Enabling Autonomic Compositions in Grid Environments*

Manish Agarwal and Manish Parashar
The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering
Rutgers University
{manishag,parashg@caip.rutgers.edu

Abstract dynamic service composition model.

Service composition can be simply defined as the pro-
In this paper we present the design, prototype imple- cess of taking existing services and combining them (based
mentation and operation of the Accord Composition Engine on user defined objective and constraints) to form new ser-
(ACE) that enables the dynamic and autonomic compositionyices. The composition model used by most existing Grid
of Grid services. ACE builds on the Open Grid Services Ar- app"cation deve|0pment frameworks assumes that the com-
chitecture (OGSA) and autonomically synthesizes composiposer has a priori knowledge of the composition objective,
tion plans, when possible, from an available pool of services ayailable services and their interaction patterns. In this
based on dynamically defined objectives and constraints.model, the composer identifies relevant services, explicitly
The key contribution is a dynamic composition model basedstates their interactions and creates a composition “script”.

on relational algebra and graph theory. o A flow engine then invokes this composition possibly using
Keywords: Dynamic composition, Grid applications, dynamic bindings to service instances. Unfortunately this
Grid/Web services, Autonomic computing, OGSA. relatively static composition approach is not very scalable.

As the number of available services (resources, devices,
applications) increase, a manual choreography of compo-
1 Introduction sitions and interactions is not very realistic. Furthermore
the assumption that the composer has a priori knowledge
about the composition objectives/requirements, the partici-
paradigm for wide area distributed computing. Its goal is pating _servi_ces aqd their interaction_ patterps i_s not V"?‘“d for
dynamic Grid environments and Grid applications. Finally,

to provide a service-oriented infrastructure [5] that lever- h dels d A + aut . d d
ages standardized protocols and services to enable perva-, €S€ Models do not support autonomic on-demand compo-
itions and require considerable human involvement.

sive access to, and coordinated sharing of geographicallyS i -
distributed hardware, software, and information resources. A more dynamic composition model can address these
The fundamental concept underlying the emerging serviceiSSues. In such a model, composition plans are created
oriented Grid architecture is the virtualization of entities at runtime based on dynamically defined composition ob-
as services and the seamless interactions and integratiolfCtives, their semantic descriptions, constraints, and avail-
of these services. The Open Grid Service Architecture @Ple services and resources. Dynamic composition mod-
(OGSA) specification [8] defines standard interfaces and €!S are naturally suited for Grid environments where new
mechanisms for describing, invoking and managing Grid S€rvices are constantly added and existing services are ex-
services. A service is defined as a network enabled entitytended, modified or retired, and Grid applications where
that provides some capability and communicates throughComposition and interaction requirements are only known
the exchange of messages. In OGSA, entities on the Grigdt runtime. These models can support autonomic (|..e. with
are represented as services and new higher-level service8linimum human support) behaviors and mutable interac-
and applications can be constructed from the available serlion patterns where all services need not be known at de-
vices. This motivates the need for a flexible and scalable Sign time and can be synthesized on-demand. However dy-
*The research presented in this paper is supported in part by NSF vianamic Se-rVice CompO-Sition presents sigqificqnt challenges
grants numbers Agl 9084357 (CARSEFF’{S)Y EIA%F103674 (SGS) an > \'and requires addressing a number of critical issues such as

0120934 (ITR), and by DOE ASCI/ASAP (Caltech) via grant numbers discovering and identifying relevant services, formulating
PC295251 and 1052856. and ranking (and selecting) composition plans using current

The Grid [9] is rapidly emerging as the dominant

context, goals, constraints and costs, binding to and invok-Flow Language (GSFL) [24], Web Services Flow Language
ing composition instances and checking their validity. (WSFL) [14], XLANG [22], ebXML [7], and WSCI [2].

