) to provide application-level
message ordering guarantees.
Synchronous/Asynchronous communication: Pawn com-
bines JXTA communication semantics, synchronous (us-
ing blocking pipes) or asynchronous (using non-blocking
pipes) interactions, with its stateful messaging and mes-
sage guarantees mechanisms to provide reliable mes-
saging enabling the desired higher-level application
interactions.
Dynamic Data Injection: In Pawn, every peer advertisement
contains a pipe advertisement, which uniquely identifies an
input and output communication channel to the peer. This
pipe is used by other peers to create an end-to-end channel
to dynamically send and receive messages.

Every interacting peer implements a message handler that
listens for incoming messages on the peer’s input pipe chan-
nel. The message payload is passed to the application/service
identified by the handler tag field at runtime.
Remote Method Calls (PawnRPC): The PawnRPC mech-
anism provides the low-level constructs for building appli-
cations interactions across distributed peers. Using Pawn-
RPC, a peer can dynamically invoke a method on a remote
peer by passing its request as an XML message through a
pipe. The interfaces for the methods that are exported by a
peer are published as part of the peer advertisement during
peer discovery. The PawnRPC XML message is a compo-
sition of the destination address, the remote method name,
the arguments of the method, and the arguments associated
types. Upon receiving a PawnRPC message, a peer locally
checks the credentials of the sender, and if the sender is au-
thorized, the peer invokes the appropriate method and returns
a response to the requesting peer. The process may be done
in a synchronous or asynchronous manner. PawnRPC uses
the messaging guarantees to assure delivery ordering, and
stateful messages to tolerate failure.

9. SESAME: dynamic role-based access control
engine

A key requirement of autonomic applications is the support
for dynamic, seamless and secure interactions between the
participating entities, i.e. components, services, applications,
data, instruments, resources and users. Ensuring interaction
security requires a fine grained access control mechanism.
Furthermore, in the highly dynamic and heterogeneous Grid

Fig. 6 Dynamic Access Control Model

environment, the access rights of an entity depends on the en-
tity’s privileges, capabilities, context and state. For example,
the ability of a user to access a resource or steer a component
depends on users’ privileges (e.g. owner), current capabil-
ities (e.g. resources available), current context (e.g. secure
connection) and the state of the resource or component. The
AutoMate Access Control Engine addresses these issues and
provides dynamic access control to users, applications, ser-
vices, components and resources. The engine is composed
of access control agents associated with various entities in
the system. The underlying dynamic role based access con-
trol mechanism extends the RBAC (Role Based Access Con-
trol) model [6, 24] to make access control decisions based
on dynamic context information. The access control engine
dynamically adjusts Role Assignments and Permission
Assignments as illustrated in Fig. 6.

The subject is the entity which requests service from an-
other entity. In AutoMate, the subject may be a user, appli-
cation, service or component. The respective context agent
is responsible for collecting an entity’s current context infor-
mation such as the state and current execution environment
of a component or an application. Based on this context in-
formation, the access control agent dynamically adjusts the
user-role and role-permission relationships to dynamically
grant appropriate access permissions. Note that the access
control agent (and context agent) is authenticated and dele-
gated by the authority service (e.g. a Grid Authority Service).
In our approach, each component is assigned a role subset
(by the authority service) from the entire role set. Similarly
the component has permission subsets for each role that will
access the component. During a secure interaction, state ma-
chines are maintained by the access control agent at the sub-
ject (Role State Machine) to navigate the role subset, and the
object (Permission State Machine) to navigate the permis-
sion subset for each active role. The state machine consists of
state variables (role, permission), which encode its state, and
commands, which transform its state. These state machines
define the currently active role and its assigned permissions
and navigate the role/permission subsets to react to changes
in the context.

