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Abstract.

This paper presents the design and evaluation of an adaptive system sensitive
partitioning and load balancing framework for distributed adaptive mesh refinement
applications on heterogeneous and dynamic cluster environments. The framework
uses system capabilities and current system state to select and tune appropriate par-
titioning parameters (e.g. partitioning granularity, load per processor) to maximize
overall application performance. Furthermore, it uses dynamic load sensing (using
NWS) to adapt to the load dynamics in the cluster.

Keywords: System Sensitive adaptive partitioning, dynamic load-balancing, het-
erogeneous computing, structured adaptive mesh refinement

1. Introduction

Dynamically adaptive methods for the solution of partial differential
equations that employ locally optimal approximations can yield highly
advantageous ratios for cost/accuracy when compared to methods based
upon static uniform approximations. These techniques seek to improve
the accuracy of the solution by dynamically refining the computational
grid in regions of high local solution error. Distributed implementations
of these adaptive methods offer the potential for accurate solutions to
realistic models of important physical phenomena. These implementa-
tions however, lead to interesting challenges in dynamic resource allo-
cation, dynamic data-distribution and load balancing, communications
and coordination, and resource management.

Moving these applications to dynamic and heterogeneous cluster
computing environments introduces a new level of complexity. These
environments require the runtime selection and configuration of ap-
plication components and parameters based on the availability and
state of the resources. However, the complexity and heterogeneity of
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the environment make selection of a “best” match between system re-
sources, mappings and load distributions, communication mechanisms,
etc. non-trivial. System dynamics coupled with application adaptivity
makes application and run-time management a significant challenge.

In this paper we present the design and evaluation of an adaptive sys-
tem sensitive partitioning and load balancing framework for distributed
adaptive mesh refinement (AMR) applications on heterogeneous and
dynamic cluster environments. The framework uses system capabilities
and current system state to select and tune appropriate distribution
parameters. Current system state is obtained at runtime using the
NWS (Network Weather Service) [3] resource monitoring tool. Sys-
tem state information along with system capabilities are then used to
compute relative computational capacities of each of the computational
nodes in the cluster. These relative capacities are used by a heteroge-
neous “system-sensitive” partitioner for dynamic distribution and load-
balancing. The heterogeneous partitioner has been integrated into the
GrACE (Grid Adaptive Computational Engine) infrastructures’ [1, 2]
adaptive runtime system. GrACE is a data-management framework for
parallel/distributed AMR, and is being used to provide AMR support
for varied applications including reservoir simulations, computational
fluid dynamics, seismic modeling and numerical relativity.

The rest of this paper is organized as follows: Section 2 discusses
related work. Section 3 describes parallel/distributed AMR methods
and the adaptive grid structure defined by these hierarchical adaptive
mesh-refinement techniques. Section 4 introduces the GrACE adaptive
computational engine. Section 5 outlines the architecture of the sys-
tem sensitive runtime management framework. Section 6 describes the
framework implementation and presents an experimental evaluation.
Section 7 discusses the results. Section 8 presents some concluding
remarks and directions for future work.

2. Related Work

A taxonomy of related work in partitioning/load-balancing techniques
is shown in Figure 1. Techniques are classified based on whether they
address system and/or application dynamics. The four quadrants shown
in Figure 1 are discussed below. Note that in this discussion we focus
on techniques that address system heterogeneity.

Static Application and Static Environment: There exists a

large body of research addressing load balancing techniques where the
system as well as the application are static. Most of these techniques,
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Static Application, Static Application,
Static System State Dynamic System State
[5] [3,6,7,9, 13, 14, 15]
Dynamic Application, Dynamic Application,
Static System State Dynamic System State

[8,16,17,18] [19]

Figure 1. Taxonomy of related work on load balancing based on system and
application state. The references are shown in brackets above.

however, do not address system heterogeneity. One of the most recent
works that addresses this issue is by Figueira et. al in [5]. They have
defined an algorithm which determines the best allocation of tasks to
resources in heterogeneous systems. They have discussed the mapping
of parallel applications with multiple tasks to heterogeneous platforms.
Their work however does not take into account the dynamism in the
environment. Furthermore, it addresses static applications.