In this paper we present the Accord Composition En- Composition and workflow has also been addressed
gine (ACE) that addresses dynamic service composition.by systems such as the Chimera Virtual Data Sys-
The overall goal of ACE is to autonomically synthesize tem (GriPhyN) [13], Symphony [15], METEOR [17],
composition plans, when possible, from an available pool COSMOS [12], Aurora [16], SWORD project [19] and
of services based on dynamically defined objectives andDySCo [18]. The Chimera Virtual Data System (Gri-
constraints. A key contribution is a dynamic composition PhyN) [13] considers compositions as graphs of services.
model based on relational algebra and graph theory. SerUnfortunately the overall service graph is static and as-
vices are described using standard Web Service Descriptiorsumes a priori knowledge of the participating services and
Language (WSDL) [6] and extended with semantic meta- their interaction patterns. Symphony [15] is a Java based
data (keywords). Relational joins are then used to gener-composition and manipulation framework based on the Sun
ate composition plans and choreograph ad-hoc interactionslavaBeans component architecture [21]. Its principle ele-
at runtime, to satisfy the composer’s objectives and con-ments are a meta-program constructor and a back-end exe-
straints. Alternate plans may be evaluated and ranked usingeution environment. Symphony supports only static compo-
different cost criteria. sitions. METEOR [17] addresses runtime adaptability of a

ACE is a key component of the Accdra¢omposition composed workflow. Its focus is primarily on runtime man-
framework that is part of Project AutoMatgl]. The over- ~ agement rather than composition planning. COSMOS [12]
all objective of AutoMate is to investigate key technologies and Aurora [16] are two examples of advanced architecture
to enable the development of autonomic Grid applications for e-service management. Once again, the main limitation
that are context aware and are capable of self-configuring,of these systems is the rigidity in the interconnection and in-
self-composing, self-optimizing and self-adapting. Specif- tegration between services. SWORD [19] uses a rule-based
ically, it investigates the definition of autonomic compo- expert system to find composition plans. Unlike our model,
nents, the development of autonomic applications as dy-it only addresses informational services. DySCo [18] en-
namic composition of autonomic components, and the de-ables dynamic service composition and is based on the idea
sign of key enhancements to existing Grid middleware and of functional incompleteness and multi-party orchestration.
runtime services to support the execution of these applica-DySCo primarily address stateless e-services (unlike Grid
tions. services) and does not support constraint based manage-

The rest of the paper is organized as follows. Section 2 ment and control.
presents related word. Section 3 presents an overview of dy-
namic composition and describes the Accord composition3 The Accord Composition Model
model. Section 4 presents the design, prototype implemen-

tation and operation of ACE. Section 5 presents a summary A key goal of the Grid is to provide ubiquitous resource

and conclusions. and service availability. Furthermore, the Grid, by defini-
tion, is a dynamic and open environment where the avail-
2 Related Work ability and state of these services and resources are con-
stantly changing. Emerging Grid applications are similarly
Composition models have received considerable atten_pomplex, dynamic and heterogengou; As aresult, the abil-
ity to compose services (and applications) on the fly, based

tion in both academia and industry in recent years. Ef- on currently available servic rrent context. and dvnam
forts within the Grid community that address composition . y €s, current context, and dynam-

aspects of workflow include Webflow [4], DAGMan [10], !C?”y defTed Olbjfc(;'vis an((dj goglds Is critical. While tthefex-
UNICORE [20] and XCAT [11]. Webflow is one of the > d SYSIEMSISIEd above do address many aspects of com-

earlier workflow systems and supports application composi- position, they_ do not completely address the challenge_s of
tion in Grid environments. DAGMan is the meta-scheduler dynamic service composition. For example, the underlying

in Condor-G [10] and manages the dependencies betWeergomposition approaches in these systems do not support dy-

jobs. XCAT Application Factories [11] address workflow namic definition of composition objectives and constraints,
relatéd issues for Grid-based components within the com-°F ad hoc definition of service interactions and behaviors.

mon Component Architecture (CCA) [11] framework. Ad- The primary foc;us qf the Acgord dynamic _composition
ditionally, a number of composition and flow specifica- model presented in this paper is to autonomically synthe-

tion languages have been defined such as Grid Service§ize composition plans (when possible) from the pool of
available services to satisfy dynamically defined composi-

LAutonomic Component, Compositions and Coordination tion objectives, policies. ?-nd Corj'Strf_iintS-
2http://automate.rutgers.edu In Accord, composition objectives, and composition

Steps]

Actions

For every available service in service pool
Standard description document(wsdl) is parsed for metadata
User provide semantic description and context information
Semantic information is supplemented by scanning the objective for keywords

Composer Initializes composition instance
Associate constraints with composition
Set composition context and Objective(K)
Set semantic threshold value (i.e. degree of correlation between composition description and available g

Ad-hoc and autonomic interactions (L) are constructed between available services (S)

