
Proceedings of the IASTED International Conference
Parallel and Distributed Computing and Systems
November 3-6, 1999 in Cambridge Massachusetts, USA

302-198 - 1 -

Characterizing the Performance of Dynamic Distribution and Load-Balancing
Techniques for Adaptive Grid Hierarchies

Mausumi Shee, Samip Bhavsar, and Manish Parashar
Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Road, Piscataway, NJ 08854 Tel:

(732) 445-5388; Fax: (732) 445-0593; Email: {mshee,samip,parashar}@caip.rutgers.edu

Abstract

Dynamically adaptive techniques for the solution of
partial differential equations that employ locally optimal
approximations can yield highly advantageous ratios for
cost/accuracy. Distributed implementations of these
methods offer the potential for accurate solutions of
physically realistic models of important physical systems.
These implementations however, lead to interesting
challenges in dynamic data-distribution, re-distribution
and load balancing. This paper presents an application-
centric performance characterization and evaluation of
dynamic partitioning and load-balancing techniques for
distributed adaptive grid hierarchies that underlie adaptive
mesh-refinement algorithms (AMR). The overall goal of
this characterization is to enable the selection of the most
appropriate mechanism based on application and system
parameters.

Keywords: Dynamic load balancing; Performance
characterization; Adaptive mesh refinement.

1. Introduction
This paper presents an application-centric

performance characterization of dynamic partitioning and
load-balancing techniques for distributed adaptive grid
hierarchies that underlie parallel adaptive mesh-
refinement (AMR) techniques for the solution of partial-
differential equations. The goal of this characterization is
to enable the selection of the most appropriate mechanism
based on application and system parameters.

Dynamically adaptive methods for the solution of
partial differential equations that employ locally optimal
approximations can yield highly advantageous ratios for
cost/accuracy when compared to methods based upon
static uniform approximations. These techniques seek to
improve the accuracy of the solution by dynamically
refining the computational grid in regions of high local
solution error. Distributed implementations of these
methods offer the potential for accurate solution of
physically realistic models of important physical systems.
We believe that the next generation simulations of
complex physical phenomenon will be built using such
dynamically adaptive techniques executing on distributed
heterogeneous computational grids, and will provide
dramatic insights into complex systems such as
interacting black holes and neutron stars, formations of
galaxies, oil reservoirs and aquifers, and seismic models
of the whole earth.

Distributed implementations of adaptive applications
lead to interesting challenges in dynamic resource

allocation, data-distribution and load balancing,
communications and coordination, and resource
management. The overall efficiency of the adaptive
algorithms is limited by the ability to partition the
underlying data-structures at run-time to expose all
inherent parallelism, minimize communication and
synchronization overheads, and balance load. A critical
requirement while partitioning adaptive grid hierarchies
that underlie these algorithms is the maintenance of
logical locality, both across different levels of the
hierarchy under expansion and contraction of the adaptive
grid structure, and within partitions of grids at all levels
when they are decomposed and mapped across
processors. The former enables efficient computational
access to the grids while the latter minimizes the total
communication and synchronization overheads.
Furthermore application adaptivity results in application
grids being created, moved and deleted on the fly, making
it necessary to efficiently re-partition the hierarchy on the
fly so that it continues to meet these goals.

This paper first presents metrics for an application-
centric performance characterization of distribution
mechanism for AMR grid hierarchies. It then uses them to
characterize the performance of a suite of partitioning and
load-balancing mechanisms used by distributed AMR
infrastructures. The Buckley-Leverette applications kernel
from oil reservoir simulation applications is used to
evaluation the different schemes. The evaluation is
performed in an architecture independent manner. This
enables selection of the most appropriate
partitioning/load-balancing scheme for a specific
architecture by matching the metrics against the system
parameters. The rest of this paper is organized as follows:
Section 2 describes the family of adaptive algorithms
targeted in this paper. Parallel and distributed
implementations of these are discussed. Section 3 presents
an application-centric performance characterization of
distribution and load-balancing techniques for adaptive
applications. Section 4 outlines a suite of six distribution
and load-balancing schemes used by current
infrastructures supporting adaptive applications. Section 5
uses a real-world AMR application to characterize the
distribution and load-balancing schemes. Section 7
presents our conclusions and outlines future work.

