
Enabling Autonomic Compositions in Grid Environments∗

Manish Agarwal and Manish Parashar
The Applied Software Systems Laboratory

Department of Electrical and Computer Engineering
Rutgers University

{manishag,parashar}@caip.rutgers.edu

Abstract

In this paper we present the design, prototype imple-
mentation and operation of the Accord Composition Engine
(ACE) that enables the dynamic and autonomic composition
of Grid services. ACE builds on the Open Grid Services Ar-
chitecture (OGSA) and autonomically synthesizes composi-
tion plans, when possible, from an available pool of services
based on dynamically defined objectives and constraints.
The key contribution is a dynamic composition model based
on relational algebra and graph theory.

Keywords: Dynamic composition, Grid applications,
Grid/Web services, Autonomic computing, OGSA.

1 Introduction

The Grid [9] is rapidly emerging as the dominant
paradigm for wide area distributed computing. Its goal is
to provide a service-oriented infrastructure [5] that lever-
ages standardized protocols and services to enable perva-
sive access to, and coordinated sharing of geographically
distributed hardware, software, and information resources.
The fundamental concept underlying the emerging service
oriented Grid architecture is the virtualization of entities
as services and the seamless interactions and integration
of these services. The Open Grid Service Architecture
(OGSA) specification [8] defines standard interfaces and
mechanisms for describing, invoking and managing Grid
services. A service is defined as a network enabled entity
that provides some capability and communicates through
the exchange of messages. In OGSA, entities on the Grid
are represented as services and new higher-level services
and applications can be constructed from the available ser-
vices. This motivates the need for a flexible and scalable
∗The research presented in this paper is supported in part by NSF via

grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS) and EIA-
0120934 (ITR), and by DOE ASCI/ASAP (Caltech) via grant numbers
PC295251 and 1052856.

dynamic service composition model.

Service composition can be simply defined as the pro-
cess of taking existing services and combining them (based
on user defined objective and constraints) to form new ser-
vices. The composition model used by most existing Grid
application development frameworks assumes that the com-
poser has a priori knowledge of the composition objective,
available services and their interaction patterns. In this
model, the composer identifies relevant services, explicitly
states their interactions and creates a composition “script”.
A flow engine then invokes this composition possibly using
dynamic bindings to service instances. Unfortunately this
relatively static composition approach is not very scalable.
As the number of available services (resources, devices,
applications) increase, a manual choreography of compo-
sitions and interactions is not very realistic. Furthermore
the assumption that the composer has a priori knowledge
about the composition objectives/requirements, the partici-
pating services and their interaction patterns is not valid for
dynamic Grid environments and Grid applications. Finally,
these models do not support autonomic on-demand compo-
sitions and require considerable human involvement.

A more dynamic composition model can address these
issues. In such a model, composition plans are created
at runtime based on dynamically defined composition ob-
jectives, their semantic descriptions, constraints, and avail-
able services and resources. Dynamic composition mod-
els are naturally suited for Grid environments where new
services are constantly added and existing services are ex-
tended, modified or retired, and Grid applications where
composition and interaction requirements are only known
at runtime. These models can support autonomic (i.e. with
minimum human support) behaviors and mutable interac-
tion patterns where all services need not be known at de-
sign time and can be synthesized on-demand. However dy-
namic service composition presents significant challenges
and requires addressing a number of critical issues such as
discovering and identifying relevant services, formulating
and ranking (and selecting) composition plans using current



context, goals, constraints and costs, binding to and invok-
ing composition instances and checking their validity.

In this paper we present the Accord Composition En-
gine (ACE) that addresses dynamic service composition.
The overall goal of ACE is to autonomically synthesize
composition plans, when possible, from an available pool
of services based on dynamically defined objectives and
constraints. A key contribution is a dynamic composition
model based on relational algebra and graph theory. Ser-
vices are described using standard Web Service Description
Language (WSDL) [6] and extended with semantic meta-
data (keywords). Relational joins are then used to gener-
ate composition plans and choreograph ad-hoc interactions
at runtime, to satisfy the composer’s objectives and con-
straints. Alternate plans may be evaluated and ranked using
different cost criteria.