Corresponding to each selected service

Metadata (input, output argument types, keywords, operations) is extracted
Service Graph G(S, L) is created

Each available operation act as vertices of the service graph

All possible ad-hoc interactions are formulated

If output arguments types of operation matches with the input parameter types
Interaction link is created between the operations

Appropriate services are selected based on semantic matching
Constraints are executed to further refine service selection process (S’)
Source operation, Target operation of composed service is selected or specified

Constraints are executed to select consistent interactions (L")
Cost function Cost(L’), is used to associate desirability of each interaction in (L)

Composition plan(s) is generated by finding path(s) in Composition Graph G'(S’,)
Cost or desirability of each path is calculated (based on user specified criteria)
Ranking of multiple paths is done based on cost function for each path
Failure in finding a path indicates either insufficient information or infeasible composition objective

Table 1. Accord Composition Algorithm.

ervices)

policies and constraint¢; }) can be dynamically defined
as simple SQL statements. The pool of currently avail-
able services (service pool) is represented as a graph where

the nodes represents services,in the pool and the links,

{l;,;}, can be modeled as possible interactions. Service de-
scriptions are augmented with semantic information in the

form of keywords and context informatiofiX (s;)}). This

semantic information along with polices and constraints

are used to select applicable service3 and interactions
(;; whereValid(l; j,{ck}) = True). Candidate com-

edges. The edges are created at runtime us-
ing a relational join operationl;; € s ™

Sj (Si(OutputJng.ArgT:(/pes) =Sj(InputMsg. ArgType)) :

3. The composer specifies composition description as ini-

tial service s;,itiai, final services finq;, an ordered set
of keywords,{ K composition } @nd a set of constraints,

{er}-

. A subgraph of the service graph called composition

graphG’ (S, L') is generated using these inputs as fol-

position plans can be represented as paths in this graph

lows:

G'(S',L'). Alternate plans may be evaluated and ranked

based on different cost factors. The Accord dynamic com-
position model can be formally defined as follows:

1. Composition is based on a service graBsS, L)
where, S is a set of available services aiida set of

possible interactions.

e Service setS = {s;} and eachs; is associated
with an ordered set of keyword§K (s;)}.

e Interaction setl. = {l; ;} such thats;,s; € S.
Each interactior; ; has a cost valu€'ost(l; ;)

associated with it.

2. In the service graph, G(S,L),
able services are vertices and

o Vi,s; € Sl < K(Sl) c {Kcomposition}-

o Vijli;eLl <« s €8s €8 and
Valid(l; j,{ck}) = True.

5. Dynamic Service Composition can be defined as find-
ing a path froms;iziq t0 S pina ING (S, L').

The complexity of the plan generation algorithm is
O(S" + L'). Note that the model defined above assumes
that the composer will provide a proper set of constraints,
and the set of constraints will satisfy properties of conflu-
ence, termination and observable determinism.

The Accord composition algorithm is presented in Ta-

the avail- ble 1. In the initialization and service selection step, the
interaction are services in the current service pool are parsed to generate

[Service Name [Input Argument [Arguments Type | Output Arguments [Output [Keywords
Driving Direction (DDS) SrcAddr, TgtAddr String, String Driving Direction String Driving Direction, MapQuest
Location Service (LS) Location String Address String Address, Landscape
Location Service (LS) firstname, lastname, city | String, String, String| Address String Address, Name, City
Vehicle Dependent Driving Service SrcAddr, TgtAddr, Vehicle | String, String, String| Driving Direction String Vehicle, Driving Direction, Yahoo

Table 2. Service Pool for the Example Travel Guide Service.

Source Operation Target Operation [Comment |

Location Service (Landscape) Driving Direction Service Location Service, provides address to Driving Direction Service
Location Service (Landscape) Vehicle Dependent Direction Servicg Location Service provides address to Vehicle Direction Service
Location Service (Name, Name, City) Vehicle Dependent Direction Service Name-Location Service provides address to Vehicle Direction Seryice
Location Service (Name, Name, City) Driving Direction Service Name-Location Service provides address to Driving Direction Service

e
7

Table 3. Interaction Table for the Example Travel Guide Service.

