Adaptive Runtime Partitioning of AMR Applications on Heter ogeneous Cluster s

Shweta Sinha and Manish Parashar
The Applied Software Systems L aboratory
Department of Electrical and Computer Engineering
Rutgers, The State University of New Jersey
94 Brett Road, Piscataway, NJ 08855-8060
{shwetas, parashar } @caip.rutgers.edu

Abstract

This paper presents the design and evaluation of an
adaptive, system sensitive partitioning and load balancing
framework for distributed structured adaptive mesh refine-
ment applications on heterogeneous and dynamic cluster
environments. The framework uses system capabilities and
current system state to select and tune appropriate parti-
tioning parameters (e.g. partitioning granularity, load per
processor) to maximize overall application performance.

Keywords: System-sensitive adaptive partitioning, dy-
namic load-balancing, heterogeneous computing, struc-
tured adaptive mesh refinement.

1 Introduction

Dynamically adaptive methods for the solution of par-
tial differential equations that employ locally optimal ap-
proximations can yield highly advantageous ratios for
cost/accuracy when compared to methods based upon static
uniform approximations. These techniques seek to improve
the accuracy of the solution by dynamically refining the
computational grid in regions of high local solution error.
Distributed implementations of these adaptive methods of -
fer the potential for the accurate solution of realistic models
of important physical phenomena. These implementations
however, lead to interesting challenges in dynamic resource
allocation, dynamic data-distribution and load balancing,
communications and coordination, and resource manage-
ment.

Moving these applications to dynamic and heteroge-
neous cluster computing environments introduces a new

*The research presented in this paper is based upon work supprted by
the National Science Foundation under Grant Numbers ACI 998357 (CA-
REERS) and WU-HT-99-19 P029876F (K DI) awarded to Manish Parashar.

level of complexity. These environments require the run-
time selection and configuration of application components
and parameters based on the availability and state of the
resources. However, the complexity and heterogeneity of
the environment make selection of a “best” match between
system resources, mappings and load distributions, commu-
nication mechanisms, etc., non-trivial. System dynamics
coupled with application adaptivity makes application and
run-time management a significant challenge.

In this paper we present the design and evaluation of an
adaptive, system sensitive partitioning and load balancing
framework for distributed structured adaptive mesh refine-
ment (AMR) applications on heterogeneous and dynamic
cluster environments. The framework uses system capabil-
ities and current system state to select and tune appropriate
distribution parameters. Current system stateis obtained us-
ing the NWS (Network Weather Service) [3] resource mon-
itoring tool. The current system state along with system
capabilities are then used to compute the relative computa-
tional capacities of each of the computationa nodes in the
cluster. These relative capacities are used by a heteroge-
neous “system-sensitive” partitioner for dynamic distribu-
tion and load-balancing. The heterogeneous partitioner has
been integrated into the GrACE (Grid Adaptive Computa-
tional Engine) infrastructure [1, 2] adaptive runtime sys-
tem. GrACE is a data-management framework for paral-
lel/distributed AMR, and is being used to provide AMR
support for varied applications including reservoir simula-
tions, computational fluid dynamics, seismic modeling and
numerical relativity.

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes the adap-
tive grid structure defined by hierarchical adaptive mesh-
refinement techniques. Section 4 introduces the GrACE
adaptive computational engine. Section 5 outlinesthe archi-

Reference Environment | Application
State State

S. M. Figueira, et. d static static

J. Watts, et. a dynamic static

M. Maheswaran, et. a dynamic static

R. Wolski, et. a dynamic static

Table 1. Summary of the related work in dynamic
partitioning techniques for heterogenous cluster.

tecture of the system sensitive runtime management frame-
work. Section 6 describes the framework implementation
and presents an experimental evaluation. Section 7 presents
some concluding remarks.