Static Application and Dynamic Environment:  Techniques
described in [6], [9], and [13] address dynamic heterogeneous envi-
ronments. These techniques primarily differ in the way they quantify
system capabilities in the heterogeneous system. Watts et. al in [6]
have presented different techniques to measure the resource capacities.
One method uses a benchmarking program to determine the relative
speeds of various machines. These offline performance metrics, along
with other specifications, such as the machines’ memory capacities,
can be placed in a file which is read at the beginning of the computa-
tion. Another method to measure the resource capacities’ is the use of
system-measured utilization numbers. M. Ripeanu in [9] has developed
a measure of efficiency that considers both the relative computational
power of each processor and the share of time used on each processor.
The relative speed is measured using synthetic benchmarks or by us-
ing the real application itself as a benchmark. Cai et. al in [13] have
simulated a heterogeneous environment based only on CPU processing
power for their study. Gross et. al in [14] have also emphasized the need
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for external measurements of network mechanisms to support effective
adaptive execution of large distributed scientific applications.

Some authors have also proposed “matching and scheduling” algo-
rithms for a dynamic heterogeneous environment. For example, Topcuoglu,
et al in [20] have presented two algorithms, the Heterogeneous Earliest-
Finish-time and the Critical-Path-on-a -processor for scheduling DAGs
on a bounded number of heterogeneous processors. Maheswaran et.
al in [7] have suggested a new dynamic algorithm called the “hybrid-
remapper ” which uses the run-time values that become available upon
completion of subtasks as well as machine availabilities during ap-
plication execution time. Leinberger et. al in [15] have addressed a
workload distribution problem for a computational grid with multi-
resource servers. Servers in the grid have multiple resource capacities
and the applications submitted by the users have multiple resource
requirements. To fully utilize all K resources at each site, they suggest
a heuristic to match the job mix at each server with the capabilities of
that server, in addition to balancing the load across servers. Andersen
et. al in [12] have also studied dynamic load-balancing for a static appli-
cation. However, their approach to redistribution is through initiation
of requests to a target machine from either idle machines asking for
work or from busy machines relinquishing excess work.

Dynamic Application and Static Environment: A lot of re-
search work has been done that addresses dynamic applications and
static environments, however, they do not take heterogeneity of the
system into account. M. Parashar et. al in [2] have addressed the par-
titioning of dynamic applications on a static environment. They have
not addressed the heterogeneity of the system. References [8], [16], and
[17] have also looked at the partitioning of dynamic applications but
they have also not taken system heterogeneity or dynamic system state
into account. G. Karypis, et. al in [18] have implemented algorithms for
partitioning unstructured graphs and for computing fill-reducing order-
ings of sparse matrices. B. Hendrickson, et. al in [21] have developed
a library called Zoltan that includes a suite of dynamic load-balancing
algorithms, including both geometric and graph-based algorithms.

Dynamic Application and Dynamic Environment: Most ex-
isting partitioning and load balancing research addresses either dy-
namic applications or dynamic system environments, and fall in one of
the quadrants discussed above. The system-sensitive partitioning /load-
balancing framework presented in this paper addresses both dynamic
heterogeneous environments and dynamic adaptive applications. Fur-
thermore, it introduces a cost model that defines the relative capacities
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Figure 2. Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR Scheme)

of system resources based on current system parameters such as CPU
availabilities, memory usage and link bandwidth. System parameters
are obtained using a resource monitoring tool.

3. Problem Description: Distributed AMR Applications

Dynamically adaptive numerical techniques for solving differential equa-
tions provide a means for concentrating computational effort to appro-
priate regions in the computational domain. In the case of hierarchical
AMR methods, this is achieved by tracking regions in the domain that
require additional resolution by dynamically overlaying finer grids over
these regions. AMR-based techniques start with a base coarse grid with
minimum acceptable resolution that covers the entire computational
domain. As the solution progresses, regions in the domain requiring
additional resolution are tagged and finer grids are overlaid on the
tagged regions of the coarse grid. Refinement proceeds recursively so
that regions on the finer grid requiring more resolution are similarly
tagged and even finer grids are overlaid on these regions. The resulting
grid structure is a dynamic adaptive grid hierarchy. The adaptive grid
hierarchy corresponding to the AMR formulation by Berger & Oliger [4]
is shown in Figure 2. Figure 3 shows a sequence of grid hierarchies
for a 2-D Buckley-Leverette oil reservoir simulation application. The
operations associated with the Berger-Oliger algorithm are outlined
below.