ACE is a key component of the Accord1 composition
framework that is part of Project AutoMate2 [1]. The over-
all objective of AutoMate is to investigate key technologies
to enable the development of autonomic Grid applications
that are context aware and are capable of self-configuring,
self-composing, self-optimizing and self-adapting. Specif-
ically, it investigates the definition of autonomic compo-
nents, the development of autonomic applications as dy-
namic composition of autonomic components, and the de-
sign of key enhancements to existing Grid middleware and
runtime services to support the execution of these applica-
tions.

The rest of the paper is organized as follows. Section 2
presents related word. Section 3 presents an overview of dy-
namic composition and describes the Accord composition
model. Section 4 presents the design, prototype implemen-
tation and operation of ACE. Section 5 presents a summary
and conclusions.

2 Related Work

Composition models have received considerable atten-
tion in both academia and industry in recent years. Ef-
forts within the Grid community that address composition
aspects of workflow include Webflow [4], DAGMan [10],
UNICORE [20] and XCAT [11]. Webflow is one of the
earlier workflow systems and supports application composi-
tion in Grid environments. DAGMan is the meta-scheduler
in Condor-G [10] and manages the dependencies between
jobs. XCAT Application Factories [11] address workflow
related issues for Grid-based components within the Com-
mon Component Architecture (CCA) [11] framework. Ad-
ditionally, a number of composition and flow specifica-
tion languages have been defined such as Grid Services

1Autonomic Component, Compositions and Coordination
2http://automate.rutgers.edu

Flow Language (GSFL) [24], Web Services Flow Language
(WSFL) [14], XLANG [22], ebXML [7], and WSCI [2].

Composition and workflow has also been addressed
by systems such as the Chimera Virtual Data Sys-
tem (GriPhyN) [13], Symphony [15], METEOR [17],
COSMOS [12], Aurora [16], SWORD project [19] and
DySCo [18]. The Chimera Virtual Data System (Gri-
PhyN) [13] considers compositions as graphs of services.
Unfortunately the overall service graph is static and as-
sumes a priori knowledge of the participating services and
their interaction patterns. Symphony [15] is a Java based
composition and manipulation framework based on the Sun
JavaBeans component architecture [21]. Its principle ele-
ments are a meta-program constructor and a back-end exe-
cution environment. Symphony supports only static compo-
sitions. METEOR [17] addresses runtime adaptability of a
composed workflow. Its focus is primarily on runtime man-
agement rather than composition planning. COSMOS [12]
and Aurora [16] are two examples of advanced architecture
for e-service management. Once again, the main limitation
of these systems is the rigidity in the interconnection and in-
tegration between services. SWORD [19] uses a rule-based
expert system to find composition plans. Unlike our model,
it only addresses informational services. DySCo [18] en-
ables dynamic service composition and is based on the idea
of functional incompleteness and multi-party orchestration.
DySCo primarily address stateless e-services (unlike Grid
services) and does not support constraint based manage-
ment and control.

3 The Accord Composition Model

A key goal of the Grid is to provide ubiquitous resource
and service availability. Furthermore, the Grid, by defini-
tion, is a dynamic and open environment where the avail-
ability and state of these services and resources are con-
stantly changing. Emerging Grid applications are similarly
complex, dynamic and heterogeneous. As a result, the abil-
ity to compose services (and applications) on the fly, based
on currently available services, current context, and dynam-
ically defined objectives and goals is critical. While the ex-
isting systems listed above do address many aspects of com-
position, they do not completely address the challenges of
dynamic service composition. For example, the underlying
composition approaches in these systems do not support dy-
namic definition of composition objectives and constraints,
or ad hoc definition of service interactions and behaviors.

The primary focus of the Accord dynamic composition
model presented in this paper is to autonomically synthe-
size composition plans (when possible) from the pool of
available services to satisfy dynamically defined composi-
tion objectives, policies and constraints.