2 Reated Work

There exists alarge amount of research addressing |oad
balancing techniques for heterogeneous clusters. Most of
these works however assume that the applications and the
system is static. Some research has also addressed the
mapping of static applications to dynamic heterogeneous
environments, where the capabilities of the environments
change. The discussion presented here focuses on ap-
proaches that target heterogeneous systems. Figueira et.
a in [5] have defined an algorithm which determines the
best alocation of tasks to resources in heterogeneous sys-
tems. It however does not take into account the dynamism
in the environment and uses a static application. Watts et.
al in [6] have also presented techniques for dynamic load
balancing in heterogeneous computing environments. They
have shown that performance improves when the computers
capacities are calculated dynamically. Maheswaran et. al
in [7] have proposed a new dynamic algorithm, called the
hybrid remapper, for improving initial static matching and
scheduling. The hybrid-remapper uses the run-time values
that become available for subtask completion times and ma-
chine availabilities during application execution time. They
have also used a static application. Wolski et. a in[3] talk
about finding a suitable match in a heterogeneous network
when the network conditionsare changing. Related work in
dynamic partitioning techniques for heterogeneous clusters
issummarized in Table 1.

The system sensitive partitioning/load-balancing frame-
work presented in this paper addresses both, dynamic het-
erogeneous environments and dynamically adaptive appli-
cations.

3 Problem Description: Distributed Struc-
tured AMR Applications

Dynamically adaptive numerical techniques for solving
differential equations provide a means for concentrating
computational effort to appropriate regions in the compu-
tational domain. Inthe case of hierarchical structured AMR
methods, thisis achieved by tracking regionsin the domain
that require additional resolution and dynamically overlay-
ing finer grids over these regions. Structured AMR-based
techniques start with a base coarse grid with minimum ac-
ceptable resolution that covers the entire computational do-
main. As the solution progresses, regions in the domain
requiring additional resolution are tagged and finer grids
are overlaid on the tagged regions of the coarse grid. Re-
finement proceeds recursively so that regions on the finer
grid requiring more resolution are similarly tagged and even
finer grids are overlaid on these regions. The resulting grid
structure is a dynamic adaptive grid hierarchy. The adap-
tive grid hierarchy corresponding to the AMR formulation
by Berger & Oliger [4] is shown in Figure 1, and the asso-
ciated operations are outlined below.

Time Integration: Time integration is the update opera-
tion performed on each grid at each level of the adaptive
grid hierarchy. Integration uses an application specific dif-
ference operator.

Inter-Grid Operations: Inter-grid operations are used to
communicate solutions values along the adaptive grid hier-
archy. Two primary inter-grid operations are Prolongations,
defined from a coarser grid to afiner grid, and Restrictions,
defined from afiner grid to a coarser grid.

Regriding: The regriding operation consists of three
steps: (1) flagging regions needing refinement based on an
application specific error criterion, (2) clustering flagged
points, and (3) generating the refined grid(s). The regrid-
ing operation can result in the creation of a new level of
refinement or additional grids at existing levels, and/or the
deletion of existing grids.

3.1 Decomposing the Adaptive Grid Hierarchy

Key requirements for a decomposition scheme used
to partition the adaptive grid hierarchy across processors
are: (1) expose available data-parallelism; (2) minimize
communication overheads by maintaining inter-level and
intraclevel locality; (3) balance overall load distribution;
and (4) enable dynamic load re-distribution with minimum
overheads. A balanced load distribution and efficient re-
distribution is particularly critical for parallel AMR-based
applications as different levels of the grid hierarchy have
different computational loads. In case of the Berger-Oliger

Figure 1. Adaptive Grid Hierarchy - 2D (Berger-
Oliger AMR Scheme)

AMR scheme for time-dependent applications, space-time
refinement result in refined grids which not only have a
larger number of grid elements but are also updated more
frequently (i.e. take smaller time steps). The coarser grid
are generally more extensive and hence its computational
load cannot be ignored. Furthermore, the AMR grid hierar-
chy is adynamic structure and changes as the solution pro-
gresses, thereby making efficient dynamic re-distribution
critical.

