
A Multithreaded Communication Engine for

Distributed Adaptive Applications �

Sivapriya Ramanathan & Manish Parashar

Department of Electrical and Computer Engineering

Rutgers University

Piscataway, NJ, U.S.A.

fsivapriy,parasharg@caip.rutgers.edu

Abstract : This paper presents the de-

sign, implementation of a multi-threaded

communication engine to enable scalable im-

plementations of distributed adaptive mesh-

re�nement (AMR) applications. The pri-

mary objective is to manage the computa-

tional heterogeneity inherent in this class of

applications and to exploit the multiple gran-

ularities and levels of parallelism o�ered by

the applications. The engine uses the MPI

communication library and implements the

capability for registering message handlers

at the application level. These handlers en-

able each computational thread to de�ne how

messages are to be processed. Communica-

tions threads can now independently man-

age all communications and maximize their

overlap with computations. An experimen-

tal evaluation of the multithreaded engine on

the Sun E10K using an AMR kernel from

numerical relativity demonstrates that it sig-

ni�cantly improves application performance.

Keywords: Parallel/Distributed Adaptive Ap-

plications, Structured Adaptive Mesh-Re�nement,

Multithreaded Communication, Sun E10K

1 Introduction

Dynamically adaptive methods for the solu-
tion of partial di�erential equations that em-
ploy locally optimal approximations can yield

�The work presented here was supported by the Na-
tional Science Foundation via grants numbers WU-HT-
99-19 P029786F (KDI) and ACI 9984357 (CAREERS)
awarded to Manish Parashar

highly advantageous ratios for cost/accuracy
when compared to methods based upon static
uniform approximations. These techniques
seek to improve the accuracy of the solu-
tion by dynamically re�ning the computational
grid in regions of high local solution error.
Distributed implementations of these meth-
ods o�er the potential for accurate solution of
physically realistic models of important phys-
ical systems. These implementations however
lead to interesting challenges in dynamic re-
source allocation, data-distribution and load
balancing, communications and coordination,
and resource management. The overall ef-
�ciency of the adaptive algorithms is lim-
ited by the ability to manage the underlying
data-structures at run-time so as to expose
all inherent parallelism, minimize communi-
cation/synchronization overheads, and balance
load.

AMR grids are inherently heterogeneous,
varying in both resolution and extent, and can
be created, moved and deleted on the 
y. Fur-
thermore, AMR applications o�er multiple lev-
els and granularities of parallelism. Grids at
the same level of re�nement can be operated
on in parallel. Similarly composite slices across
all re�nement levels (i.e. a parent grid and all
its children) can also be operated on in par-
allel. Finally, each grid can itself be operated
on in a data-parallel fashion. AMR algorithms
require that each grid be periodically synchro-
nized with its parents and its neighboring sib-
lings, thus requiring communications at regular



intervals. Clearly, there is a need for a run-
time engine that can exploit these many lev-
els and granularities of parallelism and e�ec-
tively manage the computational heterogene-
ity, and eÆciently overlap the synchronizations
and communications with computations.

In this paper we present the design, im-
plementation, and evaluation of such a multi-
threaded communication engine that addresses
the issues listed above and enables scalable im-
plementations of parallel/distributed AMR ap-
plications. The engine uses the MPI[2] com-
munication library (to ensure portability) and
provides the capability for registering message
handlers at the application level (similar in
principal to Active Messages [3]). These han-
dlers enable each computational thread to pro-
vide a handler function that de�nes how a par-
ticular class of messages is to be processed
and how the thread is to be informed about
message arrivals. Communications threads can
now independentlymanage all communications
and maximize their overlap with computations.
The multithreaded communication engine has
been built on the GrACE SAMR[4, 5] library.

The rest of the paper is organized as fol-
lows: Section 2 describes the adaptive mesh-
re�nement algorithm and the underlying grid
structures. Section 3 presents the design of
the multithreaded communication engine. Sec-
tion 4 describes the implementation the engine
on the SUN Enterprise 10000 (E10K) system,
and presents an experimental evaluation of the
communication engine. Section 5 present con-
clusions and outlines future research directions.