2. Problem Description

302-298 - 2 -

Dynamically adaptive numerical techniques for
solving differential equations provide a means for
concentrating computational effort to appropriate regions
in the computational domain. In the case of hierarchical
adaptive mesh refinement (AMR) methods, this is
achieved by tracking regions in the domain that require
additional resolution and dynamically overlaying finer
grids over these regions. AMR-based techniques start
with a base coarse grid with minimum acceptable
resolution that covers the entire computational domain.
As the solution progresses, regions in the domain with
high solution error and requiring additional resolution are
tagged and finer grids are overlaid on the tagged regions
of the coarse grid. Refinement proceeds recursively so
that regions on the finer grid requiring more resolution are
similarly tagged and even finer grids are overlaid on these
regions. The resulting grid structure is a dynamic adaptive
grid hierarchy. Figure 1 shows the adaptive grid hierarchy
for the Berger/Oliger AMR formulation.

Figure 1 – 2D Adaptive Grid Hierarchy

Distribution of adaptive methods based on hierarchical
AMR consists of appropriately partitioning the adaptive
grid hierarchy across available computing nodes, and
operating on the local portions of this domain in parallel.
Parallel AMR implementations primarily require two
types of communication:
1. Inter-grid Communications: Inter-grid

Communications are defined between component
grids at different levels of the grid-hierarchy and
consist of prolongations (coarse to fine transfers) and
restrictions (fine to coarse transfers). These
communications typically require a gather/scatter
type operation based on an interpolation or averaging
stencil. Inter-grid communications can lead to
serialization bottlenecks for naïve decompositions of
the grid hierarchy.

2. Intra-grid Communications: Intra-grid
Communications are required to update the grid-
elements along the boundaries of local portions of a
distributed grid. These communications consist of
near-neighbor exchanges using the stencil defined by
the finite-difference operator. Intra-grid
communications are regular and can be scheduled so
as to overlap with computations on the interior region
of the local portions of a distributed grid.

Note that on the same processor, these
communications translate to memory copies. The key
requirements for a decomposition scheme for
partitioning an adaptive grid hierarchy can be

summarized as: (1) expose available data-parallelism
(2) minimize communication overhead (3) balance
overall load distribution and (4) enable dynamic load
redistribution with minimum overheads. A balanced
load distribution is particularly critical for parallel
AMR based applications as different levels of the
hierarchy have different computational loads.
Furthermore, for time dependent simulations, the grid
hierarchy changes with grids being created, moved and
destroyed at different time steps, making efficient
load-redistribution critical.

3. A Characterization of AMR
Distribution Mechanisms

 We use four sets of metrics to characterize
distribution and load-balancing mechanisms for AMR
adaptive grid hierarchies, viz. load balance, distribution
quality, grid interaction overheads (inter-processor
communication and memory copy), and data-movement
overheads. These metrics are described below.

3.1. Load Balance
The load balance metric measures the distribution of

load across the processors and the time taken to achieve
the distribution. Balanced load distribution is particularly
critical for parallel AMR applications as different levels
of the hierarchy have different computational loads.
Furthermore, AMR applications require re-distribution
and load balancing at regular intervals; consequently the
time spent in this effort is critical. The goal of this metric
is to define operational points that represent the best
balance between the effort spent in balancing the load and
the balance achieved.

3.2. Distribution Quality
Distribution quality is quantified by the number of

grid components created on each processor and the
quality (size, aspect ratio) of these components. The
former captures the overheads due to the allocation,
management and de-allocation of grid components. Large
number of small grids also increases the number of
memory copies required for inter-level and intra-level
communications. The size and shape of the grids also
affects the communication/memory copy behavior. Bad
aspect ratios result in larger interfaces between sibling
grids and increased intra-level communications. Finally
grid size also affects the overall cache behavior. Our goal
is to use this metric to determine an acceptable range for
the shape and size of grid components for different
architectures, and use this to drive the distribution. In this
paper we evaluate the number of boxes created for each
partitioning/load-balancing scheme studied.

3.3. Grid Interaction Overheads
The grid interaction overhead metric aims at

characterizing the ability of the distribution scheme to
capture and maintain application locality. Here we
measure the overheads of four kinds of communications:
inter-grid communications between grids at different
levels, intra-grid communication along ghost boundaries,

302-298 - 3 -

and inter- and intra grid memory copies for co-located
grid components. Maintaining locality to minimize these
overheads can lead to conflicting optimizations. The
objective of this metric is to identify a balance between
the two overheads based on system memory architecture
and communication characteristics that can achieve best
overall performance.

