A Multithreaded Communication Engine for
Distributed Adaptive Applications *

Sivapriya Ramanathan & Manish Parashar
Department of Electrical and Computer Engineering
Rutgers University
Piscataway, NJ, U.S.A.
{sivapriy,parashar}Qcaip.rutgers.edu

Abstract This paper presents the de-
sign, implementation of a multi-threaded
communication engine to enable scalable tm-
plementations of distributed adaptive mesh-
refinement (AMR) applications. The pri-
mary objective is to manage the computa-
tional heterogeneity inherent in this class of
applications and to exploit the multiple gran-
ularities and levels of parallelism offered by
the applications. The engine uses the MPI
communication library and implements the
capability for registering message handlers
at the application level. These handlers en-
able each computational thread to define how
messages are to be processed. Communica-
tions threads can now independently man-
age all communications and maximize their
overlap with computations. An experimen-
tal evaluation of the multithreaded engine on
the Sun E10K wusing an AMR kernel from
numerical relativity demonstrates that it sig-
nificantly timproves application performance.
Keywords: Parallel/Distributed Adaptive Ap-
plications, Structured Adaptive Mesh-Refinement,
Multithreaded Communication, Sun E10K

1 Introduction

Dynamically adaptive methods for the solu-
tion of partial differential equations that em-
ploy locally optimal approximations can yield

*The work presented here was supported by the Na-
tional Science Foundation via grants numbers WU-HT-
99-19 P029786F (KDI) and ACI 9984357 (CAREERS)
awarded to Manish Parashar

highly advantageous ratios for cost/accuracy
when compared to methods based upon static
uniform approximations. These techniques
seek to improve the accuracy of the solu-
tion by dynamically refining the computational
grid in regions of high local solution error.
Distributed implementations of these meth-
ods offer the potential for accurate solution of
physically realistic models of important phys-
ical systems. These implementations however
lead to interesting challenges in dynamic re-
source allocation, data-distribution and load
balancing, communications and coordination,
and resource management. The overall ef-
ficiency of the adaptive algorithms is lim-
ited by the ability to manage the underlying
data-structures at run-time so as to expose
all inherent parallelism, minimize communi-
cation/synchronization overheads, and balance
load.

AMR grids are inherently heterogeneous,
varying in both resolution and extent, and can
be created, moved and deleted on the fly. Fur-
thermore, AMR applications offer multiple lev-
els and granularities of parallelism. Grids at
the same level of refinement can be operated
on in parallel. Similarly composite slices across
all refinement levels (i.e. a parent grid and all
its children) can also be operated on in par-
allel. Finally, each grid can itself be operated
on in a data-parallel fashion. AMR algorithms
require that each grid be periodically synchro-
nized with its parents and its neighboring sib-
lings, thus requiring communications at regular

intervals. Clearly, there is a need for a run-
time engine that can exploit these many lev-
els and granularities of parallelism and effec-
tively manage the computational heterogene-
ity, and efficiently overlap the synchronizations
and communications with computations.

In this paper we present the design, im-
plementation, and evaluation of such a multi-
threaded communication engine that addresses
the issues listed above and enables scalable im-
plementations of parallel/distributed AMR ap-
plications. The engine uses the MPI[2] com-
munication library (to ensure portability) and
provides the capability for registering message
handlers at the application level (similar in
principal to Active Messages [3]). These han-
dlers enable each computational thread to pro-
vide a handler function that defines how a par-
ticular class of messages is to be processed
and how the thread is to be informed about
message arrivals. Communications threads can
now independently manage all communications
and maximize their overlap with computations.
The multithreaded communication engine has
been built on the GrACE SAMR[4, 5] library.

The rest of the paper is organized as fol-
lows: Section 2 describes the adaptive mesh-
refinement algorithm and the underlying grid
structures. Section 3 presents the design of
the multithreaded communication engine. Sec-
tion 4 describes the implementation the engine
on the SUN Enterprise 10000 (E10K) system,
and presents an experimental evaluation of the
communication engine. Section 5 present con-
clusions and outlines future research directions.