2 Problem Description and

Related Work

2.1 Adaptive Mesh Re�nement

Dynamically adaptive numerical techniques for
solving di�erential equations provide a means
for concentrating computational e�ort to ap-
propriate regions in the computational domain.
In the case of hierarchical adaptive mesh re-
�nement (AMR) methods, this is achieved by
tracking regions in the domain that require

additional resolution and dynamically overlay-
ing �ner grids over these regions. AMR-based
techniques start with a base coarse grid with
minimum acceptable resolution that covers the
entire computational domain. As the solution
progresses, regions in the domain requiring ad-
ditional resolution are tagged and �ner grids
are overlaid on the tagged regions of the coarse
grid. Re�nement proceeds recursively so that
regions on the �ner grid requiring more resolu-
tion are similarly tagged and even �ner grids
are overlaid on these regions. The resulting
grid structure is a dynamic adaptive grid hier-
archy. The adaptive grid hierarchy correspond-
ing to the AMR formulation by Marsha Berger
and Joseph Oliger[1] is shown in Figure 1.

Distribution of adaptive applications based
on hierarchical AMR consists of appropriately
partitioning the adaptive grid hierarchy across
available computing nodes, and concurrently
operating on the local portions of this domain.
Parallel AMR applications require two primary
types of communication: (a) Inter-grid Com-
munications: Inter-grid Communications are
de�ned between component grids at di�erent
levels of the grid-hierarchy and consist of pro-
longations (coarse to �ne transfers) and restric-
tions (�ne to coarse transfers). These com-
munications typically require a gather/scatter
type operations based on an interpolation or
averaging stencil. Inter-grid communications
can lead to serialization bottlenecks for na�ive
decompositions of the grid hierarchy. (b) Intra-
grid Communications: Intra-grid Communica-
tions are required to update the grid-elements
along the boundaries of local portions of a dis-
tributed grid. These communications consist
of near-neighbor exchanges on the stencil de-
�ned by the di�erence operator. Intra-grid
communications are regular and can be sched-
uled so as to overlap with computations on the
interior region of the local portions of a dis-
tributed grid.

2.2 Related Work

There exists a several infrastructures that
support parallel and distributed implementa-
tions of AMR applications. These include



G
0

1

G G

G GGG1

G

1

2

1

n

2 2

2

2 2

i j

3

k

G1

1

G1

1

G
0

1

G

G

1

1

G
2

Gk

3

j

2

n

Figure 1: Adaptive Grid Hierarchy - 2D
(Berger-Oliger AMR Scheme)

SAMRAI[6], PARAMESH[7] and GrACE[4].
The existing infrastructures however do not
support multithreading. Multithreaded run-
time for AMR infrastructures has been re-
searched by Chrisochoides[8], and Felten[9].
Chrisochoides' work on multithreading em-
ploys threads for load balancing. All processors
start with a pool of threads. Threads can be in-
terior threads or interface (boundary) threads.
The thread scheduler schedules these threads
in so as to minimize the overheads of commu-
nication. \New threads" is a thread library de-
veloped by Felten et al. that can be used to im-
prove the performance of general message pass-
ing applications. The library provides commu-
nication support between threads on di�erent
processors by using globally unique port num-
bers.

3 A Multithreaded Engine for

AMR Applications

Parallel/distributed implementations of adap-
tive mesh re�nement techniques for solving
PDEs typically consist of three phases { (a)
computation phase, (b) load balancing phase
and (c) data-migration phase. The compu-
tation phase is again sub-divided into a pure
computation phase and the ghost synchro-
nization phase. The ghost synchronization
phase involves the exchange of ghost or bound-
ary regions that are shared between proces-

sors. These message exchanges are required
frequently during each integration step on a
level, and can signi�cantly e�ect application
performance. One solution is to use an overlap
to alleviate the cost of communication. This is
achieved by the multithreaded communication
engine.