The operation of dynamic access control engine at the
component layer is illustrated in Fig. 7. This figure shows
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Fig. 7 Dynamic Access Control in AutoMate

three AutoMate components, A, B, and C, each with their
own access control agents and state machines assigned to
them by the authority service. The access control agent main-
tains the role state machine for each component and defines
its active role based on its current context. When the subject
component accesses another component, it will first get its
current role from its role state machine, and then use this
role to access the component. At the accessed component,
a permission state machine is defined (if it does not already
exist) for the active role. For example, active roles X, Y, and
Z have their own permission state machines at the compo-
nent. The access control agent at the accessed component
will maintain this permission state machine to define the cur-
rent permissions for a role based in its current context and
state.

10. Enabling autonomic applications in science and
engineering using AutoMate

10.1. Project AutoMate: current status

The core components of AutoMate have been prototyped
and are currently being used to enable self-managing ap-
plications in science and engineering. The initial prototype
of Accord extended an object-oriented framework based on
C++ and MPI. The current implementation extends the DoE
Common Component Architecture (CCA) [3] and we are
working on extending an OGSA-based programming sys-
tem. Current prototypes of Rudder and Meteor build on the
JXTA [8] platform and use existing Grid middleware ser-
vices. Current applications include autonomic oil reservoir
optimizations [18, 20], autonomic forest-fire management
[10], autonomic runtime management of adaptive simula-
tions [5], and enabling sensor-based pervasive applications
[7]. The first two application are briefly described below. Fur-
ther information about AutoMate and its components and
applications can be obtained from http://automate.rutgers.
edu/.

10.2. Autonomic oil-reservoir optimization

One of the fundamental problems in oil reservoir production
is determining the optimal locations of the oil production
and injection wells. However, the selection of appropriate
optimization algorithms, the runtime configuration and in-
vocation of these algorithms and the dynamic optimization
of the reservoir remains a challenging problem. In this re-
search we use AutoMate to support autonomic aggregations,
compositions and interactions and enable an autonomic self-
optimizing reservoir application. The application consists of:
(1) sophisticated reservoir simulation components that en-
capsulate complex mathematical models of the physical in-
teraction in the subsurface, and execute on distributed com-
puting systems on the Grid; (2) Grid services that provide
secure and coordinated access to the resources required by
the simulations; (3) distributed data archives that store histor-
ical, experimental and observed data; (4) sensors embedded
in the instrumented oilfield providing real-time data about
the current state of the oil field; (5) external services that
provide data relevant to optimization of oil production or of
the economic profit such as current weather information or
current prices; and (6) the actions of scientists, engineers and
other experts, in the field, the laboratory, and in management
offices.

The main components of the autonomic reservoir frame-
work [18] are (i) instances of distributed multi-model, multi-
block reservoir simulation components, (ii) optimization ser-
vices based on the Very Fast Simulated Annealing (VFSA)
[26] and Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) [27], (iii) economic modeling services, (iv)
real-time services providing current economic data (e.g. oil
prices) and, (v) archives of data that has already been com-
puted, and (vi) experts (scientists, engineers) connected via
pervasive collaborative portals.

The overall oil production process is autonomic in that the
peers involved automatically detect sub-optimal oil produc-
tion behaviors at runtime and orchestrate interactions among
themselves to correct this behavior. Further, the detection
and optimization process is achieved using policies and con-
straints that minimize human intervention. Policies are used
to discover, select, configure, and invoke appropriate opti-
mization services to determine optimal well locations. For
example, the choice of optimization service depends on the
size and nature of the reservoir. The SPSA algorithm is suited
for larger reservoirs with relatively smooth characteristics. In
case of reservoirs with many randomly distributed maxima
and minima, the VFSA algorithm can be employed during the
initial optimization phase. Once convergence slows down,
VFSA can be replaced by SPSA. Similarly, policies can also
be used to manage the behavior of the reservoir simulator,
or may be defined to enable various optimizers to execute
concurrently on dynamically acquired Grid resources, and
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Fig. 8 Convergence history for
the optimal well placement in
the Grid using (a) VFSA
algorithm on the left and (b)
SPSA algorithm on the right.

select the best well location among these based on some
metric (e.g., estimated revenue, time or cost of completion).