2 Problem Description and
Related Work

2.1 Adaptive Mesh Refinement

Dynamically adaptive numerical techniques for
solving differential equations provide a means
for concentrating computational effort to ap-
propriate regions in the computational domain.
In the case of hierarchical adaptive mesh re-
finement (AMR) methods, this is achieved by
tracking regions in the domain that require

additional resolution and dynamically overlay-
ing finer grids over these regions. AMR-based
techniques start with a base coarse grid with
minimum acceptable resolution that covers the
entire computational domain. As the solution
progresses, regions in the domain requiring ad-
ditional resolution are tagged and finer grids
are overlaid on the tagged regions of the coarse
grid. Refinement proceeds recursively so that
regions on the finer grid requiring more resolu-
tion are similarly tagged and even finer grids
are overlaid on these regions. The resulting
grid structure is a dynamic adaptive grid hier-
archy. The adaptive grid hierarchy correspond-
ing to the AMR formulation by Marsha Berger
and Joseph Oliger[1] is shown in Figure 1.

Distribution of adaptive applications based
on hierarchical AMR consists of appropriately
partitioning the adaptive grid hierarchy across
available computing nodes, and concurrently
operating on the local portions of this domain.
Parallel AMR applications require two primary
types of communication: (a) Inter-grid Com-
munications: Inter-grid Communications are
defined between component grids at different
levels of the grid-hierarchy and consist of pro-
longations (coarse to fine transfers) and restric-
tions (fine to coarse transfers). These com-
munications typically require a gather/scatter
type operations based on an interpolation or
averaging stencil. Inter-grid communications
can lead to serialization bottlenecks for naive
decompositions of the grid hierarchy. (b) Intra-
grid Communications: Intra-grid Communica-
tions are required to update the grid-elements
along the boundaries of local portions of a dis-
tributed grid. These communications consist
of near-neighbor exchanges on the stencil de-
fined by the difference operator. Intra-grid
communications are regular and can be sched-
uled so as to overlap with computations on the
interior region of the local portions of a dis-
tributed grid.

2.2 Related Work

There exists a several infrastructures that
support parallel and distributed implementa-
tions of AMR applications. These include

Figure 1: Adaptive Grid Hierarchy - 2D
(Berger-Oliger AMR Scheme)

SAMRAI[6], PARAMESH[7] and GrACE[4].
The existing infrastructures however do not
support multithreading. Multithreaded run-
time for AMR infrastructures has been re-
searched by Chrisochoides[8], and Felten[9].
Chrisochoides’ work on multithreading em-
ploys threads for load balancing. All processors
start with a pool of threads. Threads can be in-
terior threads or interface (boundary) threads.
The thread scheduler schedules these threads
in so as to minimize the overheads of commu-
nication. “New threads” is a thread library de-
veloped by Felten et al. that can be used to im-
prove the performance of general message pass-
ing applications. The library provides commu-
nication support between threads on different
processors by using globally unique port num-
bers.

3 A Multithreaded Engine for
AMR Applications

Parallel/distributed implementations of adap-
tive mesh refinement techniques for solving
PDEs typically consist of three phases — (a)
computation phase, (b) load balancing phase
and (c) data-migration phase. The compu-
tation phase is again sub-divided into a pure
computation phase and the ghost synchro-
nization phase. The ghost synchronization
phase involves the exchange of ghost or bound-
ary regions that are shared between proces-

sors. These message exchanges are required
frequently during each integration step on a
level, and can significantly effect application
performance. One solution is to use an overlap
to alleviate the cost of communication. This is
achieved by the multithreaded communication
engine.

The multithreaded communication engine
presented in this section has been designed
for the GrACE SAMR framework. GrACE
is an object-oriented toolkit for the develop-
ment of parallel and distributed applications
based on a family of adaptive mesh-refinement
and multigrid techniques. It is built on a
“semantically specialized” distributed shared
memory substrate that implements a hier-
archical distributed dynamic array (HDDA)
[10, 11]. HDDA provides uniform array ac-
cess to heterogeneous dynamic objects span-
ning distributed address spaces and multiple
storage types. The array is hierarchical in that
each element of the array can be an array; it is
dynamic in that the array can grow and shrink
at run-time. Communication, synchronization
and consistency of HDDA objects are trans-
parently managed for the user. Distribution
of the HDDA is achieved by partitioning its
array index space across the processors. The
index-space is directly derived from the appli-
cation domain using locality-preserving space
filling mappings [12] that efficiently map N-
dimensional space to 1-dimensional space.