The multithreaded communication engine
presented in this section has been designed
for the GrACE SAMR framework. GrACE
is an object-oriented toolkit for the develop-
ment of parallel and distributed applications
based on a family of adaptive mesh-re�nement
and multigrid techniques. It is built on a
\semantically specialized" distributed shared
memory substrate that implements a hier-
archical distributed dynamic array (HDDA)
[10, 11]. HDDA provides uniform array ac-
cess to heterogeneous dynamic objects span-
ning distributed address spaces and multiple
storage types. The array is hierarchical in that
each element of the array can be an array; it is
dynamic in that the array can grow and shrink
at run-time. Communication, synchronization
and consistency of HDDA objects are trans-
parently managed for the user. Distribution
of the HDDA is achieved by partitioning its
array index space across the processors. The
index-space is directly derived from the appli-
cation domain using locality-preserving space
�lling mappings [12] that eÆciently map N-
dimensional space to 1-dimensional space.

The GrACE communication engine oper-
ates as follows. At the beginning of the
computation phase, each processor computes
the boundary regions shared with other pro-
cesses, anticipates the messages to be received
from the neighboring processes, and register
a handler for the expected messages. During
the ghost synchronization phase, messages are
shipped in the form of HDDA objects or buck-
ets consisting of a header and a payload con-
sisting of the actual data. The header con-
tains information describing how the message
is to be handled at the receiver. When the
message arrives at the receiving end, the infor-
mation from the header is extracted and the
message processed accordingly. The received



data is then held in the message bu�ers until
it is required by the application. While, this
process attempts to reduce overheads by elim-
inating the need for the application to poll for
messages to arrive, it can su�er from increased
latencies for AMR grid hierarchies. The mul-
tithreaded communication engine attempts to
reduce these latencies by overlapping compu-
tations with communications.

3.1 Multithreaded Communication

Engine: Architecture

In GrACE, the adaptive grid hierarchy is par-
titioned so that each processor owns a number
of grid blocks per level. The fact that compu-
tations on a processor proceed on a block-by-
block basis can be exploited to overlap compu-
tation with communication. As soon as com-
putations have been completed on a blocks,
ghost synchronization messages from the block
to remote blocks can be sent out. Similarly,
the block can be updated using incoming ghost
messages from remote blocks. Furthermore,
this can be done in parallel with computa-
tions on the other blocks at the processor. The
multithreaded engine is designed to transpar-
ently exploit this scenario to improve the per-
formance of GrACE-based AMR applications.
The engine provides a modi�ed messaging sub-
strate consisting of three threads per process -
viz. the main computation thread, the send
thread and the receive thread, as shown in the
Figure 2. The 3 threads share a pair of queues
(send queue and receive queue). These queues
are used to synchronize the operations of the
threads. A key objective of the design was to
minimize modi�cations at the application level.
The three threads are brie
y described below.

Computation thread: The computation
thread spawns the send and receive threads at
the beginning of the computation phase. It
then proceeds with computations on the local
grid blocks at the processor. When the com-
putations on a block are completed, its block
number is entered into the send and receive
queues. This is a signal to the communica-
tion (send/receive) threads that they can start

Figure 2: Architecture of the Multithreaded
Communication Engine

the ghost synchronizations on the block. Af-
ter computations are completed, the compute
thread waits for the send and received threads
to �nish, before beginning the next computa-
tional cycle. When all computations are com-
pleted, the threads join and exit. The compu-
tation (or main) thread has the following func-
tions:

� Setting up the grid hierarchy and the nec-
essary grid functions as required by the
application.

� Initialize the data structures, calculate
and create message handlers for messages.

� Perform computation, load balancing,
load distribution.

� Spawn send and receive threads and ini-
tialize their data structures.

Send Thread: The send thread maintains
the send queue. When computed blocks are
entered into this queue by the computation
thread, it processes them by sending ghost syn-
chronization messages to remote blocks. The
send queue is a FIFO queue and requests are
processed in FIFO order. The send thread per-
forms the following functions:

� Wait for a signal from the computation
thread signaling the start of the synchro-
nization phase.