4 Grid Adaptive Computational
(GrACE)

Engine

The adaptive “system sensitive” partitioning mecha
nisms presented in this paper have been integrated into
the GrACE [1, 2] adaptive runtime system. GrACE is
an object-oriented toolkit for the development of paralle
and distributed applications based on a family of adap-
tive mesh-refinement and multigrid techniques. It provides
a high-level programming abstraction and allows users to
simply and directly express distributed computations on
adaptive grids, and is built on a distributed dynamic date-
management substrate.

4.1 GrACE Distributed Dynamic Data Manage-
ment Substrate

The GrACE substrate implements a “ semantically spe-
cialized” distributed shared memory and provides dis-
tributed and dynamic data-management support for large-
scale parallel adaptive applications. The lowest layer of the
infrastructure implements a Hierarchical Distributed Dy-
namic Array (HDDA). The HDDA providesarray semantics
to hierarchical and physically distributed data. HDDA ob-
jects encapsulate dynamic load-balancing, interactions and

communications, and consistency management. The next
layer adds application semantics to HDDA aobjects to im-
plement application objects such as grids, meshes and trees.
This layer provides an object-oriented programming inter-
face for directly expressing multi-scale, multi-resolution
AMR computations. The upper layers of the infrastructure
provide abstractions, components and modules for method-
specific computations.

4.1.1 Hierarchical Distributed Dynamic Array

The primitive data structure provided by the data-
management substrate is an array which is hierarchical in
that each element of the array can recursively be an array,
and dynamic in that the array can grow and shrink at run-
time. The array of objects is partitioned and distributed
across multiple address spaces with communication, syn-
chronization and consistency transparently managed for the
user. The lowest level of the array hierarchy is an object
of arbitrary size and structure. The primary motivation for
defining such a generalized array data-structureis that most
application domain algorithms are formul ated as operations
on grids and their implementation is defined as operations
on arrays. Such array based formulations have proven to
be simple, intuitive and efficient, and are extensively opti-
mized by current compilers. Providing an array interface
to the dynamic data-structures allows implementations of
new parallel and adaptive algorithms to reuse existing ker-
nels at each level of the HDDA hierarchy. Like conven-
tional arrays HDDA trandlates index locality (correspond-
ing spatial application locality) to storage locality, and must
maintain this locality despite its dynamics and distribution.
The HDDA implementations is composed of a hierarchi-
cal index space and distributed dynamic storage and access
mechanisms. The former is derived directly from the appli-
cation domain using space-filling mappings[8], and the lat-
ter uses extensible hashing techniques [9]. Figure 2 shows
the overall HDDA storage scheme. More information about
the GrACE data-management substrate and the HDDA can
befoundin[1]

5 System Sensitive Runtime Management
Architecture

A block diagram of the adaptive, system sensitive run-
time partitioning framework is shown in Figure 3. The
framework consists of three key components - the system
state monitoringtool, the capacity cal culator and the system
sensitive partitioner. In thisframework, we first monitor the
state of resources associated with the different computing
nodes in the cluster, and use this information to compute
their relative computational capacities. The relative capac-
ities are then used by the heterogeneous system-sensitive

Lren

:::: [: ETH- Application Locality

= = Index Locality

\I_ _Ir-IL = Storage Locality

Figure 2. Distributed Storage of Dynamic Objects

Application Heterogeneous Partitions
e

Partitioner
Capacity
Available

CPU
. Resource
Weights Capacity Monitoring
Calculator Link Capacity Tool

Figure 3. Architecture of the System Sensitive Run-
time Management System

partitioner for dynamic distribution and load-balancing.
The different components are described below.

5.1 Resource Monitoring Tool

System characteristics and current state are determined
at run-time using an external resource monitoringtool. The
resource monitoring tool gathersinformation about the CPU
availability, memory usage and link-capacity of each pro-
cessor. Thisinformationisthen passed to the Capacity Cal-
culator as shown in Figure 3.