3.4. Data Movement
Every refinement step in the AMR algorithms

typically causes the adaptive grid hierarchy to change
requiring load balancing and data-redistribution.
Redistribution should be incremental so as to minimize
the data that has to be relocated. The objective of the data
movement metric is to characterize the ability of the
distribution scheme to minimize redistribution costs by
reassigning grids to their original location. Optimizing
this metric can lead to conflicts with requirements for
optimizing load balancing and interaction overheads.

4. Run-Time Partitioning Dynamic
AMR Grid Hierarchies

This section describes the six dynamic partitioning
and load balancing schemes that we have implemented
and evaluated in this paper. These schemes underlie five
existing AMR infrastructures: BATSRUS[1],
PARAMESH[6], SCOREC PMDB[8], SAMRAI[7] and
DAGH[2].

4.1. Space-Filling Curves

Figure 2 - Space-Filling Curve Representation of
an Adaptive Grid Hierarchy

Space-filling curves (SFC) [4] are a class of locality
preserving mappings from d-dimensional space to 1-
dimensional space i.e., Nd Æ N1, such that each point in
Nd is mapped to a unique point or index in N1. The self-
similar or recursive nature of these mappings can be
exploited to represent a hierarchical structure and to
maintain locality across different levels of hierarchy. The
SFC representation of the adaptive grid hierarchy is a 1-D
ordered list of composite grid blocks where each
composite block represents a block of the entire grid
hierarchy and may contain more than one grid level; i.e.
inter-level locality is maintained within each composite
block. Figure 2 illustrates the composite representation for
a two-dimensional grid hierarchy. Using the space-filling
curve representation, the adaptive grid hierarchy can be
simply partitioned by partitioning the composite list to
balance the total work assigned to each processor. This
decomposition using the Peano-Hilbert space-filling
ordering for a 1-D grid hierarchy is shown in Figure 3. As
inter-level locality is inherently maintained by the

composite representation, the decomposition generated by
partitioning this representation eliminates expensive
gather/scatter communication and allows prolongation
and restriction operations to be performed locally at each
processor.

Figure 3 - Space-Filling (Composite) Distribution

4.2. Independent Grid Distribution
The independent grid distribution (IGD) scheme,

shown in Figure 4, distributes the grids independently
across the processors. This distribution leads to balanced
loads and no redistribution is required when grids are
created or deleted. However the decomposition scheme
can be very inefficient with regard to inter-grid
communication. In the adaptive grid hierarchy, a fine grid
typically corresponds to a small region of the underlying
coarse grid. If both, the fine and coarse grid are
distributed over the entire set of processors, all the
processors will communicate with the small set of
processors corresponding to the associated coarse grid
region, causing a serialization bottleneck.

Figure 4 - Independent Grid Distribution

4.3. Combined Grid Distribution

Figure 5 - Combined Grid Distribution

The combined grid distribution (CGD), shown in
Figure 5, distributes the total work load in the grid
hierarchy by first forming a simple linear structure by
abutting grids at a level and then decomposing this
structure into partitions of equal load. The combined
decomposition scheme also suffers from the serialization
bottleneck described above but to a lesser extent. For
example, in Figure 5, G21 and G22 update G11 requiring

302-298 - 4 -

P2 and P3 to communicate with P1 for every restriction.
Regriding operations involving the creation or deletion of
a grid are extremely expensive in this case, as they require
an almost complete redistribution of the grid hierarchy.
The combined grid decomposition does not exploit the
parallelism available within a level of the hierarchy. For
example, when G01 is being updated, processors P2 and
P3 are idle and P1 has only a small amount of work.
Similarly when updating grids at level 1 (G11, G12 and
G13) processors P0 and P3 are idle, and when updating
grids at level 2 (G21, G22 and G23) processors P0 and P1
are idle.

4.4. Independent Level Distribution
In the independent level distribution (ILD) scheme

(see Figure 6), each level of the grid hierarchy is
distributed by partitioning the combined load of all
component grids at the level among the processors. This
scheme overcomes some of the drawbacks of the
independent grid distribution. Parallelism within a level of
the hierarchy is exploited. Although the inter-grid
communication bottleneck is reduced in this case, the
required gather/scatter communications can be expensive.
Creation or deletion of component grids at any level
requires a redistribution of the entire level.