� Process the requests or blocks in the order
entered in the send queue.

� Send out the blocks to processes.

� Signal the computation thread when the
sends are complete.

Receive Thread: The receive thread main-
tains the receive queue. When computed
blocks are entered into this queue by the com-
putation thread, it processes them by updating
the block with incoming ghost synchronization
messages. The receive queue is also a FIFO
queue. The receive thread performs the fol-
lowing functions:

� Wait for signal from the computation
thread signaling the start of the synchro-
nization phase.

� Receive messages that have arrived and
copy them into the appropriate message
bu�ers.

� Copy the data from message bu�ers to
the grid blocks on which computation has
completed.

� Signal the computation thread when all
the messages have been received and have
been copied into the appropriate grid
blocks.

3.2 Multithreaded Communication

Engine: Operation

As described earlier, AMR simulations consist
of 2 phases - the computation phase and the
ghost synchronization phase. Ghost synchro-
nizations involve exchanging the boundary re-
gions of the grid contained with neighboring
processors. Thus ghost sends involve copy-
ing the data from application bu�ers into mes-
sage bu�ers, packing these bu�ers and sending
them out. On the receiving end, the ghost re-
ceives consist of unpacking the incoming mes-
sage and copying it into the application data
structure. The overall operation of the multi-
threaded communication engine is show in Fig-
ure 3 and described below.

Figure 3: Sequence of events in the multi-
threaded engine on a single process

At the start of the simulation, the main com-
putation thread performs the initializations on
the grid hierarchy and then spawns o� the
send and receive threads. The queues and data
structures are then set up for communication
between the threads. When the computation
phase starts, the computational thread signals
the start of the synchronization phase to both
the send and receive threads. As soon as com-
putation on a block is done, its block num-
ber is added to the end of the send and re-
ceive queues. The communication threads re-
move the entry from the head of the queue and
process ghost synchronization for the blocks.
As soon as a synchronization phase is com-
plete, the two threads signal the computational
thread so that it can start the next cycle.
When the simulation is complete, the threads
join the main computational thread and exit.



4 Implementation and Exper-

imental Evaluation

The multithreaded engine was developed and
tested on the Sun Enterprise 10000 (E10K)
cluster. Each system in the cluster consists of
sixty-four 400 MHz SPARC processors, 32GB
of RAM, and approximately a terabyte of disk
storage. The processors are con�gured as 16
processor boards with 4 processors per board.
Each processor has 4 Mbytes of L2 cache.
The communication engine uses the POSIX
[13, 14] thread library for creating and schedul-
ing threads and is built using the thread safe
MPI [2] implementation available on the Sun
E10K.

The application used in these experiments
is the 3-dimension numerical relativity kernel
(Wave3D) and belongs to the general class
of AMR applications. Wave3d solves a cou-
pled set of partial di�erential equations: El-
liptic (Laplace equation-like) constraint equa-
tions which must be satis�ed at each timestep,
and Hyperbolic (Wave equation-like) equations
describing time evolution. This kernel is part
of the Cactus numerical relativity toolkit 1.

The experiments conducted measure the to-
tal execution time with and without the mul-
tithreaded communication engine. The appli-
cations used di�erent grid sizes and re�nement
levels for the experiments. Figures 4 and 5
plot the total execution time in seconds for
the two cases. As seen in the these plots,
the overall application performance increases
with the multithreaded engine. Furthermore,
performance gaines are larger for the 4 and 8
processors runs as compared to the runs on
larger number of processors. This is because,
for a given �xed domain size, as the num-
ber of processors is increased, the number of
grid blocks owned per processor is decreased.
The threaded engine exploits the parallelism
across multiple blocks on a processor to over-
lap computations and communications and im-
prove application performance. As the number

1Cactus Computation Toolkit -
http://www.cactuscode.org

Figure 4: Plots of WaveAMR3D application
with 129x129x129 grid size

of blocks decreases, the available parallelism
and consequently the opportunity for overlap
and corresponding performance improvement
also decreases.