5.2 Capacity Metric

Using system information obtained from the resource
monitoring tool, a relative capacity metric is computed for
each processor using a linear model as follows. Let us as-
sumethat there are K processorsin the system among which
the partitioner distributes the work load. For node %, let
Pr. be the percentage of CPU available , M, the avail-
able memory, and B, the link bandwidth, as provided by

NWS. The availableresource at k isfirst converted to afrac-
tion of total available resources, i.e. P, = Py/ Y1, Pi,
M, = Mk/zfil M;, and B, = Bk/zfil B;. The
relative capacity Cj, of a processor is then defined as the
weighted sum of these normalized quantities

Cr = wp Py, + wm My, + wy By, @)

where wy,, wy,, and w; are the weights associated with the
relative CPU, memory, and link bandwidth availabilities, re-
spectively, such that wy,+wm +w, = 1. Theweightsare ap-
plication dependent and reflect its computational, memory,
and communication requirements. Notethat Y5, Cj, = 1.
If the total work to be assigned to all the processors is de-
noted by L, then thework Ly, that can be assigned to the kth
processor can be computed as Ly, = Cy L.

5.3 The System Sensitive Partitioner

The system sensitive partitioner, called ACEHeteroge-
neous, has been integrated into the GrACE runtime and
provides adaptive partitioning and load-balancing support
for AMR applications. In GrACE, component gridsin the
adaptive grid hierarchy are maintained as a list of bound-
ing boxes. A bounding box is a rectilinear region in the
computational domain and is defined by alower bound, up-
per bound and a stride (defined by the level of refinement)
along each dimension. Every time the applications regrids,
the bounding box list is updated and is passed to the par-
titioner for distribution and load balancing. A high level
description of the partitioning process is presented below.

o TherdativecapacitiesCy, k = 1,..., K of the K pro-
cessors over which the application is to be distributed
and load balanced are obtained from the Capacity Cal-
culator as shown in Figure 3.

e The total work L associated with the entire bounding
box list is calculated.

o Using the capacity metric, the ideal work load L;, that
can be assigned to the kth processor is computed.

e The bounding boxes are then assigned to the proces-
sors, with the kth processor receiving a total work load
of W, which is approximately equal to L.

¢ Both the list of bounding boxes as well as the rela-
tive capacities of the processors are sorted in an in-
creasing order, with the smallest box being assigned to
the processor with the smallest relative capacity. This
eliminates unnecessary breaking of boxes (described
below).

o If the work associated with a bounding box exceeds
the work the processor can perform, the box is broken

into two in away that the work associated with at |east
one of the two broken boxes isless than or equal to the
work the processor can perform. While breaking a box
the following constrains are enforced:

— Minimum box size: All boxes much be greater
than or equal to this size. As a consequence of
enforcing this constraint, the total work load W,
that is assigned to processor & may differ from
Ly, thusleading to a*“dlight” load imbalance.

— Aspect ratio: The aspect ratio of abounding box,
defined as the ratio of the longest side to the
shortest side. To maintain a good aspect ratio,
a box is aways broken along the longest dimen-
sion.

e Theloca output list of bounding boxes is returned to
GrACE which then all ocates the work to the particul ar
processor.

6 Experimental Evaluation

A 3D compressible turbulence kernel executing on a
linux based workstation cluster is used to experimentally
evaluate the adaptive, system sensitive partitioning frame-
work. The kernel solved the Richtmyer-Meshkov instabil-
ity, and used 3 levels of factor 2 refinement on a base mesh
of size 128x32x32. The cluster consisted of 32 nodes in-
terconnected by fast ethernet (100MB). The experimental
setup consisted of a synthetic load generator and an exter-
nal resource monitoring system. The evaluation consisted
of comparing the runtimes and |oad-balance generated for
the system sensitive partitioner with those for the default
space-filling curve based partitioning scheme provided by
GrACE. This latter scheme performs an equal distribution
of the workload on the processors. The adaptivity of the
system sensitive partitioner to system dynamics, and the
overheads of sensing system state were also evaluated.