Figure 6 - Independent Level Distribution

4.5. Iterative Tree balancing
The iterative tree balancing (ITB) scheme treats the

dynamic partitioning and load-balancing problem as a
graph-partitioning problem. A table is created from the
grids at each time step, which keeps pointers to
neighboring and parent grids. A breadth first search is
made on this graph i.e. for every grid, immediate
neighbors and children are also considered along with
load distribution. Thus load balancing, inter level
communication and intra level communication are
addressed together. This scheme is used for distributing
fine-element meshes and is promising as it deals with all
the constraints to some extent.

4.6. Weighted Distribution
The weighted distribution scheme is a heuristic based

hybrid scheme that attempts to combine the features of
the other schemes described in this section. As previously
observed, there are three primary parameters that need to
be controlled to minimize the overheads of an adaptive
grid hierarchy distribution, viz. intra-level
communication, inter-level communication and data

movement at each regrid. In the weighted distribution
scheme we first assign a weight to each of these
overheads. This weight defines the significance and
contribution of the overhead to the overall application
performance and depends on the system architecture and
dynamic application behavior. The next step uses these
weights to compute the affinity of each component grid to
the different processors. Initially, grids have no affinity
for any processor. For each grid, the affinity of the
processor(s) housing its parents is now increased by the
inter-level communication weight. Similarly the affinities
of processors housing the neighbors of the grid are
increased by the intra-level communication weight, and
affinity of the original location of the grid is increased by
the data-movement overhead weight. The grid is now
assigned to the available processors (i.e. total assigned
load is below threshold for load balancing) to which the
grid has maximum affinity. If the grid has equal affinity
to more than one processor, the grid is either split among
the processor (if its size is greater than the size threshold)
or assigned to the processor with least load. For example
if the application has many component grids and uses a
large stencil, then the dominating weight is associated
with intra-level communication. Similarly if the
application is very dynamic and needs to regrid very
often, the data-movement weight dominates. Weights
assigned to the different parameters can change
dynamically depending on the current application and
system states.

5. Experimental Evaluation
To evaluate the six distribution/load-balancing

schemes outlined in Section 5 we use a grid adaptation
trace from the 3D Buckley-Leverette equation kernel
(BL) used in oil reservoir simulations. This application
simulates the flow of the oil pressure front across the oil
field between wells. Grid refinements in the application
track the front moving diagonally across the grid. The
adaptation trace was generated from a single processor
run with 5 levels of factor 2 refinement. The BL trace
consisted of 66 regrid steps with regridding every fourth
time step. The base (coarsest) grid was 333. The trace was
then fed to a partitioning module that partitioned the
boxes across the required number of processor using each
of the six schemes. An AMR simulator then evaluated
various costs for the partition generated. The evaluation
was performed using architecture independent
measurements. These measurements for the different
metrics are summarized in the table below. In case of
communication and data-movement overheads, this
corresponds to the amount of information communicated.
In case of distribution quality metrics this corresponds to
the number of grids per processor and the percentage load
imbalance (a perfect load balance corresponds to 0%).
The motivation for keeping the measurement architecture
independent was to enable them to be used to select
appropriate schemes for a wide range of architecture
using a very simple architectural description.

Metric Measurement

302-298 - 5 -

Load Balance Percentage load imbalance

Intra-level/Inter-level communication
overhead

Megabytes communicated

Intra-level/Inter-level memory copy Megabytes copied

Data movement Megabytes moved

Distribution time Seconds

Distribution quality Number of Boxes (x 1000)

The plots presented in this section represent
cumulative costs for each scheme. The vertical axis in
each of these plots is the relevant measurement for each
metric, while the horizontal axis is the number of
processors. In this experimentation we used three
configurations of 16, 32 and 64 processors. The plots in
Figure 9 show the intra and inter level communication
overheads, while Figure 10 show the memory copies in
each case. In both the sets of plots, the IGD distribution
scheme tends to be particularly bad. The other schemes
tend to be comparable with the SFC and CGD being
slightly better than the rest. The plots in Figures 11 and 12
show the overheads due to dynamic distribution and load
balancing. Once again IGD results in the maximum data-
movement while CGD has the least data movement. The
ILD scheme requires the maximum time for dynamic
distribution and load balancing. Finally the plots in Figure
13 show the quality of distribution in each case. Once
again IGD results in the maximum number of boxes,
however, it results in a near perfect load balance. ITB
produces the overall best quality distribution with SFC
and CGD schemes comparable. ILD produces the most
load imbalance.