In Accord, composition objectives, and composition



Steps Actions

1 For every available service in service pool
Standard description document(wsdl) is parsed for metadata
User provide semantic description and context information
Semantic information is supplemented by scanning the objective for keywords

2 Composer Initializes composition instance
Associate constraints with composition
Set composition context and Objective(K)
Set semantic threshold value (i.e. degree of correlation between composition description and available services)

3 Ad-hoc and autonomic interactions (L) are constructed between available services (S)
Corresponding to each selected service

Metadata (input, output argument types, keywords, operations) is extracted
Service Graph G(S, L) is created

Each available operation act as vertices of the service graph
All possible ad-hoc interactions are formulated

If output arguments types of operation matches with the input parameter types
Interaction link is created between the operations

4 Appropriate services are selected based on semantic matching
Constraints are executed to further refine service selection process (S’)
Source operation, Target operation of composed service is selected or specified

5 Constraints are executed to select consistent interactions (L’)
Cost function Cost(L’), is used to associate desirability of each interaction in (L’)

6 Composition plan(s) is generated by finding path(s) in Composition Graph G’(S’,L’)
Cost or desirability of each path is calculated (based on user specified criteria)
Ranking of multiple paths is done based on cost function for each path
Failure in finding a path indicates either insufficient information or infeasible composition objective

Table 1. Accord Composition Algorithm.

policies and constraints ({ck}) can be dynamically defined
as simple SQL statements. The pool of currently avail-
able services (service pool) is represented as a graph where
the nodes represents services,si, in the pool and the links,
{li,j}, can be modeled as possible interactions. Service de-
scriptions are augmented with semantic information in the
form of keywords and context information ({K(si)}). This
semantic information along with polices and constraints
are used to select applicable services (s

′
) and interactions

(li,j whereV alid(li,j , {ck}) = True). Candidate com-
position plans can be represented as paths in this graph
G
′
(S

′
, L′). Alternate plans may be evaluated and ranked

based on different cost factors. The Accord dynamic com-
position model can be formally defined as follows:

1. Composition is based on a service graphG(S, L)
where,S is a set of available services andL a set of
possible interactions.

• Service setS = {si} and eachsi is associated
with an ordered set of keywords,{K(si)}.

• Interaction setL = {li,j} such thatsi, sj ∈ S.
Each interactionli,j has a cost valueCost(li,j)
associated with it.

2. In the service graph, G(S, L), the avail-
able services are vertices and interaction are

edges. The edges are created at runtime us-
ing a relational join operation,li,j ∈ si on
sj(si(OutputMsg.ArgT ypes)=sj(InputMsg.ArgT ype)).

3. The composer specifies composition description as ini-
tial service,sinitial, final service,sfinal, an ordered set
of keywords,{Kcomposition} and a set of constraints,
{ck}.

4. A subgraph of the service graph called composition
graphG

′
(S

′
, L

′
) is generated using these inputs as fol-

lows:

• ∀ i, si ∈ S
′ ⇐⇒ K(si) ⊆ {Kcomposition}.

• ∀ i, j, li,j ∈ L
′ ⇐⇒ si ∈ S

′
, sj ∈ S

′
and

V alid(li,j , {ck}) = True.

5. Dynamic Service Composition can be defined as find-
ing a path fromsinitial to sfinal in G

′
(S

′
, L′).

The complexity of the plan generation algorithm is
O(S

′
+ L

′
). Note that the model defined above assumes

that the composer will provide a proper set of constraints,
and the set of constraints will satisfy properties of conflu-
ence, termination and observable determinism.

The Accord composition algorithm is presented in Ta-
ble 1. In the initialization and service selection step, the
services in the current service pool are parsed to generate



Service Name Input Argument Arguments Type Output Arguments Output Keywords

Driving Direction (DDS) SrcAddr, TgtAddr String, String Driving Direction String Driving Direction, MapQuest
Location Service (LS) Location String Address String Address, Landscape
Location Service (LS) firstname, lastname, city String, String, String Address String Address, Name, City
Vehicle Dependent Driving Service SrcAddr, TgtAddr, Vehicle String, String, String Driving Direction String Vehicle, Driving Direction, Yahoo

Table 2. Service Pool for the Example Travel Guide Service.

