Hierarchical Partitioning Techniques for Structured Adaptive

Mesh Refinement Applications

Xiaolin Li (x11i@caip.rutgers.edu) and Manish Parashar
(parashar@caip.rutgers.edu)

Department of Electrical and Computer Engineering, Rutgers University, 94 Brett
Road, Piscataway, NJ 08854

Abstract. This paper presents the design and preliminary evaluation of hierarchi-
cal partitioning and load-balancing techniques for distributed Structured Adaptive
Mesh Refinement (SAMR) applications. The overall goal of these techniques is to
enable the load distribution to reflect the state of the adaptive grid hierarchy and
exploit it to reduce synchronization requirements, improve load-balance, and enable
concurrent communications and incremental redistribution. The hierarchical parti-
tioning algorithm (HPA) partitions the computational domain into subdomains and
assigns them to hierarchical processor groups. Two variants of HPA are presented in
this paper. The Static Hierarchical Partitioning Algorithm (SHPA) assigns portions
of overall load to processor groups. In SHPA, the group size and the number of
processors in each group is setup during initialization and remains unchanged during
application execution. It is experimentally shown that SHPA reduces communication
costs as compared to the Non-HPA scheme, and reduces overall application execution
time by up to 59%. The Adaptive Hierarchical Partitioning Algorithm (AHPA)
dynamically partitions the processor pool into hierarchical groups that match the
structure of the adaptive grid hierarchy. Initial evaluations of AHPA show that it
can reduce communication costs by up to 70%.

Keywords: Dynamic Load Balancing, Hierarchical Partitioning Algorithm, Dis-
tributed Computing, Structured Adaptive Mesh Refinement

1. Introduction

With the rapid growth in computing and communication technology,
the past decade has witnessed a proliferation of powerful parallel and
distributed systems and an ever-increasing demand for and practice
of high performance computing [3, 7]. A key issue in parallel and
distributed computing is the partitioning, balancing and scheduling of
computational loads among processors to efficiently utilize the available
computing, communication and storage resources, and to maximize
overall performance and scalability. This is especially true in the case of
dynamically adaptive applications such as those based on the adaptive

* The work presented here was supported in part by the National Science
Foundation via grants numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS)

and EIA-0120934 (ITR), and by DOE ASCI/ASAP (Caltech) via grant number
PC295251 and 1052856.

';‘.‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

js_hpa.tex; 27/02/2003; 18:19; p.1

2 Li and Parashar

mesh refinement methods, where the computational load changes as
the application evolves.

In this paper, we present the design and preliminary evaluation of
hierarchical partitioning and load-balancing techniques for distributed
Structured Adaptive Mesh Refinement (SAMR) applications. Dynam-
ically adaptive mesh refinement (AMR) [2] methods for the numerical
solution of partial differential equations employ locally optimal approx-
imations, and can yield highly advantageous ratios for cost/accuracy
when compared to methods based upon static uniform approxima-
tions. These techniques seek to improve the accuracy of the solution
by dynamically refining the computational grid in regions of high lo-
cal solution error. Distributed implementations of these methods offer
the potential for accurate solutions of physically realistic models of
complex physical phenomena. These implementations also lead to in-
teresting challenges in dynamic resource allocation, data-distribution,
and load balancing. Critical among these is the dynamic partitioning
of the adaptive grid hierarchy at runtime to balance load, optimize
communication and synchronization, minimize data migration costs,
and maximize available parallelism.

Traditional distributed implementation of SAMR applications [5, 8,
10, 12] have used dynamic partitioning/load-balancing algorithms that
view the system as a flat pool of (usually homogeneous) processors.
These approaches are typically based on a global knowledge of the state
of the adaptive grid hierarchy, and partition the grid hierarchy across
the set of processors. Global synchronizations and communications is
required to maintain this global knowledge and can lead to significant
overheads on large systems. Furthermore, these approaches do not ex-
ploit the hierarchical nature of the grid structure and the distribution
of communications and synchronizations in this structure.