service setS. A relational join operation is then used to cycle), and d.ocation Service (LSpat returns the exact ad-
construct the set of ad-hoc interactioiis by matching in- dress given an approximate location. The service pool and
terfaces, and to create service graphThe composer (the interaction table for this example are shown in Table 2 and
user or an agent) specifies a composition request as a s€fable 3 respectively. In this scenario, if a service request
of constraints{cy }, keywords (K omposition 1), iINPUL S€r- has exact endpoint addresses, the service DDS is directly
vice (sinitiar) @nd output servicessf;nq:). The keyword invoked. If one or both of the endpoints in the request are
set and constraint set are used to select the participatingiot exact, the composition of LS and DDS is required. If
services,S’, generate the set of associated interactibns vehicle information is included in the request, then VDDS
and the composition grapfi’. Cost associated with each is invoked instead of DDS. The decision to include or ex-
l;j is calculated. Candidate composition plans can now beclude any service is based on the service request and speci-
generated as paths m, betWGenSimtml and Sfinal using f|ed Constraints. The interaction |inkS betWeen the Selected
graph path algorithms (DFS, BFS). The composition plans Services are also generated at runtime.

can be ranked based on costs. These costs could reflect eco-

nomic factors, operational environments and/or user defined4 The Accord Composition Engine

factors. Constraints can belong to different categories and
can control aspects of both services and compositions. Ex-
amples of constraint categories include security constraints,
behavioral constraints and integrity constraints.

f - — 1 service Tk Figure 2. Architectural Overview of ACE.
ServiceName | Ohjective | KeyWords xe
L : I i
-| ServiceName | Operation | ParamOrder |

ACE f— Graph — Constraint f— Plan Generator
Transhior ‘ ‘ Generator ‘ ‘ Amalyzrer ‘ & Evaluator

by] Immﬁmse \ Ouwlressaze _— 4.1 Architecture Overview
L@ Messgelame | ArgumentTypes | AvgumentName M—‘ e An architectural overview of the Accord Composition
Engine (ACE) is presented in Figure 2. ACE can be a part of
Figure 1. Schemas for ACE Service Pool Ta- composition services available on the Grid or composition
bles. agents within the Grid middleware. It builds on OGSA [8]

and the emerging Grid middleware. A service in ACE cor-
responds to a Grid service as specified in the Grid Service
To illustrate the operation of the Accord composition Specification [23] and is described using WSDL. The de-

model consider a scenario where a user requests a travedcription field is used to add semantic information in the
guide service that provides a travel route between two lo- form of keywords describing the service.s&rvice pools
cations. The set of available services includeBraving the set of services that are available to a composer. The cur-
Directions Service (DDShat simply returns driving direc- rent service pool is defined byNode TableMessage Table
tions between two specified addresse¥ehicle-dependent andService Tablavhich are constructed dynamically using
Driving Direction Service (VDDShat returns directions as existing OGSA discovery mechanisms such as SQUID [1],
a function of the specified vehicle (e.g. car, train, boat, bi- MDS [23] or UDDI [3]. The ACE architecture consists of

four key modules: ACE translator, Graph Generator, Con-4.1.4 Service Plan Generator and Evaluator

straint Analyzer, Plan Generator and Evaluator. These mod-_l_h q . . | ¢ d luat dul
ules are described below. e dynamic service plan generator and evaluator module

is responsible for generating composition plans in response
to a composition request. It works in conjunction with Con-
4.1.1 ACE Translator straint Satisfier Module and operates on ek Table A

The ACE translator modules parses the WSDL service de-Plan is an ordered set of services and their interactions that

scription for each service in the current service pool and €an satisfy the request. Service and link costs are used to

uses this information to update the relevant tables. It created@k plans when multiple plans exist.

a row in theNode Tablecorresponding to each “operation” .

in this description, which contains the service name, op- 4.2 ACE Operation

eration name, ordered sequence of input parameters, input . . . :

message name and output message name. For each messaﬁ;eln this section, we use travel guide service example to
[

name, a separate entry is created inNtessage Tableith usétrate{ tthe wc_:rrrl:lng of tne 'A:thE alg(;)nthm ?nd O}f’;\gérf
the message name as primary key. Each message entry algéiln prototype. The overall end-1o-end operation o IS
own in Figure 4. Service composition is initiated when a

contains argument names and argument type attributes. Th&"M o . .
schemas for these tables are presented in Figure 1 service request (objectives, constraints) is presented to the
' ACE agent. The ACE agent uses the composition model