The GrACE communication engine oper-
ates as follows. At the beginning of the
computation phase, each processor computes
the boundary regions shared with other pro-
cesses, anticipates the messages to be received
from the neighboring processes, and register
a handler for the expected messages. During
the ghost synchronization phase, messages are
shipped in the form of HDDA objects or buck-
ets consisting of a header and a payload con-
sisting of the actual data. The header con-
tains information describing how the message
is to be handled at the receiver. When the
message arrives at the receiving end, the infor-
mation from the header is extracted and the
message processed accordingly. The received

data is then held in the message buffers until
it is required by the application. While, this
process attempts to reduce overheads by elim-
inating the need for the application to poll for
messages to arrive, it can suffer from increased
latencies for AMR grid hierarchies. The mul-
tithreaded communication engine attempts to
reduce these latencies by overlapping compu-
tations with communications.

3.1 Multithreaded Communication
Engine: Architecture

In GrACE, the adaptive grid hierarchy is par-
titioned so that each processor owns a number
of grid blocks per level. The fact that compu-
tations on a processor proceed on a block-by-
block basis can be exploited to overlap compu-
tation with communication. As soon as com-
putations have been completed on a blocks,
ghost synchronization messages from the block
to remote blocks can be sent out. Similarly,
the block can be updated using incoming ghost
messages from remote blocks. Furthermore,
this can be done in parallel with computa-
tions on the other blocks at the processor. The
multithreaded engine is designed to transpar-
ently exploit this scenario to improve the per-
formance of GrACE-based AMR applications.
The engine provides a modified messaging sub-
strate consisting of three threads per process -
viz. the main computation thread, the send
thread and the receive thread, as shown in the
Figure 2. The 3 threads share a pair of queues
(send queue and receive queue). These queues
are used to synchronize the operations of the
threads. A key objective of the design was to
minimize modifications at the application level.
The three threads are briefly described below.

Computation thread: The computation
thread spawns the send and receive threads at
the beginning of the computation phase. It
then proceeds with computations on the local
grid blocks at the processor. When the com-
putations on a block are completed, its block
number is entered into the send and receive
queues. This is a signal to the communica-
tion (send/receive) threads that they can start

ERecave Recave it (HDD:
a2 (FLL) Recave th?éad thredd Recdve ; R
_ e J e p——

T
r I3
§ § :g: fﬂ.§.
DR I R SN ., vy] (R
RO B L
A F A Send and A 'y »
Jr receive
Zend Messages Send
Computaion ¥ Sendtread Sd P oo
thread thread thread
Processor 1 Processar 2

Figure 2: Architecture of the Multithreaded
Communication Engine

the ghost synchronizations on the block. Af-
ter computations are completed, the compute
thread waits for the send and received threads
to finish, before beginning the next computa-
tional cycle. When all computations are com-
pleted, the threads join and exit. The compu-
tation (or main) thread has the following func-
tions:

e Setting up the grid hierarchy and the nec-
essary grid functions as required by the
application.

e Initialize the data structures, calculate
and create message handlers for messages.

e Perform computation, load balancing,
load distribution.

e Spawn send and receive threads and ini-
tialize their data structures.

Send Thread: The send thread maintains
the send queue. When computed blocks are
entered into this queue by the computation
thread, it processes them by sending ghost syn-
chronization messages to remote blocks. The
send queue is a FIFO queue and requests are
processed in FIFO order. The send thread per-
forms the following functions:

e Wait for a signal from the computation
thread signaling the start of the synchro-
nization phase.

e Process the requests or blocks in the order
entered in the send queue.

e Send out the blocks to processes.

e Signal the computation thread when the
sends are complete.

Receive Thread: The receive thread main-
tains the receive queue. When computed
blocks are entered into this queue by the com-
putation thread, it processes them by updating
the block with incoming ghost synchronization
messages. The receive queue is also a FIFO
queue. The receive thread performs the fol-
lowing functions:

o Wait for signal from the computation
thread signaling the start of the synchro-
nization phase.

e Receive messages that have arrived and
copy them into the appropriate message
buffers.

e Copy the data from message buffers to
the grid blocks on which computation has
completed.

e Signal the computation thread when all
the messages have been received and have
been copied into the appropriate grid
blocks.