The overall goal of the hierarchical partitioning algorithms (HPA)
presented in this paper is to allow the distribution to reflect the state
of the adaptive grid hierarchy and exploit it to reduce synchronization
requirements, improve load-balance, and enable concurrent communi-
cations and incremental redistribution. These techniques partition the
computational domain into subdomains and assign these subdomains to
dynamically configured hierarchical processor groups. Processor hier-
archies and groups are formed to match natural hierarchies in the grid
structure. In addition to providing good load-balance, this approach
allows a large fraction of the communications required by the adaptive
algorithms to be localized within a group. Furthermore, communi-
cations with different groups can proceed concurrently. Hierarchical
partitioning also reduces the dynamic partitioning and data migration

js_hpa.tex; 27/02/2003; 18:19; p.2

Hierarchical Partitioning Techniques for SAMR Applications 3

overheads by allowing these operations to be performed concurrently
within different groups and incrementally across the domain.

Two variants of HPA are presented in this paper. The Static Hi-
erarchical Partitioning Algorithm (SHPA) assigns portions of overall
load to processor groups. In SHPA, the group size and the number
of processors in each group is set in advance and remains unchanged
during the execution. While SHPA is static in the sense that its group
topology is unchanged during the execution, it does perform dynamic
load balancing. To overcome the static nature of SHPA, we propose an
Adaptive Hierarchical Partitioning Algorithm (AHPA) that dynami-
cally partitions the processor pool into hierarchical groups that match
the structure of the adaptive grid hierarchy. AHPA naturally adapts
to the runtime behavior of SAMR applications. A preliminary evalu-
ation of these two algorithms is presented. It is experimentally shown
that SHPA reduces communication costs as compared to the Non-HPA
scheme and results in a reduction in overall application execution time
up to 59%. Furthermore, initial evaluations show that AHPA reduces
the communication cost by 70%.

1.1. RELATED WORK

There exist a number of infrastructures that support parallel and dis-
tributed implementations of SAMR applications. Each such system
represents a combination of design decisions in terms of algorithms,
data structures, user interfaces, decompositions, mappings, distribution
and communication mechanisms. Table I summarizes a selection of the
existing SAMR infrastructures and the partitioning approach used by
them. Related work in hierarchical load-balancing is described below.

Pollack [13] proposed a scalable hierarchical approach for dynamic
load balancing in parallel and distributed systems and implemented a
system, named PaLaBer (Parallel Load Balancer), on the Intel Paragon
XP/S. It uses multilevel control for dynamic load balancing and for
the communication manager. This hierarchical load balancer uses non-
preemptive as well as preemptive process migration to balance load
between the processors. However, the load balancing hierarchy is static
in that once created the configuration remains fixed for the entire run.
PaLaBer targets overall scheduling and load-balancing of tasks from
multiple applications rather than dynamic load-balancing for adaptive
applications such as SAMR. Compared to PalaBer, HPA strategy is
more flexible and can be static or adaptive. Furthermore, HPA strategy
addresses SAMR, applications by taking into account the features of the
computational domain and the adaptive nature of SAMR applications.
In [9], the performance of hierarchical load sharing in heterogeneous

js_hpa.tex; 27/02/2003; 18:19; p.3

4 Li and Parashar

Table I. Distributed SAMR Infrastructures

Infrastructure Description

Chombo [5] Consisted of four core modules: BoxTools, AMRTools, AM-
RTimeDependent, AMRElliptic. The load balance strategy
follows Kernighan-Lin multilevel partitioning algorithm.

GrACE [11] Object-oriented adaptive computational engine with pluggable
domain-based partitioners

ParaMesh [10] Extends serial code to parallel code based on partitioning oc-
tree representation of adaptive grid structure with predefined
blocksizes

SAMRALI (8] Object oriented framework (based on LPARX) with patches
mapped across processors at each level

distributed systems was analyzed. Like PaLaBer, they targeted a gen-
eral distributed systems and only addressed the design of distributed
policies for scheduling independent task queues on systems. Teresco et.
al. [17] proposed a hierarchical partition model for parallel adaptive
finite element applications. Their hierarchical model addresses the het-
erogeneous processor and network speeds. However, this model mainly
focused on the computer systems hierarchy rather than on partitioning
the computational domain hierarchy. Baden et al. [1] proposed a two-
tier communication model, intra-node and inter-node communication
on SMP clusters. They use a spare SMP processor to handle node-level
communications.