Source Operation Target Operation Comment

Location Service (Landscape) Driving Direction Service Location Service, provides address to Driving Direction Service
Location Service (Landscape) Vehicle Dependent Direction Service Location Service provides address to Vehicle Direction Service
Location Service (Name, Name, City) Vehicle Dependent Direction Service Name-Location Service provides address to Vehicle Direction Service
Location Service (Name, Name, City) Driving Direction Service Name-Location Service provides address to Driving Direction Service

Table 3. Interaction Table for the Example Travel Guide Service.

service setS. A relational join operation is then used to
construct the set of ad-hoc interactions,L, by matching in-
terfaces, and to create service graphG. The composer (the
user or an agent) specifies a composition request as a set
of constraints{ck}, keywords ({Kcomposition}), input ser-
vice (sinitial) and output services (sfinal). The keyword
set and constraint set are used to select the participating
services,S

′
, generate the set of associated interactionsL

′
,

and the composition graphG
′
. Cost associated with each

l
′
i,j is calculated. Candidate composition plans can now be

generated as paths inG
′

betweensinitial andsfinal using
graph path algorithms (DFS, BFS). The composition plans
can be ranked based on costs. These costs could reflect eco-
nomic factors, operational environments and/or user defined
factors. Constraints can belong to different categories and
can control aspects of both services and compositions. Ex-
amples of constraint categories include security constraints,
behavioral constraints and integrity constraints.

Figure 1. Schemas for ACE Service Pool Ta-
bles.

To illustrate the operation of the Accord composition
model consider a scenario where a user requests a travel
guide service that provides a travel route between two lo-
cations. The set of available services includes aDriving
Directions Service (DDS)that simply returns driving direc-
tions between two specified addresses, aVehicle-dependent
Driving Direction Service (VDDS)that returns directions as
a function of the specified vehicle (e.g. car, train, boat, bi-

cycle), and aLocation Service (LS)that returns the exact ad-
dress given an approximate location. The service pool and
interaction table for this example are shown in Table 2 and
Table 3 respectively. In this scenario, if a service request
has exact endpoint addresses, the service DDS is directly
invoked. If one or both of the endpoints in the request are
not exact, the composition of LS and DDS is required. If
vehicle information is included in the request, then VDDS
is invoked instead of DDS. The decision to include or ex-
clude any service is based on the service request and speci-
fied constraints. The interaction links between the selected
services are also generated at runtime.

4 The Accord Composition Engine

Figure 2. Architectural Overview of ACE.

4.1 Architecture Overview

An architectural overview of the Accord Composition
Engine (ACE) is presented in Figure 2. ACE can be a part of
composition services available on the Grid or composition
agents within the Grid middleware. It builds on OGSA [8]
and the emerging Grid middleware. A service in ACE cor-
responds to a Grid service as specified in the Grid Service
Specification [23] and is described using WSDL. The de-
scription field is used to add semantic information in the
form of keywords describing the service. Aservice poolis
the set of services that are available to a composer. The cur-
rent service pool is defined by aNode Table, Message Table
andService Tablewhich are constructed dynamically using
existing OGSA discovery mechanisms such as SQUID [1],
MDS [23] or UDDI [3]. The ACE architecture consists of



four key modules: ACE translator, Graph Generator, Con-
straint Analyzer, Plan Generator and Evaluator. These mod-
ules are described below.

4.1.1 ACE Translator

The ACE translator modules parses the WSDL service de-
scription for each service in the current service pool and
uses this information to update the relevant tables. It creates
a row in theNode Tablecorresponding to each “operation”
in this description, which contains the service name, op-
eration name, ordered sequence of input parameters, input
message name and output message name. For each message
name, a separate entry is created in theMessage Tablewith
the message name as primary key. Each message entry also
contains argument names and argument type attributes. The
schemas for these tables are presented in Figure 1.

4.1.2 ACE Graph Generator

The ACE Graph Generator module is responsible for defin-
ing the interaction links between services in the service pool
using relational joins. This is done based on the message
description in theMessage Table. If the arguments and at-
tribute types associated with the output message of a source
operation is a superset of the arguments associated with the
input message of a target operation, then a directed edge ex-
ists from source operation to target operation. Correspond-
ing to each such link, an entry is created in theLink Table.
The attributes ofLink Tableare the source operation name,
source service name, source message name, destination op-
eration name, destination service name, destination mes-
sage name, cost of the link (defined by the context), level of
composition (in cases where composition span across multi-
ple service pools), and a valid flag that is true if the current
link is active. The schema for theLink Tableis shown in
Figure 3.