Time Integration: Time integration is the update operation per-
formed on each grid at each level of the adaptive grid hierarchy. Inte-
gration uses an application specific operator.
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Figure 8. AMR Grid Structure (2D Example)

Inter-Grid Operations: Inter-grid operations are used to commu-
nicate solutions values along the adaptive grid hierarchy. Two primary
inter-grid operations are Prolongations, defined from a coarser grid to a
finer grid, and Restrictions, defined from a finer grid to a coarser grid.

Regriding: The regriding operation consists of three steps: (1) flag-
ging regions needing refinement based on an application specific error
criterion, (2) clustering flagged points, and (3) generating the refined
grid(s). The regriding operation can result in the creation of a new level
of refinement or additional grids at existing levels, and/or the deletion
of existing grids.

3.1. DEcOMPOSING THE ADAPTIVE GRID HIERARCHY

Key requirements while partitioning the adaptive grid hierarchy across
processors are: (1) expose available data-parallelism; (2) minimize com-
munication overheads by maintaining inter-level and intra-level locality;
(3) balance overall load distribution; and (4) enable dynamic load re-
distribution with minimum overheads. A balanced load distribution
and efficient re-distribution is particularly critical for parallel AMR-
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based applications as different levels of the grid hierarchy have different
computational loads. In case of the Berger-Oliger AMR scheme for
time-dependent applications, space-time refinement result in refined
grids which not only have a larger number of grid elements but are also
updated more frequently (i.e. take smaller time steps). The coarser grid
are generally more extensive and hence its computational load cannot
be ignored. Furthermore, the AMR grid hierarchy is a dynamic struc-
ture and changes as the solution progresses, thereby making efficient
dynamic re-distribution critical.

4. Grid Adaptive Computational Engine (GrACE)

The adaptive “system sensitive” partitioning mechanisms presented
in this paper have been integrated into the GrACE [1, 2] adaptive
runtime system. GrACE is an object-oriented toolkit for the devel-
opment of parallel and distributed applications based on a family of
adaptive mesh-refinement and multigrid techniques. It provides a high-
level programming abstraction and allows users to simply and directly
express distributed computations on adaptive grids, and is built on a
distributed dynamic data-management substrate.

4.1. GRACE DIsSTRIBUTED DYNAMIC DATA MANAGEMENT
SUBSTRATE

The GrACE data management substrate implements a “semantically
specialized” distributed shared memory and provides distributed and
dynamic data-management support for large-scale parallel adaptive
applications. The lowest layer of the infrastructure implements a Hi-
erarchical Distributed Dynamic Array (HDDA). The HDDA provides
array semantics to hierarchical and physically distributed data. HDDA
objects encapsulate dynamic load-balancing, interactions and commu-
nications, and consistency management. The next layer adds applica-
tion semantics to HDDA objects to implement application objects such
as grids, meshes and trees. This layer provides an object-oriented pro-
gramming interface for directly expressing multi-scale, multi-resolution
AMR computations. The upper layers of the infrastructure provide ab-
stractions, components and modules for method-specific computations.