Figure 8 illustrate the optimization of well locations using
the VFSA and SPSA optimization algorithms for two differ-
ent scenarios. The well positions plots (on the left in 8(a) and
(b)) show the oil field and the positions of the wells. Black
circles represent fixed injection wells and a gray square at
the bottom of the plot is a fixed production well. The plots
also show the sequence of guesses for the position of the
other production well returned by the optimization service
(shown by the lines connecting the light squares), and the
corresponding normalized cost value (plots on the right in
8(a) and (b)).

10.3. Autonomic forest fire management simulation

The autonomic forest fire simulation, composed of DSM
(Data Space Manager), CRM (Computational Resource
Manager), Rothermel, WindModel, and GUI elements, pre-
dicts the speed, direction and intensity of the fire front as the
fire propagates using static and dynamic environment and
vegetation conditions. DSM partitions the forest represented
by a 2D data space into sub spaces based on current system

resources information provided by CRM. Under the circum-
stance of load imbalance, DSM re-partitions the data space.
Rothermel generates processes to simulate the fire spread on
each subspace in parallel based on current wind direction and
intensity simulated by the WindModel, until no burning cells
remain. Experts interact with the above elements using the
GUI element.

Fig. 9 Examples of the port definition
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Fig. 10 Add a new component
Fire Fighter Model and change
the interaction relationship
between CRM and DSM

We use the Rothermel, DSM, and CRM as examples to
illustrate the definition of the Accord functional, control and
operational ports, as shown in Fig. 9. Rothermel, for example,
provides getSpaceState to expose space information as part
of its Functional Port, and provides the sensor getDirection
to get the fire spread direction and the actuator setCellState to
modify the state of a specified cell as part of its Control Port.
The DSM and CRM receive rules to manage their runtime
behaviors through the Operation Port.

Behavior rules can be defined at compile time or at runtime
and injected into corresponding element managers to dynam-
ically manage the computational behaviors of elements. As
illustrated in Fig. 9, DSM dynamically selects an appropriate
algorithm based on the current system load and CRM will
detect load imbalance when the maximal difference among
resource usage exceeds the threshold according to the behav-
ior rules shown.

The application workflow is decomposed by the Com-
position Manager into interaction rules, which are injected
into individual elements. Therefore, addition, deletion and
replacement of elements can be achieved using correspond-
ing interaction rules. For example, a new element, Fire
Fighter Model, modelling the behaviors of the fire fight-
ers, is added to the application as shown in Fig. 10, by
inserting Rule1 into Fire Fighter Model and Rule2 into
Rothermel. Similarly, changing an interaction relationship
can be achieved by replacing the existing interaction rules
with new rules. As shown in Fig. 10, CRM dynamically
decreases the frequency of notifications to DSM when the
communication network is congested based on Rule3 and
Rule4.

11. Conclusion

In this paper, we presented Project AutoMate and described
its key components. Project AutoMate investigates solutions
that are based on the strategies used by biological systems

to deal with the challenges of Grid environment, including
complexity, dynamism, heterogeneity and uncertainty. This
approach, referred to as autonomic computing, aims at real-
izing systems and applications that are capable of managing
(i.e., configuring, adapting, optimizing, protecting, healing)
themselves. The overall goal of Project AutoMate is to in-
vestigate conceptual models and implementation architec-
tures that can enable the development and execution of such
self-managing Grid applications. Specifically, it investigates
programming models, frameworks and middleware services
that support the definition of autonomic elements, the de-
velopment of autonomic applications as the dynamic and
opportunistic composition of these autonomic elements, and
the policy, content and context driven definition, execution
and management of these applications. Illustrative autonomic
scientific and engineering Grid applications enabled by
AutoMate were presented.
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