Figure 3. Schema for ACE Link Table.

4.1.3 ACE Constraint Satisfaction Module

The Constraint Satisfaction Module is responsible for eval-
uating and executing the constraints associated with indi-
vidual services and service composition requests. In ACE,
constraints are represented by simple SQL expressions that
modify the validity of interaction links. Thus the ACE con-
straint satisfaction module operates onLink Tableand en-
ables or disables link entries in the table.

4.1.4 Service Plan Generator and Evaluator

The dynamic service plan generator and evaluator module
is responsible for generating composition plans in response
to a composition request. It works in conjunction with Con-
straint Satisfier Module and operates on theLink Table. A
plan is an ordered set of services and their interactions that
can satisfy the request. Service and link costs are used to
rank plans when multiple plans exist.

4.2 ACE Operation

In this section, we use travel guide service example to
illustrate the working of the ACE algorithm and our cur-
rent prototype. The overall end-to-end operation of ACE is
shown in Figure 4. Service composition is initiated when a
service request (objectives, constraints) is presented to the
ACE agent. The ACE agent uses the composition model
and algorithm presented in this paper to synthesizes one or
more composition plan(s) consisting of a set of participat-
ing services and the interactions between them. For the dis-
cussion below consider a request for a service that provides
driving directions between two addresses. Possible compo-
sition scenarios for the service pool in Table 2 are presented
in Table 4. The autonomic service composition process is
presented below.

• Step 1: The composer (user, agent, service) makes a
composition request to the ACE agent. For example,
the request may be for a “Name to Driving Direction
Service”, where the user provides the name and city
for the two endpoints and service is expected to return
driving directions between them. In a variation of this
request, the user may also specify the vehicle as a part
of service request. In yet another scenario, the user
can provide additional constraints, for example, that
the Yahoo Mapsservice must be used, or the shortest
route that avoids all highways must be found. Sam-
ple composition scenarios for this example are listed
in Table 4.

• Step 2: Once the ACE agent receives the composition
request, it contacts the service pool (see Figure 4) to
get the list of services that are currently available. The
ACE Translator then parses the standard service de-
scriptions (WSDL) of the available services, extracts
relevant metadata, and stores it in a tabular format us-
ing the schemas presented in Figure 1. Note that ser-
vices in the service pool may belong to different direc-
tories and may be provided by different providers.

The user may provide additional semantic information
for each service entry in the table. This information
is used to support advance querying and search oper-
ations. A sample snapshot of service table for our ex-
ample is presented in Table 2.



Figure 4. Operation of the Accord Composition Engine.

Scenario Service Request Invocation parameters Description

A Name-to-Driving-Direction-
Service

[First name, Last name, City], [First
name, Last name, City]

Looks up driving directions between two persons
homes given their name and cities

B Vehicle-Dependent-Direction-
Service

Landscape, Landscape, Vehicle Gives directions between two addresses as a func-
tion of available vehicle

C Driving-Direction-Service Landscape, Landscape, Keywords Returns driving directions between locations given
constraints such as shortest path, avoiding high-
ways, etc

Table 4. Sample Composition Requests.

• Step 3: The ACE Graph Generator processes the com-
position request and selects the appropriate services
using semantic matching based on the keywords. Se-
lected services for different service composition sce-
narios are listed in Table 5. A relational join operation
is then used to construct the set of interaction links.
Cost of each the service and interaction is specified or
evaluated. Finally a service graph is created.

• Step 4: The ACE Constraint Module creates a com-
position graph from the service graph using the set of
constraints (C) defined by the user. In our example, the
valid interaction links for the composition graph are
presented in Table 3. The candidate composition plans
are generated as paths in the composition graph. Some
simple scenarios for our composition request (see Ta-
ble 4) are illustrated in Figure 5.