6. Conclusions and Future Work
In this paper we presented a performance

characterization of six dynamic partitioning and load-
balancing techniques for distributed adaptive grid
hierarchies that underlie parallel adaptive mesh-
refinement (AMR) techniques for the solution of partial-
differential equations. This work is part of an ongoing
project for developing policy driven “smart” tools for
automated distribution/load balancing of adaptive
application in heterogeneous distributed environments.
The characterization presented consists of 3 metrics:
Interaction overheads (inter- and intra- level
communications and copies), Distribution Quality (load-
balance, number of grids) and Distribution Overheads
(data movement and distribution/load balancing time).
The Buckley–Leverette AMR kernel from oil reservoir
simulation applications is used to experimentally evaluate
the distribution/load-balancing schemes. The presented
results show that the iterative tree-balancing scheme
provides best overall performance for this application
with the space-filling curve and weighted distribution
providing comparable distributions. The reason is that
these techniques use application information to determine
the partitioning rather than pure heuristic. We are
currently expanding this characterization to other
applications and encoding the results into a policy rule

base that can drive an automated partitioning and load-
balancing tool.

7. References
[1] BATSRUS:

hpcc.engin.umich.edu/HPCC/codes\\/2/BATSRUSv2
.html.

[2] Distributed Adaptive Grid Hierarchies,
www.caip.rutgers.edu/~parashar/DAGH/.

[3] H. Sagan, Space-Filling Curves. Springer-Verlag,
1994.

[4] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley Company, 1989.

[5] M. Parashar and J.C. Browne, “On Partitioning
Dynamic Adaptive Grid Hierarchies”, Proceedings of
the 29th Annual Hawaii International Conference on
System Sciences, Jan. 1996.

[6] PARAMESH:
sdcd.gsfc.nasa.gov/ESS/eazydir/\\inhouse/macneice/p
aramesh/paramesh.html.

[7] SAMRAI: Structured Adaptive Mesh Refinement
Applications Infrastructure,
www.llnl.gov/CASC/SAMRAI/.

[8] SCOREC Parallel Scientific Computation:
www.scorec.rpi.edu/programs/parallel/ParallelScienti
fic.html

0

20

40

60

80

100

120

M
eg

ab
yt

es

C
om

m
un

ic
at

ed

16 32 64

of processors

Intralevel Communication

SFC

CGD

IGD

ILD

ITB

Weight

0
50

100
150
200
250
300
350
400
450

M
eg

ab
yt

es

C
om

m
un

ic
at

ed

16 32 64

of processors

Interlevel Communication

SFC

CGD

IGD

ILD

ITB

Weight

Figure 9 – BL: Communication Overheads

302-298 - 6 -

0

50

100

150

200

250

300

M
eg

ab
yt

es
 M

ov
ed

16 32 64

processors

Datamovement

SFC

CGD

IGD

ILD

ITB

Weight 0

50

100

150

200

250

300

S
ec

on
ds

16 32 64

processors

Time

SFC

CGD

IGD

ILD

ITB

Weighted

Figure 13 – BL: Distribution Quality Figure 14 – BL: Distribution Quality

0

20

40

60

80

10 0

12 0

14 0

16 0

of

 B
ox

es
 (

x
10

00
)

16 32 64

p r o ce s s o r s

Nu m b e r o f b o x e s

SFC

CG D

IGD

ILD

ITB

W e ight
0

1

2

3

4

5

6

7

%
 im

ba
la

nc
e

16 32 64

p r oce s s o r s

Load Balanc e

SFC

CGD

IGD

ILD

ITB

Weighted

0

50

100

150

200

250

300

350

400

450

M
eg

ab
yt

es
 C

op
ie

d

16 32 64

p r oce s s o rs

Intra le ve l m e m ory copy

SFC

CGD

IGD

ILD

ITB

Weight
0

20

40

60

80

100

120

140

M
eg

ab
yt

es
 C

op
ie

d

16 32 64

pr oce s s ors

Inte rleve l Mem ory Copy

SFC

CGD

IGD

ILD

ITB

Weight

Figure 10 – BL: Memory Copy Overheads

Figure 11 – BL: Data Movement Overhead Figure 12 – BL: Distribution/Load-Balancing Time