3.2 Multithreaded Communication
Engine: Operation

As described earlier, AMR simulations consist
of 2 phases - the computation phase and the
ghost synchronization phase. Ghost synchro-
nizations involve exchanging the boundary re-
gions of the grid contained with neighboring
processors. Thus ghost sends involve copy-
ing the data from application buffers into mes-
sage buffers, packing these buffers and sending
them out. On the receiving end, the ghost re-
ceives counsist of unpacking the incoming mes-
sage and copying it into the application data
structure. The overall operation of the multi-
threaded communication engine is show in Fig-
ure 3 and described below.

Cormputation thread Send thread

Spawn send thread

Spawn receive thread

|
Signal start of synoc phase

|
1
DZ e
b

|_| Signal start of sync phase
Enter black number
Computation in send quele ‘
:I Enter block number
[Jr reeeie queus
ssssss
:Imacks in
Signal completion fu=ue
‘ of =ends Signal cormpletion
‘Q’:ﬂ';rw U—| of receives
\ Y
‘ Signal end of simulation ‘ |
| [] Sienal and of simulation
|
! u|
Jaoin and exit ‘ |
Lrl | ‘ Join and exit
|

Figure 3: Sequence of events in the multi-
threaded engine on a single process

At the start of the simulation, the main com-
putation thread performs the initializations on
the grid hierarchy and then spawns off the
send and receive threads. The queues and data
structures are then set up for communication
between the threads. When the computation
phase starts, the computational thread signals
the start of the synchronization phase to both
the send and receive threads. As soon as com-
putation on a block is done, its block num-
ber is added to the end of the send and re-
ceive queues. The communication threads re-
move the entry from the head of the queue and
process ghost synchronization for the blocks.
As soon as a synchronization phase is com-
plete, the two threads signal the computational
thread so that it can start the next cycle.
When the simulation is complete, the threads
join the main computational thread and exit.

4 Implementation and Exper-
imental Evaluation

The multithreaded engine was developed and
tested on the Sun Enterprise 10000 (E10K)
cluster. Each system in the cluster consists of
sixty-four 400 MHz SPARC processors, 32GB
of RAM, and approximately a terabyte of disk
storage. The processors are configured as 16
processor boards with 4 processors per board.
Each processor has 4 Mbytes of L2 cache.
The communication engine uses the POSIX
[13, 14] thread library for creating and schedul-
ing threads and is built using the thread safe
MPT [2] implementation available on the Sun
E10K.

The application used in these experiments
is the 3-dimension numerical relativity kernel
(Wave3D) and belongs to the general class
of AMR applications. Wave3d solves a cou-
pled set of partial differential equations: El-
liptic (Laplace equation-like) constraint equa-
tions which must be satisfied at each timestep,
and Hyperbolic (Wave equation-like) equations
describing time evolution. This kernel is part
of the Cactus numerical relativity toolkit !.

The experiments conducted measure the to-
tal execution time with and without the mul-
tithreaded communication engine. The appli-
cations used different grid sizes and refinement
levels for the experiments. Figures 4 and 5
plot the total execution time in seconds for
the two cases. As seen in the these plots,
the overall application performance increases
with the multithreaded engine. Furthermore,
performance gaines are larger for the 4 and 8
processors runs as compared to the runs on
larger number of processors. This is because,
for a given fixed domain size, as the num-
ber of processors is increased, the number of
grid blocks owned per processor is decreased.
The threaded engine exploits the parallelism
across multiple blocks on a processor to over-
lap computations and communications and im-
prove application performance. As the number

!Cactus Computation Toolkit -

http://www.cactuscode.org

Wave3d application
{Size=129x129x129; Levels=1)

3500
3000
2500

Total
execution 2000

time 1500
(seconds) 40

B Application with nen-
threaded engine

m Application with
500 threaded engine

a
4 8 18 32 54

No. of processors

Wave3d application
(Size=129x129x129; Levels=3)

4500
4000

3500

Total 3000
execution 2500
time 2000
{seconds) 1500
1000

500

a

= Application with non-
threaded engine

m Application with
threaded engine

4 8 16 32 64

No. of processors

Figure 4: Plots of WaveAMRS3D application
with 129x129x129 grid size

of blocks decreases, the available parallelism
and consequently the opportunity for overlap
and corresponding performance improvement
also decreases.

