
System Sensitive Runtime Management of Adaptive

Applications

Shweta Sinha Manish Parashar

TASSL, Rutgers University

Piscataway, NJ 08855-8060

{parashar, shwetas}@caip.rutgers.edu

Abstract

In this project we will design and evaluate an adaptive, system sensitive distribution/load
balancing framework for distributed adaptive grid hierarchies that underlie parallel adaptive mesh-
refinement (AMR) techniques for the solution of partial-differential equations. System sensitive
adaptation investigates the use of current system state to drive runtime adaptation.

The application will be run in a dynamic and heterogeneous networked computing environ-
ment. These environments require the selection and configuration of application components based
on available resources. However, the complexity and heterogeneity of the environment make selec-
tion of a “best” match between system resources, mappings and load distributions, communication
mechanisms, etc., non-trivial. System dynamics coupled with application adaptivity makes ap-
plication and run-time management a significant challenge. What is unique to our approach is
the fact that we will take into account the dynamism of the heterogeneous network as well as the
application in an attempt to enhance system performance. However, this adds an extra dimension
of complexity to our problem and is non-trivial.

Our System model is shown in Figure 1. We first monitor the necessary resources associated
with the different processors and then calculate their relative capacities. The relative capacities are
then used by the Heterogeneous Partitioner in distributing the work load proportionately among
the different processors. We are currently evaluating the performance improvement that can be
achieved by using this “system sensitive” approach to load distribution. We discuss below each of
the system components in Figure 1 in a little more detail.

To determine the system characteristics, we use the NWS (Network Weather Service) resource
monitoring tool developed at UCSD [2]. The NWS is a distributed system that periodically monitors
and dynamically forecasts the performance delivered by the various network and computational
resources over a given time interval. The service operates a distributed set of performance sensors
(network monitors, CPU monitors, etc.) from which it gathers readings of the prevailing system
conditions. It then uses numerical models to generate forecasts of what the conditions will be
for a given time frame. This functionality is analogous to weather forecasting, and as such, the
system inherits its name. The current implementation of NWS supports measuring the fraction of

1



CPU

Memory

Link Capacity Weather
Service

NetworkCapacity 
Calculator

Heterogeneous
Partitioner

Partitions Application

weights

Capacity
Available

Figure 1: Block Diagram of the System Model

CPU time available for new processes, the fraction of CPU available to a process that is already
running, end-to-end TCP network latency, end-to-end TCP network bandwidth, free memory, and
the amount of space unused on a disk. The NWS forecaster applies a set of forecasting models to the
entire series of measurements and dynamically chooses the forecasting technique that has been most
accurate over the recent set of measurements. When a forecast of a future value is required, the
forecaster makes predictions for each of the existing measurements in the series. Every forecasting
model generates a prediction for each measurement, and a cumulative error measure is tabulated
for each model. The model generating the lowest prediction error for the known measurements is
then used to make a forecast of future measurement values.

As shown in Figure 1, after gathering resource information from NWS, we compute a capacity
metric for each processor based on its system characteristics such as free memory, CPU availability
and link bandwidth. We propose a linear model for the calculation of the relative capacity of each
processor. Let us assume that there are K processors in the system among which the partitioner
distributes the work load. For the kth processor, let Pk be its CPU availability, Mk its available
memory, and Lk its link bandwidth. We can also express these resources of the kth user as a
fraction of the total available resources in the system as Pk = Pk/

∑K
i=1Pi, Mk =Mk/

∑K
i=1Mi,

Lk = Lk/
∑K
i=1Li. The relative capacity of a processor Ck is then defined as the weighted sum of

these normalized quantities
Ck = wpPk + wmMk + wlLk (1)

where wp, wm, and wl are the weights associated with the relative CPU, memory, and link band-
width availabilities, respectively. Also, wp + wm + wl = 1. We need to weigh each of the sys-
tem characteristics because different applications may have different resource requirements. These
weights are application specific and may be varied based on the requirements of the application.
For example, if an application is memory intensive, then wm will be greater than wp and wl so that
the relative capacity reflects the importance of the available memory appropriately. Currently, we
assume that all three system characteristics are equally important to the application and hence we

2



choose wp = wm = wl = 1/3. Since Ck is the relative capacity of processor k,
∑K
k=1Ck = 1. This

model is very general and can be easily extended to accommodate other system resources as well.
Once the relative capacities of the processors are computed, the work load is distributed pro-

portionately among them. The Heterogeneous Partitioner uses the GrACE infrastructure [1], to
distribute AMR grid hierarchies. The system state is monitored at run time, and if system charac-
teristics change, the work load is redistributed amongst the processors. To evaluate the performance
of this system sensitive approach, the overall execution time of the application is measured and
compared against other partitioning schemes.

References

[1] Manish Parashar and James C. Browne, “On Partitioning Dynamic Adaptive Grid Hi-
erarchies,” Proceedings of the 29th Annual Hawaii International Conference on System
Sciences, January, 1996.

[2] Rich Wolski, Neil T. Spring and Jim Hayes “The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing,” Future Generation Com-
puting Systems, 1999, http://www.www.cs.ucsd.edu/groups/hpcl/apples/hetpubs.html

[3] Silvia M. Figueira and Francine Berman “Mapping Parallel Applications to Distributed
Heterogeneous Systems, ” UCSD CS Tech Report # CS96-484, June 1996

[4] Jerrel Watts, Marc Rieffel and Stephen Taylor “Dynamic Management of Heterogeneous
Resources,” High Performance Computing ’98.

[5] Muthucumaru Maheswaran and Howard Jay Seigel “ A Dynamic Matching and Schedul-
ing Algorithm for Heterogeneous Computing Systems,” 7th IEEE Heterogeneous Com-
puting Workshop (HCW ’98), Mar. 1998, pp. 57-69.

3