6.1 Experimental Setup

6.1.1 Synthetic Load Generation

In order to compare the two partitioning schemes, it isim-

portant to have an identical experimental setup for both

cases. Hence, the experimentation was to be performed in a
controlled environment so that the dynamics of the system

state was the same in both cases. This was achieved using
a synthetic load generator to load processors with artificial

work. The load generator decreased the available memory
and increased CPU load on a processor, thus lowering its
capacity to do any work. The load generated on the proces-
sor increased linearly at a specified rate until it reached the
desired load level. Note that multiple load generators were
run on a processor to create interesting load dynamics.

6.1.2 Resource Monitoring

We used the Network Weather Service (NWS) [3] resource
monitoring tool to obtain runtime information about system
characteristics and current system state in our experiments.
NWS isadistributed system that periodically monitors and
dynamically forecasts the performance delivered by the var-
ious network and computational resources over agiventime
interval. In our experiments, we used NWS to monitor
the fraction of CPU time available for new processes, the
fraction of CPU available to a process that is already run-
ning, end-to-end TCP network bandwidth, and free mem-
ory. NWS has been engineered to be as non-intrusive as
possible with a typical CPU utilization of less than 3% and
amemory requirement of about 3300 KB [3].

6.1.3 System Sensitive L oad Distribution

The following example illustrates the operation of the sys-
tem sensitive partitioner. Consider a cluster with four nodes
with the synthetic load generator used to load two of the
nodes. Using the current system state provided by NWS,
the capacity calculator computes the relative capacities Ci,
Cs, C5 and Cy as approximately 16%, 19%, 31% and 34%
respectively. In these calculations, the three system char-
acteristics, viz. CPU, memory, and link bandwidth, were
assumed to be equally important to the application, i.e.
w, = wm = wp = 1/3. The relative capacities are then
fed to the ACEHeterogeneous partitioner, which uses them
to partition the overall work load L among the four pro-
cessors. In this case the four processors are assigned work
loads of L; = 0.16L, L, = 0.19L, Ly = 0.30L and
Ly = 0.34L, respectively. The partitions appropriately as-
signs boxes (bresking large boxes if necessary) to proces-
sorsto satisfy thisdistribution.

6.1.4 Dynamic Load Sensing

The system sensitive partitioner queries NWS at runtime
to sense system load, computes the current relative capac-
ities of the processors and distributes the workload based
on these capacities. The sensing frequency depends on the
dynamics of the cluster, and the overheads associated with
querying NWS and computing relative capacities, and has
to be chosen to balance these two factors. More frequent
sensing (every few regrid steps) allows the system to adapt
to rapid changes in system load but increases the sensing
overheads. On the other hand, infrequent sensing (a few
times during application execution) reduces these overheads
but may increase overall execution time by preventing sys-
tem from reacting to the cluster’sload dynamics. Our exper-
iments show that the overhead of probing NWS on a node,
retrieving its system state, and computing its relative capac-
ity isabout 0.5 secs.

900
800 i
700 {7
600 1]
Execution spp 4

time{secs) 400]|

O system sensitive

300 7]
200 H non-system
mg | sensitive
4 8 16 32
NHumber of
processors

Figure 4. Application execution time for the system
sensitive and default (non-system sensitive) partition-
ing schemes

6.2 Experimental Results

6.2.1 Application performance improvement

The total application execution time using the system sen-
sitive partitioner and the default non-system sensitive par-
titioner is plotted in Figure 4. In this experiment, the ap-
plication was run under similar load conditions using the
two partitioners. We calculate the relative capacities of the
processors once before the start of the simulation. System
sensitive partitioning reduced execution time by about 18%
in the case of 32 nodes. We believe that the improvement
will be more significant in the case of a cluster with greater
heterogeneity and load dynamics. Furthermore, tuning the
sensing frequency also improves performance as shown in
alater experiment.