4.1.1. Hierarchical Distributed Dynamic Array

The primitive data structure provided by the data-management in-
frastructure is an array which is hierarchical in that each element of
the array can recursively be an array, and dynamic in that the array
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Figure 4. Distributed Storage of Dynamic Objects

can grow and shrink at run-time. The array of objects is partitioned
and distributed across multiple address spaces with communication,
synchronization and consistency transparently managed for the user.
The lowest level of the array hierarchy is an object of arbitrary size
and structure. The primary motivation for defining such a generalized
array data-structure is that most application domain algorithms are for-
mulated as operations on grids and their implementation is defined as
operations on arrays. Such array based formulations have proven to be
simple, intuitive and efficient, and are extensively optimized by current
compilers. Providing an array interface to the dynamic data-structures
allows implementations of new parallel and adaptive algorithms to reuse
existing kernels at each level of the HDDA hierarchy. Like conventional
arrays HDDA translates index locality (corresponding spatial appli-
cation locality) to storage locality, and must maintain this locality
despite its dynamics and distribution. The HDDA implementations
is composed of a hierarchical index space and distributed dynamic
storage and access mechanisms. The former is derived directly from the
application domain using space-filling mappings [10], and the latter uses
extensible hashing techniques [11]. Figure 4 shows the overall HDDA
storage scheme.

5. System Sensitive Runtime Management Architecture

A block diagram of the adaptive, system sensitive runtime partitioning
framework is shown in Figure 5. The framework consists of three key
components - the system state monitoring tool, the capacity calcula-
tor and the system sensitive partitioner. In this framework, we first
monitor the state of resources associated with the different computing
nodes in the cluster, and use this information to compute their rela-
tive computational capacities. The relative capacities are then used by
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Figure 5. Block Diagram of the System Model

the heterogeneous system-sensitive partitioner for dynamic distribution
and load-balancing. The different components are described below.

5.1. RESOURCE MONITORING TooOL

System characteristics and current state are determined at run-time us-
ing an external resource monitoring tool. The resource monitoring tool
gathers information with minimum intrusion about the CPU availabil-
ity, memory usage and link-capacity of each processor. This information
is then passed to the Capacity Calculator as shown in Figure 5.

5.2. CAPAcCITY METRIC

Using system information obtained from the resource monitoring tool,
a relative capacity metric is computed for each processor as follows.
Let us assume that there are K processors in the system among which
the partitioner distributes the work load. For node k, let P; be the
percentage of CPU available , M, the available memory, and By the
link bandwidth, as provided by NWS. The available resource at k
is first converted to a fraction of total available resources, i.e. P, =
Pr/ Efil Piy My, = My/ Efil M, and By, = By/ Efil B;. The relative
capacity C} of a processor is then defined as the weighted sum of these
normalized quantities

Cr = prk + wy, My, + wp By, (1)

where wy,, w,,, and w; are the weights associated with the relative
CPU, memory, and link bandwidth availabilities, respectively, such that
wp+wy, +wp = 1. The weights are application dependent and reflect its
computational, memory, and communication requirements. Note that
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YK | Cr = 1. If the total work to be assigned to all the processors
is denoted by L, then the work Lj that can be assigned to the kth
processor can be computed as Ly = Ci L.

5.3. THE SYSTEM SENSITIVE PARTITIONER

The system sensitive partitioner, called ACFEHeterogeneous, has been
integrated into the GrACE runtime and provides adaptive partitioning
and load-balancing support for AMR applications on heterogeneous
systems. In GrACE, component grids in the adaptive grid hierarchy are
maintained as a list of bounding boxes. A bounding box is a rectilinear
region in the computational domain and is defined by a lower bound,
upper bound and a stride (defined by the level of refinement) along
each dimension. Every time the applications regrids, the bounding box
list is updated and is passed to the partitioner for distribution and
load balancing. A high level description of the partitioning process is
presented below. The system interaction sequence diagram is presented
in Figure 6.

— The relative capacities C, k = 1,..., K of the K processors over
which the application is to be distributed and load balanced are
obtained from the Capacity Calculator as shown in Figure 5.

— The total work L associated with the entire bounding box list is
calculated.

— Using the capacity metric, the ideal work load Lj that can be
assigned to the kth processor is computed.

— The bounding boxes are then assigned to the processors, with
the kth processor receiving a total work load of Wj, which is
approximately equal to Ly.