5 Conclusions

In this paper, we presented the design, imple-
mentation and evaluation of a multithreaded
communication engine for the GrACE SAMR
library. The multi-threaded engine overlaps
communications with computations over the
set of grid blocks assigned to a processor. The
experiments conducted show that the use of
the multithreaded engine for communication
can improve the performance by more than
fifty percent. We are currently evaluating the
runtime on large system and exploring com-
bining the multithreaded engine with advanced
dynamic partitioning/load-balancing systems.
We believe that as domain size and number of
levels increase, the number of grid block per
processor will also increase and this in turn
will increase the opportunity for overlap that
is exploited by the multithreaded engine. We
are currently evaluating the engine for larger
applications (with more levels of refinements)

Wave3d Application
(5ize=257x257x257; Levels=1)

30000
25000

Total 20000
eeeee tion 15000
time (secs.) 10000

@ Application with non
threaded engine

mApplication with
5000 threaded engine
o

4 8 16 32 &4

No. of processors

Wave3d application
(Size=287x257x257; Levels=3)

35000
30000
Total 25000
eeeee tion 20000

time 15000
(secon ds) o000 m Application with
2000 threaded code

o

4 8 16 32 &4
No. of processors

B Application with nen
threaded cade

Figure 5: Plots of WaveAMRS3D application
with a 257x257x257 grid size

and larger system sizes.
References

[1] M. Berger and J. Oliger, “Adaptive mesh
refinement for hyperbolic partial differen-

tial equations”, Journal of Computational
Physics, 53, 1983.

[2] MPI, http://www.mpi-forum.org, MPI Fo-
rum homepage.

[3] S.S. Lumetta, A.M. Mainwaring, D.E.
Culler, “Multi-Protocol Active Messages
on a Cluster of SMP’s”, Technical paper at
Supercomputing, 1997.

[4] M. Parashar and J. C. Browne, “System
Engineering for High Performance Com-
puting Software: The HDDA/DAGH In-
frastructure for Implementation of Paral-
lel Structured Adaptive Mesh Refinement”,
in IMA Volume 117: Structured Adaptive
Mesh Refinement Grid Methods, IMA Vol-
umes in Mathematics and its Applications.
Springer-Verlag, pp. 1-18, 2000.

[6] M. Parashar, J.C. Browne, C. Edwards,
and K. Klimkowski, “A common data man-

agement infrastructure for adaptive algo-
rithms for PDE solutions”, Technical paper
at Supercomputing, 1997.

[6] R.D. Hornung, and S. Kohn, “SAMRAI: A
Software Framework for Structured Adap-
tive Mesh Refinement,” DOE Conference
on High Speed Computing, Salishan Lodge,
Gleneden Beach, OR, April 19-22, 1999.
Also available as Lawrence Livermore Na-
tional Laboratory technical report UCRL-
MI-133555.

[7] P. MacNiece, K.M. Olson, C. Mobarry, R.
deFainchtein and C. Packer, “PARAMESH
: A parallel adaptive mesh refinement com-

munity toolkit”, Computer Physics Com-
munications, vol. 126, p.330-354, (2000).

[8] N. Chrisochoides, “Multithreaded model
for dynamic load balancing parallel adap-

tive PDE computations”, Technical Report
CTC95TR221, Cornell University, 1995.

[9] E. W. Felten and D. McNamee, “Improving
the performance of Message-Passing Appli-
cation by Multithreading”, Proceedings of
the Scalable High Performance Computing
Conference, April 1992.

[10] M. Parashar and J. C. Browne, “Dis-
tributed Dynamic Data Structures for Par-
allel Adaptive Mesh Refinement”, Pro-
ceedings of the International Conference for
High Performance Computing, Dec. 1995.

[11] M. Parashar and J.C. Browne, “On Par-
titioning Dynamic Adaptive Grid Hierar-
chies”, Proceedings of the 29th Annual
Howaii International Conference on Sys-
tem Sciences, Jan. 1996.

[12] H. Sagan Space-filling curves Springer-
Verlag, 199).

[13] Bradford Nichols, et al, Pthreads Pro-
gramming: A POSIX Standard for Bet-
ter Multiprocessing, O’Reilly, September
1996.

[14] D.R. Butenhof, Programming with POSIX
threads, Addison-Wesley, May 1997.