6.2.2 Load balanceachieved

This experiment investigates the load assignments and the
effective load balance achieved using the two partitioners.
In this experiment the relative capacities of the four proces-
sors were fixed at approximately 16%, 19%, 31% and 34%,
and the application regrid every 5 iterations. The load as-
signment for the GrACE default and the system sensitive
(ACEHeterogeneous) partitioners are plotted in Figures 5
and 6 respectively. As expected, the GrACE default parti-
tioner attempts to assign equal work to each processor ir-
respective of its capacity. The system sensitive partitioner
however assignswork based on each processor’srelative ca-
pacity.

The percentage of load imbalance for the GrACE default
and the system-sensitive partitioning schemes is plotted in
Figure 7. For the kth processor, the load imbalance I, is

s Work Load Assignment for ACEComposite
10 ‘ ‘ ‘ ‘

: :
—— Processor 3

Processor 2
—— Processor 1
—=— Processor 0

Work Load Assigned
=
o

10 L L L L L L
1 2 3 4 5 6 7 8
Regrid Number

Figure 5. Work load assignments for the default
partitioning scheme (Relative capacities of proces-
sors0 — 3 equal to 16%, 19%, 31%, and 34% respec-
tively).

defined as
|Wi — Ly|
Ly

As expected, the GrACE default partitioner generates
large load imbalances as it does not consider relative ca
pacities. The system sensitive partitioner produces smaller
imbalances. Notethat the load imbalances in the case of the
system sensitive partitioner are due to the constraints (min-
imum box size and aspect ratio) that have to be satisfied
while breaking boxes.

6.2.3 Adaptivity to L oad Dynamics

This experiment evaluates the ability of the system sensi-
tive partitioner to adapt to the load dynamicsin the cluster,
and the overheads involved in sensing the current state. In
this experiment, the synthetic load generator was used on
two of the processors to dynamically vary the system load.
The load assignments at each processor was computed for
different sensing frequencies. Figure 8 shows the load as-
signment in the case where NWS was queried once before
the start of the application and two times during the applica-
tion run, i.e. approximately every 45 iterations. The figure
also shows the relative capacities of the processors at each
sampling. It can be seen that as the load (and hence the rel-
ative capacities) of the processors change, the partitioning
routine adapts to this change by distributing the work load
accordingly. Also note that as the application adapts, the

Work Load Assignment for ACEHeterogeneous

: :
—— Processor 3
10°¢ : Processor 2 [j
—— Processor 1
—=— Processor 0

Work Load Assigned
S

10 1
B e f*fftﬁr;”'/&iii;ﬁ:‘ N — —
103 I I I I I I
1 2 3 4 5 6 7 8
Regrid Number
Figure 6. Work-load assignments for the
ACEHeterogeneous partitioning scheme (Rel-

ative capacities of processors 0 — 3 equal to
16%, 19%, 31%, and 34% respectively).

% Load Imbalance

Load Imbalance
100 :

Il non System-Sensitive
901 [] System-Sensitive H

80 b

701 b

60 f 1

50 b

40+]

301 7

20¢ .

101 7

0 I I I I I I
1 2 3 4 5 6

Regrid Number

Figure 7. Load imbalance for the system sensitive
and default partitioners

Table 2. Comparison of execution times using static
and dynamic sensing

total work load to be distributed varies from oneiteration to
the next. As aresult, the work load assigned to a particular
processor is different in different iterations even though the
relative capacity of the processor does not change.

Tables 2 and 3 illustrate the effect of sensing frequency
on overall application performance. The synthetic load dy-
namics are the same in each case. Table 2 compares the
application execution times for the cases where the system
state is queried only once at the beginning, and where it
is queried every 45 iterations. It can be seen that dynamic
runtime sensing significantly improves application perfor-
mance. Table 3 presents application run time for different
sensing frequencies - i.e. sensing every 10, 20, 30 and 40
iterations. The best application performanceis achieved for
asensing frequency of 20 iteration. This number largely de-
pends on the load dynamics of the cluster and the sensing

Frequency of calculating capacities | Execution time (secs)
10 iterations 316
No. of Processors | Exec. timewith | Exec. timewith 20 iterations 277
Dynamic Sensing 30 iterations 286
Sensing (secs) | only once (secs) 40 iterations 293
2 423.7 805.5
4 292.0 450.0 Table 3. Execution time for a four processor run
6 572.0 4420 when NWSis probed at different iterations
8 225.0 430.0

overheads. Figure 9 shows the relative processor capacities
and load assignments when system state is sensed every 20
iterations.