and algorithm presented in this paper to synthesizes one or
4.1.2. ACE Graph Generator more composition plan(s) consisting of a set of participat-
The ACE Graph Generator module is responsible for defin- ing services and the interactions between them. For the dis-
ing the interaction links between services in the service pool CUSSion below consider a request for a service that provides
using relational joins. This is done based on the messagéj”V'”g directions between two addresses. Possible compo-
description in theMessage Tablelf the arguments and at- sition scenarios for the service pool in Table 2 are presented
tribute types associated with the output message of a sourcd? Table 4. The autonomic service composition process is
operation is a superset of the arguments associated with th@resented below.
input message of a target operation, then a directed edge ex- o Step 1 The composer (user, agent, service) makes a

ists from source operation to target operation. Correspond-
ing to each such link, an entry is created in thek Table

The attributes ot.ink Tableare the source operation name,
source service name, source message name, destination op-
eration name, destination service name, destination mes-
sage name, cost of the link (defined by the context), level of
composition (in cases where composition span across multi-
ple service pools), and a valid flag that is true if the current
link is active. The schema for thenk Tableis shown in
Figure 3.

Source Service | SomecellessageMName |

SomeceOperation |
TargetOveration | TarzetService | Tarsetveesazellame ‘
\ CostOfLink \ Valid | Lavel

Figure 3. Schema for ACE Link Table.

4.1.3 ACE Constraint Satisfaction Module

The Constraint Satisfaction Module is responsible for eval-
uating and executing the constraints associated with indi-
vidual services and service composition requests. In ACE,
constraints are represented by simple SQL expressions that
modify the validity of interaction links. Thus the ACE con-
straint satisfaction module operateslank Tableand en-
ables or disables link entries in the table.

composition request to the ACE agent. For example,
the request may be for a “Name to Driving Direction
Service”, where the user provides the name and city
for the two endpoints and service is expected to return
driving directions between them. In a variation of this
request, the user may also specify the vehicle as a part
of service request. In yet another scenario, the user
can provide additional constraints, for example, that
the Yahoo Mapsservice must be used, or the shortest
route that avoids all highways must be found. Sam-
ple composition scenarios for this example are listed
in Table 4.

Step 2 Once the ACE agent receives the composition
request, it contacts the service pool (see Figure 4) to
get the list of services that are currently available. The
ACE Translator then parses the standard service de-
scriptions (WSDL) of the available services, extracts
relevant metadata, and stores it in a tabular format us-
ing the schemas presented in Figure 1. Note that ser-
vices in the service pool may belong to different direc-
tories and may be provided by different providers.

The user may provide additional semantic information
for each service entry in the table. This information
is used to support advance querying and search oper-
ations. A sample snapshot of service table for our ex-
ample is presented in Table 2.

£
LY
LY
[
n

Q

Service Pool Standard Informaton Provid er Service

Comp oser

Figure 4. Operation of the Accord Composition Engine.

[Scenario | Service Request [Invocation parameters [Description |
A Name-to-Driving-Direction- [First name, Last name, City], [First Looks up driving directions between two persoms
Service name, Last name, City] homes given their name and cities
B Vehicle-Dependent-Direction-| Landscape, Landscape, Vehicle Gives directions between two addresses as a func-
Service tion of available vehicle
[¢} Driving-Direction-Service Landscape, Landscape, Keywords Returns driving directions between locations givén
constraints such as shortest path, avoiding high-
ways, etc ?

Table 4. Sample Composition Requests.

e Step 3 The ACE Graph Generator processes the com- poser are valid, i.e. they exhibit the property of confluence
position request and selects the appropriate serviceghave the same effect irrespective of their execution order),
using semantic matching based on the keywords. Se-observable determinism (actions are same) and termination
lected services for different service composition sce- (cascaded constraints execution not allowed). If the spec-
narios are listed in Table 5. A relational join operation ified constraint set does not satisfy these properties, ACE
is then used to construct the set of interaction links. will fail to generate a valid plan.