¢ Both the list of bounding boxes as well as the relative ca-
pacities of the processors are sorted in an increasing order,
with the smallest box being assigned to the processor with
the smallest relative capacity. This eliminates unnecessary

breaking of boxes (described below).

e If the work associated with an available bounding box exceeds
the work the processor can perform, a box is broken into two
in a way that the work associated with at least one of the two
boxes created is less than or equal to the work the processor
can perform. While breaking a box the following constrains
are enforced:
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* Minimum box size: All boxes must be greater than or
equal to this size. As a consequence of enforcing this
constraint, the total work load Wj that is assigned to
processor k may differ from Lj, thus leading to a “slight”
load imbalance. The amount of imbalance depends on the
grid structure. We have found this to be less than 40%

in our experiments.

* Aspect ratio: The aspect ratio of a bounding box, defined
as the ratio of the longest side to the shortest side. To
maintain a good aspect ratio, a box is always broken
along the longest dimension.

— The local output list of bounding boxes is returned to GrACE,
which then allocates the grids to the particular processor.
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6. Experimental Evaluation

A 3D compressible turbulence kernel executing on a linux based work-
station cluster is used to experimentally evaluate the adaptive, sys-
tem sensitive partitioning framework. The kernel solves the Richtmyer-
Meshkov instability, and uses 3 levels of factor 2 refinement on a base
mesh of size 128x32x32. The cluster consisted of 32 nodes intercon-
nected by fast ethernet (100MB). The experimental setup consisted of
a synthetic load generator and an external resource monitoring system.
The evaluation consisted of comparing the runtimes and load-balance
generated for the system sensitive partitioner with those for the default
space-filling curve based partitioning scheme provided by GrACE. This
latter scheme assumes homogeneous processors and performs an equal
distribution of the workload on the processors. The adaptivity of the
system sensitive partitioner to system dynamics, and the overheads of
sensing system state were also evaluated.

6.1. EXPERIMENTAL SETUP

6.1.1. Synthetic Load Generation

In order to compare the two partitioning schemes, it is important to
have an identical experimental setup for both of them. Hence, the
experimentation was be performed in a controlled environment so that
the dynamics of the system state was the same in both cases. This
was achieved using a synthetic load generator to load processors with
artificial work. The load generator decreased the available memory and
increased CPU load on a processor, thus lowering its capacity to do
work. The load generated on the processor increased linearly at a spec-
ified rate until it reached the desired load level. Note that multiple load
generators were run on a processor to create interesting load dynamics.

6.1.2. Resource Monitoring

We used the Network Weather Service (NWS) [3] resource monitoring
tool to provide runtime information about system characteristics and
current system state in our experiments. NWS is a distributed system
that periodically monitors and dynamically forecasts the performance
delivered by the various network and computational resources over a
given time interval. In our experiments, we used NWS to monitor the
fraction of CPU time available for new processes, the fraction of CPU
available to a process that is already running, end-to-end TCP network
bandwidth, and free memory. NWS has been engineered to be as non-
intrusive as possible with typical CPU utilization less than 3% and a
memory requirement of about 3300 KB [3].
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6.1.3. System Sensitive Load Distribution

The following example illustrates the operation of the system sensitive
partitioner. Consider a cluster with four nodes with the synthetic load
generator used to load two of the machines. Using the current system
state provided by NWS, the capacity calculator computes the relative
capacities Cy, Cs, C3 and C4 as approximately 16%, 19%, 31% and
34% respectively. In these calculations, the three system character-
istics, viz. CPU, memory, and link bandwidth, were assumed to be
equally important to the application, i.e. w, = w,, = wp = 1/3. The
relative capacities are then fed to the ACEHeterogeneous partitioner,
which uses them to partition the overall work load L among the four
processors. In this case the four processors are assigned work loads of
Ly = 0.16L, L, = 0.19L, L3y = 0.30L and Ly = 0.34L, respectively.
The partitioner appropriately assigns boxes (breaking large boxes if
necessary) to processors to satisfy this distribution.

6.1.4. Dynamic Load Sensing

The system sensitive partitioner queries NWS at runtime to sense sys-
tem load, computes the current relative capacities of the processors
and distributes the workload based on these capacities. The sensing
frequency depends on the dynamics of the cluster, and the overheads
associated with querying NWS and computing relative capacities, and
has to be chosen to balance the two factors. More frequent sensing
(every few regrid steps) allows the system to adapt to rapid changes in
system load but increases the sensing overheads. On the other hand,
infrequent sensing (a few times during application execution) reduces
these overheads but may increase overall execution time by preventing
system from reacting to the cluster’s load dynamics. OQur experiments
show that the overhead of probing NWS on a node, retrieving its system
state, and computing its relative capacity is about 0.5 secs.