The rest of this paper is organized as follows. Section 2 provides a
short introduction to SAMR and distributed SAMR implementations.
Section 3 describes the hierarchical partitioning algorithm. The general
HPA scheme is first presented and is followed by two variant, Static
HPA and Adaptive HPA. Experimental and simulation results are also
presented and discussed. Conclusions are presented in Section 4.

2. Problem Description

Dynamically adaptive numerical techniques for solving differential equa-
tions provide a means for concentrating computational effort to appro-
priate regions in the computational domain. These techniques lead to
more efficient and cost-effective solutions to time dependent problems
exhibiting localized features. In the case of SAMR methods, this is
achieved by tracking regions in the domain that require additional

js_hpa.tex; 27/02/2003; 18:19; p.4

Hierarchical Partitioning Techniques for SAMR Applications 5

resolution and dynamically overlaying finer grids over these regions.
These methods start with a base coarse grid with minimum acceptable
resolution that covers the entire computational domain. As the solu-
tion progresses, regions in the domain requiring additional resolution
are tagged and finer grids are overlaid on the tagged regions of the
coarse grid. Refinement proceeds recursively so that regions on the
finer grid requiring more resolution are similarly tagged and even finer
grids are overlaid on these regions. The resulting grid structure is a
dynamic adaptive grid hierarchy. The adaptive grid hierarchy for the
AMR formulation by Berger and Oliger [2] is shown in Figure 1.

1
0, ——

i

Figure 1. Adaptive Grid Hierarchy - 2D (Berger-Oliger AMR scheme)

Distributed implementations of SAMR applications partition the
adaptive grid hierarchy across available processors, and operate on the
local portions of this domain in parallel. The overall performance of
these applications is thus limited by the ability to partition the un-
derlying grid hierarchies at runtime to expose all inherent parallelism,
minimize communication and synchronization overheads, and balance
load. A critical requirement of SAMR partitioners is maintaining logical
locality across partitions at different levels of the hierarchy and at
the same level when they are decomposed and mapped across pro-
cessors. This minimizes the total communication and synchronization
overheads. Distributed SAMR applications primarily require two types
of communications:

Inter-level Communications: These communications are defined
between component grids at different levels of the grid hierarchy and
consist of prolongations (coarse to fine transfers) and restrictions (fine
to coarse transfers). Inter-level communications require a gather /scatter
type operation based on an interpolation or averaging stencil. These
communications can lead to serialization bottlenecks for naive decom-
positions of the grid hierarchy.

js_hpa.tex; 27/02/2003; 18:19; p.5

6 Li and Parashar

Intra-level Communication: Intra-level communications (also called

ghost communications) are required to update the grid-elements along
the boundaries of local portions of a distributed grid. These communi-
cations consist of near-neighbor exchanges based on the stencil defined
by the difference operator. The communications are regular, and can
be scheduled to overlap with computations on the interior region of the
local portion of distributed grids.

The HPA strategy is based on the composite decomposition of the
adaptive grid hierarchy that maintains domain locality [12]. This de-
composition technique partitions the grid hierarchy such that all inter-
level communication is local to a processor. This scheme uses space
filling curves (SFC) [14], which are a class of locality preserving re-
cursive mappings from n-dimensional space to 1-dimensional space. In
HPA, after obtaining the composite representation of the adaptive grid
hierarchy using SFC, we partition it and assign spans of the curve to
processor groups in a hierarchical manner. This strategy takes advan-
tages of the composite decomposition to reduce intra-level communi-
cations and localize inter-level communication. Furthermore, it enables
communications in different groups to proceed concurrently, localizes
data-movement operations and can enable incremental redistribution.