Cost of each the service and interaction is specified or

evaluated. Finally a service graph is created. 4.3 Advantages and Limitations

e Step 4 The ACE Constraint Module creates a com-
position graph from the service graph using the set of In Grid environment, composite service creation is not
constraints) defined by the user. In our example, the necessarily a one-time effort. Composition may need to
valid interaction links for the composition graph are adaptto the changes in the environment and underlying re-
presented in Table 3. The candidate composition plansSources. Moreover as the services become more ubiquitous,
are generated as paths in the composition graph. Somét is not possible to consider all the permutations manu-

simple scenarios for our composition request (see Ta-ally. Thus involving end users in service composition is
ble 4) are illustrated in Figure 5. unacceptable, creating a need for systems such as ACE that

enable the construction of autonomic service composition
Finally, the composition plan(s) is(are) generated by the plans. ACE also provides the mechanism to rank different
agent and returned to the composer. In cases where mulplans and select the most appropriate one. An additional
tiple plans are generated, the plan costs are used to rankdvantage of generating multiple plans is redundancy and
the plans. The composition request fails if (1) a plan does fault tolerance. If one plan fails, an alternate plan can be
not exist, (2) the composition request is insufficient, or (3) invoked, or multiple plans can be used simultaneously for
the constraints are invalid. The first case occurs when no se+eliability or QoS.
guence of services exists for the current pool of services that Dynamic service composition is extremely challenging
can satisfy the request. This situation may be handled byand requires addressing a number of critical issues such
increasing the number of available services in service poolas guaranteed correctness, scalability, performance analy-
and lowering the degree of semantic keyword matching. In sis, and constraints analysis. In traditional service environ-
the second case, the composer can be asked for additionahents, response time depends primarily on resource laten-
specifications for the composition. For the third case, ACE cies and network loads. With dynamic service composition,
currently assumes that the constraints specified by the complanning time can become an additional overhead. As a

[Scenario | Service Request [Services Selected |

A Name-to-Driving-Direction-Service Location Service, Location Service, Driving Direction Service
B Vehicle-Dependent-Direction-Service Location Service, Location Service, Vehicle Dependent Driving SerVice
C Driving-Direction-Service Location Service, Location Service, Driving Direction Service

Table 5. Participating Services For Composition Scenarios.

s 1 DD S 3> Laerdscape, Landscape —>direction

= = =
Ls1 Z VDDS > Loendscape, Landscape, Vekicle —>dérection
sz DD S ———— (Mamao Citv), (Miame, City) —>direction

= = >
=2 E'UDDS —_— ((Mame Cikhp). (Warne. Ciip). Veltfcle —Sdireciorn
TiEg D= —* (Meme Ciy). Landscape 2 direciion
TS ZWDS —_— (Mome Cily). (MNane, Citp) Veltick Sdirecon

LEI = locafion service (fandscaps]
LE2 = locafion service (firsf raam e, Iasf poane, city)

Figure 5. Composition Graph Instances.

result composition planning mechanisms must be very ef-evaluated and ranked based on different cost factors. The
ficient. Another important challenge is in ensuring guar- main motivation is to create composition on-demand at run-
anteed correctness. In many cases, it may not be possibléme.

to find any guaranteed correct plan for a composition re-
qguest. ACE specifically provides no such guarantee and is
based on the notion that “uncertain plan” is better than no
plan. In static composition, the process is bound with the
service at design time and designer can evaluate the per-[1] M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian,

References

formance metrics associated with it. However, in dynamic V. Putty, C. Schmidt, G. Zhang, M. Parashar,
composition the binding is not possible until the plans are B. Khargharia, and S. Hariri. AutoMate: Enabling
found and invoked. In ACE, the ranking of different plans Autonomic Applications on the Grid. IiProc of

is done based on costs rather than performance data. Other ~ Autonomic Computing Workshop, 5th Annual Inter-

challenges that need to be addressed include missing or no national Active Middleware Services Workshop(AMS

inputs and outputs, multiple service responses or multiple 2003) pages 365-375, Seattle, WA, June 25 2003.

responses types.

[2] A. Arkin, S. Askary, S. Fordin, W. Jekeli,
K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, |. Trickovic, and
S. Zimek, August 2002. Web Service Choreography
This paper addressed issues and challenges in enabling Interface (WSCI) 1.0, http:/www.w3.0rg/TR/WsCi/.

dynamic service composition on the Grid. We present the

design and prototype implementation of the Accord Com- [3] T. Bellwood. UDDI (Universal Description Dis-

position Engine (ACE). The ACE composition model en- covery and Integration) Version 2.04 API Specifi-

ables autonomic generation of composition plans, when cation. http://uddi.org/pubs/ProgrammersAPI-V2.04-

possible, from available pool of services based on dynam- Published-20020719.htm, July 19, 2002.

ically defined objectives and constraints. It enhances the

standard (OGSA) service descriptions with semantic meta- [4] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox,

data, and uses this metadata along with the current context, W. Furmanski, and G. PremChandran. WebFlow :

dynamically defined composition objectives and constraints A Visual Programming Paradigm for Web/Java Based

and relational algebra to choreograph ad-hoc interactions Coarse Grain Distributed ComputingConcurrency:

and composition plans at runtime. Alternate plans may be Practice and Experienc®(6):555-577, 1997.