Finally, the composition plan(s) is(are) generated by the
agent and returned to the composer. In cases where mul-
tiple plans are generated, the plan costs are used to rank
the plans. The composition request fails if (1) a plan does
not exist, (2) the composition request is insufficient, or (3)
the constraints are invalid. The first case occurs when no se-
quence of services exists for the current pool of services that
can satisfy the request. This situation may be handled by
increasing the number of available services in service pool
and lowering the degree of semantic keyword matching. In
the second case, the composer can be asked for additional
specifications for the composition. For the third case, ACE
currently assumes that the constraints specified by the com-

poser are valid, i.e. they exhibit the property of confluence
(have the same effect irrespective of their execution order),
observable determinism (actions are same) and termination
(cascaded constraints execution not allowed). If the spec-
ified constraint set does not satisfy these properties, ACE
will fail to generate a valid plan.

4.3 Advantages and Limitations

In Grid environment, composite service creation is not
necessarily a one-time effort. Composition may need to
adapt to the changes in the environment and underlying re-
sources. Moreover as the services become more ubiquitous,
it is not possible to consider all the permutations manu-
ally. Thus involving end users in service composition is
unacceptable, creating a need for systems such as ACE that
enable the construction of autonomic service composition
plans. ACE also provides the mechanism to rank different
plans and select the most appropriate one. An additional
advantage of generating multiple plans is redundancy and
fault tolerance. If one plan fails, an alternate plan can be
invoked, or multiple plans can be used simultaneously for
reliability or QoS.

Dynamic service composition is extremely challenging
and requires addressing a number of critical issues such
as guaranteed correctness, scalability, performance analy-
sis, and constraints analysis. In traditional service environ-
ments, response time depends primarily on resource laten-
cies and network loads. With dynamic service composition,
planning time can become an additional overhead. As a



Scenario Service Request Services Selected

A Name-to-Driving-Direction-Service Location Service, Location Service, Driving Direction Service
B Vehicle-Dependent-Direction-Service Location Service, Location Service, Vehicle Dependent Driving Service
C Driving-Direction-Service Location Service, Location Service, Driving Direction Service

Table 5. Participating Services For Composition Scenarios.

Figure 5. Composition Graph Instances.

result composition planning mechanisms must be very ef-
ficient. Another important challenge is in ensuring guar-
anteed correctness. In many cases, it may not be possible
to find any guaranteed correct plan for a composition re-
quest. ACE specifically provides no such guarantee and is
based on the notion that “uncertain plan” is better than no
plan. In static composition, the process is bound with the
service at design time and designer can evaluate the per-
formance metrics associated with it. However, in dynamic
composition the binding is not possible until the plans are
found and invoked. In ACE, the ranking of different plans
is done based on costs rather than performance data. Other
challenges that need to be addressed include missing or no
inputs and outputs, multiple service responses or multiple
responses types.

5 Summary and Conclusion

This paper addressed issues and challenges in enabling
dynamic service composition on the Grid. We present the
design and prototype implementation of the Accord Com-
position Engine (ACE). The ACE composition model en-
ables autonomic generation of composition plans, when
possible, from available pool of services based on dynam-
ically defined objectives and constraints. It enhances the
standard (OGSA) service descriptions with semantic meta-
data, and uses this metadata along with the current context,
dynamically defined composition objectives and constraints
and relational algebra to choreograph ad-hoc interactions
and composition plans at runtime. Alternate plans may be

evaluated and ranked based on different cost factors. The
main motivation is to create composition on-demand at run-
time.

References

[1] M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian,
V. Putty, C. Schmidt, G. Zhang, M. Parashar,
B. Khargharia, and S. Hariri. AutoMate: Enabling
Autonomic Applications on the Grid. InProc of
Autonomic Computing Workshop, 5th Annual Inter-
national Active Middleware Services Workshop(AMS
2003), pages 365–375, Seattle, WA, June 25 2003.

[2] A. Arkin, S. Askary, S. Fordin, W. Jekeli,
K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer,
S. Struble, P. Takacsi-Nagy, I. Trickovic, and
S. Zimek, August 2002. Web Service Choreography
Interface (WSCI) 1.0, http://www.w3.org/TR/wsci/.