7 Conclusions

This paper presented a system sensitive partition and
load-balancing framework for distributed AMR applica-
tions in heterogeneous cluster environments. The frame-
work uses system capabilities and current system state to
appropriately distribute the application and balance load.
The framework has been implemented within the GrACE
runtime system. System state is dynamically monitored us-
ing the Network Weather Service (NWS), and is used to
compute current relative capacities of the computing nodes.
These capacities are then used for partitioning and load bal-
ancing. An experimental evaluation of the framework was
presented usinga 3D AMR CFD kernel executing onalinux
based cluster. A synthetic load generator was used to load
the nodes in the cluster for the experiments. The exper-

10

Work Load Assigned
=
o

10°

~
T

s Dynamic Work Load Assignment for ACEHeterogeneous

—— Processor 3

Processor 2
—— Processor 1
—=— Processor 0

e

12%=a o o F

10 15
Regrid Number

20 25 30

Figure 8. Dynamic load allocationfor a system state
sensing frequency of 45 iterations

iments showed that dynamic system sensitive partitioning
can significantly improve the load balance achieved and
overall application performance. Furthermore, application
performance is sensitive to the frequency of sensing of the
system state. Thisfreguency has to be chosen based on the
sensing overheads and the cluster load dynamics.

References

[1] M. Parashar and J. C. Browne,

(2]

(3]

[4]

“System Engineer-
ing for High Performance Computing Software: The
HDDA/DAGH Infrastructure for Implementation of
Parallel Structured Adaptive Mesh Refinement”, in
IMA Volume 117: Structured Adaptive Mesh Refine-
ment Grid Methods, IMA Volumes in Mathematicsand
its Applications. Springer-Verlag, pp. 1-18, 2000.

Manish Parashar and James C. Browne, “ On Partition-
ing Dynamic Adaptive Grid Hierarchies,” Proceedings
of the 29th Annual Hawaii International Conference
on System Sciences, January, 1996.

Rich Wolski, Neil T. Spring and Jim Hayes, “The Net-
work Weather Service: A Distributed Resource Perfor-
mance Forecasting Service for Metacomputing,” Fu-
ture Generation Computing Systems, 1999.

Marsha J. Berger and Joseph Oliger “ Adaptive Mesh
Refinement for Hyperbolic Partial Differential Equa-
tions,” Journa of Computational Physics, pp. 484-
512, 1984.

Work Load Assigned

Dynamic Work Load Assignment

—— Processor 3

Processor 2
—— Processor 1
—— Processor 0

L 25%

10 15
Iteration Number

Figure 9. Dynamic load allocationfor a system state
sensing frequency of 20 iterations

(5]

6]

[7]

(8]

(9]

Silvia M. Figueira and Francine Berman “Mapping
Parallel Applications to Distributed Heterogeneous
Systems, ” UCSD CS Tech Report # CS96-484, June
1996.

Jerrel Watts, Marc Rieffel and Stephen Taylor “Dy-
namic Management of Heterogeneous Resources,”
High Performance Computing, 1998.

M. Maheswaran and H. J. Seigel “ A Dynamic Match-
ing and Scheduling Algorithm for Heterogeneous
Computing Systems,” 7th IEEE Heterogeneous Com-
puting Workshop (HCW ' 98), Mar. 1998, pp. 57-69.

H. Sagan, Spacefilling curves, Springer-Verlag,
1994.

R. Fagin, Extendible Hashing - A Fast Access Mech-
anism for Dynamic Files, ACM TODS, 4:315-344,
1979.