5 Summary and Conclusion

[5] M. Champion, C. Ferris, and E. Newcomer, Novem- [16] M. Marazakis, D. Papadakis, and C. Nikolaou. Au-

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

ber 14, 2002. Web Services Architecture.,
http://mww.w3.org/TR/ws-arch.

E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, 15 March, 2001. Web Services Description
Language (WSDL) 1.1.http://www.w3.org/TR/wsdl.

ebXML Requirements Team, May 8, 2001.
ebXML Requirements Specification, Version 1.06 ,
http://lwww.ebxml.org/specs/ebREQ.pdf.

[17]

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid:An Open Grid Services Archi-
tecture for Distributed Systems Integration. Qpen
Grid Service Infrastructure WG,Global Grid Forym
June 22 2002.

[18]

I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications
15(3), 201.

J. Frey, T. Tannenbaum, |. Foster, M. Livny, and
S. Tuecke. Condor-G: A Computation Management [20]
Agent for Multi-Institutional Grids. IrProceedings of
the 10th IEEE Symposium on High Performance Dis-
tributed Computing (HPDC10Qpages 7-9, San Fran-

cisco, CA, August 2001, [21]
M. Govindaraju, S. Krishnan, K. Chiu, A. Slomin-
ski, D. Gannon, and R. Bramley. XCAT 2.0: A [22]

Component-Based Programming Model for Grid Web
Services. Technical report-tr562, Dept. of C.S., Indi-
ana Univ, June 2002.

F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf,
and M. Merz. Electronic Contracting with COSMOS
- How to Establish, Negotiate and Execute Electronic
Contracts on the Internet. Bnd Int. Enterprise Dis-
tributed Object Computing Workshop (EDOC '98)
1998.

M. Wilde, I. T. Foster, J. Vckler and Y. Zhao. Chimera:
A Virtual Data System for Representing, Querying,

(23]

[24]

and Automating Data Derivation. IS8SDBM 2002
pages 37-46.

F. Leymann. Web Services Flow
Language (WSFL) 1.0. http://www-

3.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf, IBM, May,2001.

M. Lorch and D. Kafura. Symphony : A Java-based
Composition and Manipulation Framework for Com-
putational Grids. InProc. of 2nd IEEE/ACM Int.
Symp. on Cluster Computing and the Gpages 136—
143, Berlin, Germany, 2002.

rora: An Architecture for Dynamic and Adaptive
Work Sessions in Open Environments. Mmnoc of
the International Conference on Database and Expert
System a Applications (DEXA'98Bpringer-Verlag
LNCS Series, 1998.

J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and
H. Singh. WebWork: METEOR’s Wen-based Work-
flow Management Systemlournal of Intellegent In-
formation Systemd4.0(2):185-215, 1998.

G. Piccinelli and L. Mokrushin. Dynamic e-service
composition in DySCo. IProc of 21st International
Conference on Distributed Computing Systems Work-
shops (ICDCSW '01)Mesa, Arizona, April 16 - 19
2001.

9] S. R. Ponnekanti and A. Fox. SWORD: A Developer

Toolkit for Web Service Composition. 1hlth World
Wide Web Conference (Web Engineering Trakelgn-
olulu, Hawaii, May 7-11 2002.

M. Romberg. The UNICORE Grid Infrastructurgci-
entific Programming, Special Issue on Grid Comput-
ing, 10(2):149-157, 2002.

Sun Microsystems Inc., July, 2002. The JavaBeansTM
Component Architecture.

Satish Thatte, December, 2001.
Web Services for Business Process
http://www.gotdotnet.com/team/xlang-c.

XLANG:
Design,

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, and C. Kesselman, February 2002. Grid service
specification.

Patrick Wagstrom, Sriram Krishnan, and Gregor von
Laszewski. GSFL: A Workflow Framework for Grid
Services. InSC’2002 pages 11-16, Baltimore, MD,
November 2002.