6.2. EXPERIMENTAL RESULTS

6.2.1. Application performance improvement

The total application execution time using system sensitive partitioning
and the default non-system sensitive partitioner is plotted in Figure 7.
The percentage improvements are listed in Table 1. In this experiment,
the application was run under the similar load conditions using the two
partitioners. We calculate the relative capacities of the processors once
before the start of the simulation. System sensitive partitioning reduced
execution time by about 18% in the case of 32 nodes. We believe the
improvement will be more significant in the case of larger cluster and
in cluster with greater heterogeneity and load dynamics. Furthermore,
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Figure 7. Application execution teme for the system sensitive and default
(non-system sensitive) partitioning schemes

Table 1. Percentage wmprovement that the sys-
tem-sensitive partitioner yields over the default par-
titroner.

| Number of Processors | Percentage Improvement

|
| 4 | % |
| 8 | 6% |
| 16 | 18% |
| 32 | 18% |

increasing the sensing frequency also improves performance as shown
in a later experiment.

6.2.2. Load balance achieved

This experiment investigates the load assignments and the effective
load balance achieved using the two partitioners. In this experiment the
relative capacities of the four processors were fixed at approximately
16%, 19%, 31% and 34%, and the application regrid every 5 iterations.
The load assignment for the GrACE default and the system sensitive
(ACEHeterogeneous) partitioners are plotted in Figures 8 and 9 respec-
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Figure 8. Work load assignments for the default partitioning scheme (Relative
capacities of processors 0 — 3 equal to 16%,19%, 31%, and 34% respectively).

tively. As expected, the GrACE default partitioner attempts to assign
equal work to each processor irrespective of its capacity. The system
sensitive partitioner however assigns work based on each processor’s
relative capacity.

Figure 10 shows the percentage of load imbalance for the system-
sensitive scheme and the default scheme. For the kth processor, the
load imbalance I is defined as

_ Wi — L]
= I

As expected, the GrACE default partitioner generates large load im-
balances as it does not consider relative capacities. The system sensitive
partitioner produces smaller imbalances. Note that the load imbalances
in the case of the system sensitive partitioner are due to the constraints
(minimum box size and aspect ratio) that have to be satisfied while
breaking boxes.

I x100 % (2)

6.2.3. Adaptivity to Load Dynamics

This experiment evaluates the ability of the system sensitive parti-
tioner to adapt to the load dynamics in the cluster, and the overheads
involved in sensing its current state. In this experiment, the synthetic
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Figure 9. Work-load assignments for the ACEHeterogeneous partitioning scheme
(Relative capacities of processors 0—3 equal to 16%,19%, 31%, and 34% respectively).

load generator was used on two of the processors to dynamically vary
the system load. The load assignments at each processor was computed
for different sensing frequencies. Figure 11 shows the load assignment in
the case where NWS was queried once before the start of the application
and two times during the application run. The figure also shows the
relative capacities of the processors at each sampling. It can be seen
that as the load (and hence the relative capacities) of the processors
change, the partitioning routine adapts to this change by distributing
the work load accordingly. Also note that as the application adapts,
the total work load to be distributed varies from one iteration to the
next. As a result, the work load assigned to a particular processor is
different in different iterations even though the relative capacity of the
processor does not change.