5 Conclusions

In this paper, we presented the design, imple-
mentation and evaluation of a multithreaded
communication engine for the GrACE SAMR
library. The multi-threaded engine overlaps
communications with computations over the
set of grid blocks assigned to a processor. The
experiments conducted show that the use of
the multithreaded engine for communication
can improve the performance by more than
�fty percent. We are currently evaluating the
runtime on large system and exploring com-
bining the multithreaded engine with advanced
dynamic partitioning/load-balancing systems.
We believe that as domain size and number of
levels increase, the number of grid block per
processor will also increase and this in turn
will increase the opportunity for overlap that
is exploited by the multithreaded engine. We
are currently evaluating the engine for larger
applications (with more levels of re�nements)



Figure 5: Plots of WaveAMR3D application
with a 257x257x257 grid size

and larger system sizes.

References

[1] M. Berger and J. Oliger, \Adaptive mesh
re�nement for hyperbolic partial di�eren-
tial equations", Journal of Computational

Physics, 53, 1983.

[2] MPI, http://www.mpi-forum.org, MPI Fo-
rum homepage.

[3] S.S. Lumetta, A.M. Mainwaring, D.E.
Culler, \Multi-Protocol Active Messages
on a Cluster of SMP's", Technical paper at
Supercomputing, 1997.

[4] M. Parashar and J. C. Browne, \System
Engineering for High Performance Com-
puting Software: The HDDA/DAGH In-
frastructure for Implementation of Paral-
lel Structured Adaptive Mesh Re�nement",
in IMA Volume 117: Structured Adaptive

Mesh Re�nement Grid Methods, IMA Vol-

umes in Mathematics and its Applications.
Springer-Verlag, pp. 1-18, 2000.

[5] M. Parashar, J.C. Browne, C. Edwards,
and K. Klimkowski, \A common data man-

agement infrastructure for adaptive algo-
rithms for PDE solutions", Technical paper
at Supercomputing, 1997.

[6] R.D. Hornung, and S. Kohn, \SAMRAI: A
Software Framework for Structured Adap-
tive Mesh Re�nement," DOE Conference
on High Speed Computing, Salishan Lodge,
Gleneden Beach, OR, April 19-22, 1999.
Also available as Lawrence Livermore Na-
tional Laboratory technical report UCRL-
MI-133555.

[7] P. MacNiece, K.M. Olson, C. Mobarry, R.
deFainchtein and C. Packer, \PARAMESH
: A parallel adaptive mesh re�nement com-
munity toolkit", Computer Physics Com-

munications, vol. 126, p.330-354, (2000).

[8] N. Chrisochoides, \Multithreaded model
for dynamic load balancing parallel adap-
tive PDE computations", Technical Report
CTC95TR221, Cornell University, 1995.

[9] E. W. Felten and D. McNamee, \Improving
the performance of Message-Passing Appli-
cation by Multithreading", Proceedings of

the Scalable High Performance Computing

Conference, April 1992.

[10] M. Parashar and J. C. Browne, \Dis-
tributed Dynamic Data Structures for Par-
allel Adaptive Mesh Re�nement", Pro-

ceedings of the International Conference for

High Performance Computing, Dec. 1995.

[11] M. Parashar and J.C. Browne, \On Par-
titioning Dynamic Adaptive Grid Hierar-
chies", Proceedings of the 29th Annual

Hawaii International Conference on Sys-

tem Sciences, Jan. 1996.

[12] H. Sagan Space-�lling curves Springer-

Verlag, 1994.

[13] Bradford Nichols, et al, Pthreads Pro-
gramming: A POSIX Standard for Bet-
ter Multiprocessing, O'Reilly, September
1996.

[14] D.R. Butenhof, Programming with POSIX

threads, Addison-Wesley, May 1997.