[3] T. Bellwood. UDDI (Universal Description Dis-
covery and Integration) Version 2.04 API Specifi-
cation. http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm, July 19, 2002.

[4] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox,
W. Furmanski, and G. PremChandran. WebFlow :
A Visual Programming Paradigm for Web/Java Based
Coarse Grain Distributed Computing.Concurrency:
Practice and Experience, 9(6):555–577, 1997.



[5] M. Champion, C. Ferris, and E. Newcomer, Novem-
ber 14, 2002. Web Services Architecture.,
http://www.w3.org/TR/ws-arch.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana, 15 March, 2001. Web Services Description
Language (WSDL) 1.1.http://www.w3.org/TR/wsdl.

[7] ebXML Requirements Team, May 8, 2001.
ebXML Requirements Specification, Version 1.06 ,
http://www.ebxml.org/specs/ebREQ.pdf.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid:An Open Grid Services Archi-
tecture for Distributed Systems Integration. InOpen
Grid Service Infrastructure WG,Global Grid Forum,
June 22 2002.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the Grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications,
15(3), 201.

[10] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. InProceedings of
the 10th IEEE Symposium on High Performance Dis-
tributed Computing (HPDC10), pages 7–9, San Fran-
cisco, CA, August 2001.

[11] M. Govindaraju, S. Krishnan, K. Chiu, A. Slomin-
ski, D. Gannon, and R. Bramley. XCAT 2.0: A
Component-Based Programming Model for Grid Web
Services. Technical report-tr562, Dept. of C.S., Indi-
ana Univ, June 2002.

[12] F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf,
and M. Merz. Electronic Contracting with COSMOS
- How to Establish, Negotiate and Execute Electronic
Contracts on the Internet. In2nd Int. Enterprise Dis-
tributed Object Computing Workshop (EDOC ’98),
1998.

[13] M. Wilde, I. T. Foster, J. Vckler and Y. Zhao. Chimera:
A Virtual Data System for Representing, Querying,
and Automating Data Derivation. InSSDBM 2002,
pages 37–46.

[14] F. Leymann. Web Services Flow
Language (WSFL) 1.0. http://www-
3.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf, IBM, May,2001.

[15] M. Lorch and D. Kafura. Symphony : A Java-based
Composition and Manipulation Framework for Com-
putational Grids. InProc. of 2nd IEEE/ACM Int.
Symp. on Cluster Computing and the Grid, pages 136–
143, Berlin, Germany, 2002.

[16] M. Marazakis, D. Papadakis, and C. Nikolaou. Au-
rora: An Architecture for Dynamic and Adaptive
Work Sessions in Open Environments. InProc of
the International Conference on Database and Expert
System a Applications (DEXA’98), Springer-Verlag
LNCS Series, 1998.

[17] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and
H. Singh. WebWork: METEOR’s Wen-based Work-
flow Management System.Journal of Intellegent In-
formation Systems, 10(2):185–215, 1998.

[18] G. Piccinelli and L. Mokrushin. Dynamic e-service
composition in DySCo. InProc of 21st International
Conference on Distributed Computing Systems Work-
shops (ICDCSW ’01), Mesa, Arizona, April 16 - 19
2001.

[19] S. R. Ponnekanti and A. Fox. SWORD: A Developer
Toolkit for Web Service Composition. In11th World
Wide Web Conference (Web Engineering Track), Hon-
olulu, Hawaii, May 7-11 2002.

[20] M. Romberg. The UNICORE Grid Infrastructure.Sci-
entific Programming, Special Issue on Grid Comput-
ing, 10(2):149–157, 2002.

[21] Sun Microsystems Inc., July, 2002. The JavaBeansTM
Component Architecture.

[22] Satish Thatte, December, 2001. XLANG:
Web Services for Business Process Design,
http://www.gotdotnet.com/team/xlang-c.

[23] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, and C. Kesselman, February 2002. Grid service
specification.

[24] Patrick Wagstrom, Sriram Krishnan, and Gregor von
Laszewski. GSFL: A Workflow Framework for Grid
Services. InSC’2002, pages 11–16, Baltimore, MD,
November 2002.