Tables 2 and 3 illustrate the effect of sensing frequency on overall
application performance. The synthetic load dynamics are the same in
each case. Table 2 compares the application execution times for the
cases where the system state is queried only once at the beginning and
where it is queried every 40 iterations. It can be seen that dynamic
runtime sensing significantly improves application performance. Table
3 presents application run time for different sensing frequencies - i.e.
sensing every 10, 20, 30 and 40 iterations. Figures 12, 13, 14 and 15 show
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Figure 10. Load tmbalance for the system sensitive and default partitioners

Table II. Comparison of execution times using static and dynamic sensing

Number of Processors Execution time with Execution time with

Dynamic Sensing (secs) | Sensing only once (secs)

| 2 | 423.7 | 805.5 |
| 4 | 292.0 | 450.0 |
| 6 | 272.0 | 442.0 |
| 8 | 225.0 | 430.0 |

the relative processor capacities and load assignments for each case.
The best application performance is achieved for a sensing frequency
of 20 iteration. This number largely depends on the load dynamics of
the cluster and the sensing overheads.

7. Discussion of Results

It was shown through experiments that the system-sensitive partition-
ing reduced execution time by about 18% in the case of 32 nodes
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Figure 11. Dynamic load allocation using the system sensitive partitioner

Table III. Ezecution time for a four processor run when NWS
18 probed at different iterations

| Frequency of calculating capacities | Execution time (secs) |
| 10 iterations | 316 |
| 20 iterations | 277 |
| 30 iterations | 286 |
| 40 iterations | 293 |

as compared to the default partitioning scheme. We believe that the
improvement will be more significant in the case of a larger cluster and
in cluster with greater heterogeneity and load dynamics. The system-
sensitive partitioning scheme also distributes work load in proportion
to the relative capacities of the processors. Furthermore, the load im-
balance associated is up to 45% lower than that of the default (non
system-sensitive) partitioning scheme.

Through dynamic sensing, the system-sensitive partitioner adapts
to the load dynamics of the cluster. As the load (and hence the relative
capacities) of the processors change, the partitioning routine adapts
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Figure 12. Dynamic load allocation for a system state sensing frequency of 10
sterations

to this change by distributing the work load accordingly. Dynamic
runtime sensing also improved application performance by as much as
45% compared to sensing only once at the beginning of the simulation.
The sensitivity of application performance to the frequency of sensing
the system state was also studied. In our experimental setup sensing
very frequently adversely effected the application performance. The
best application performance was achieved for a sensing frequency of
20 iterations. The frequency of sensing largely depends upon the load
dynamics of the cluster.

8. Conclusions and Future Work

This paper presented a system sensitive partition and load-balancing
framework for distributed adaptive (AMR) applications in heteroge-
neous cluster environments. The framework uses system capabilities
and current system state to appropriately distribute the application
and balance load. System state is dynamically monitored using the
Network Weather Service (NWS), and is used to compute current rela-
tive capacities of the computing nodes. These capacities are then used
for partitioning and load balancing. An experimental evaluation of the
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Figure 13. Dynamic load allocation for a system state sensing frequency of 20
sterations

framework was presented using a 3D AMR CFD kernel executing on
a linux based cluster. A synthetic load generator was used to load
the nodes in the cluster for the experiments. The experiments showed
that dynamic system sensitive partitioning can significantly improve
the load balance achieved and overall application performance. Further-
more, application performance is sensitive to the frequency of sensing of
the system state. This frequency has to be chosen based on the sensing
overheads and the cluster load dynamics.

We are currently working with a more careful choice of weights w,,
Wy,, and w; that will adequately reflect the computational needs of
the application. Recall that in our scheme, w,, w,,, and w; are the
weights associated with the relative CPU, memory, and link bandwidth
availabilities, respectively, subject to the constraint that w, + w,, +
wp = 1. In our experiments, although we have chosen the weights to
be equal, they can in fact be chosen more carefully according to the
computational needs of a particular application. For example, if the
application is memory intensive, then a larger value can be assigned to
Wy, in comparison to w, and wy.

Although the system-sensitive partitioning scheme exhibits a lower
load-imbalance compared to the default scheme (Figure 10), the load-
imbalance of the former can be reduced even further. A primary cause
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Figure 14. Dynamic load allocation for a system state sensing frequency of 30
sterations

of load-imbalance in the ACEHeterogeneous scheme can be attributed
to the fact that the bounding box is cut only along the longest axis. If
the box is instead cut along more axes, it could lead to finer partitioning
granularity and hence better work assignments, which would in turn
reduce the load-imbalance.
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