3. Hierarchical Partitioning Algorithm

This section first presents the general HPA scheme and describes its
operation. Two variants of the scheme, viz. Static and Adaptive HPA,
are presented.

3.1. GENERAL HPA

The overall efficiency of parallel and distributed SAMR applications
is limited by the ability to partition the underlying grid hierarchies
at runtime to expose all inherent parallelism, minimize communication
and synchronization overheads, and balance load. In most distributed
implementations of SAMR [10, 11, 16], load scheduling and balancing
is done collectively by all the processors in the system and all the
processors maintain a global knowledge of the state of the system and
the total workload. These schemes have the advantage of achieving a
better load balance. However these approaches require the collection
and maintenance of global load information which makes them expen-
sive, specially on large systems. Note that a Non-HPA scheme can be
viewed as a special case of HPA scheme where there is only one group
containing all the processors. Partitioning in such a Non-HPA scheme
consists of the following steps:

js_hpa.tex; 27/02/2003; 18:19; p.6

Hierarchical Partitioning Techniques for SAMR Applications 7

e Global load information exchange and synchronization phase: All
the processors are engaged in this information exchange phase.
After this phase, all the processors have a global view of the grid
hierarchy.

e Load partitioning phase: All the processors calculate the average
load per processor and partition the grid hierarchy. This operation
is replicated on each processor in the system.

The sequence of steps taking place in the Non-HPA scheme for
partitioning and scheduling ghost communications is illustrated in the
sequence diagram in Figure 2. At the startup, all the processors have

Processor 1 Processor 2 Processor 3

£
= Initial domain known. Initial domain known. =
Initial partition and P— Initial partition and
schedule ghost schedule ghost
communication communication T
1]
T
Ghost communications - -
Ghost communications
) | I
L M -~
Computation P — Computation =
P=m—
) T T
| 1 L
=—— Global Global synchronization and
synchronization exchange of local information to geét|
= global view
Patitioning the =1 Partitionin I
. g the
< global domain global domain =
L T L
T Data migration based on
the new partition *‘
l<— 1 Schedule ghost M
communication. =1 Schedule ghost <
Lt Computation. communication.

Computation. ‘

\ \ \
Figure 2. Sequence diagram of the Non-HPA scheme

the initial computational domain. Each processor partitions the domain
into subdomains and assigns a subdomain to itself. During the load
balancing phase, all the processors synchronize and exchange their
local domain information. At the end of this phase, every processor

js_hpa.tex; 27/02/2003; 18:19; p.7

8 Li and Parashar

has a consistent global view of the domain. The partitioning algorithm
then partitions the domain among the processors. After partitioning is
complete, the processors migrate data that no longer belongs to their
local subdomains. Each processor then schedules ghost communications
based on its new local subdomain.

In large parallel/distributed systems, the global information exchange
and synchronization phase becomes a performance bottleneck. The
HPA scheme presented in this paper does not propose a new partitioner,
but a hierarchical partitioning strategy. The underlying partitioning
scheme adopted is the composite decomposition method using the space
filling curve (SFC) technique [12, 14] as mentioned in Section 2. In this
scheme, partitioning at different levels is performed in parallel based on
load information local to that level. Load is periodically propagated up
the processor group hierarchy in an incremental manner. Furthermore,
communications are hierarchically conducted among the processors in
each group concurrently rather than requiring communication and syn-
chronization among all the processors. This is achieved by dividing the
processors into processor/compute groups as shown in Figure 3.

GZ,Z GZ,Z,Z

Figure 3. A general hierarchical structure of processor groups

Figure 3 illustrates a general hierarchical tree structure of processor
groups, where, Gy is the root level group (group level=0) containing
all the processors, G; is the ¢ — th group at group level 1. Note that
the processors form the leaves of the tree. The communication between
processors is conducted through their closest common ancestor group
which is their coordinator or master. For example, processors Pjg and

js_hpa.tex; 27/02/2003; 18:19; p.8

Hierarchical Partitioning Techniques for SAMR Applications 9

P14 have common ancestor groups Go, G2 and G2 2. However their clos-
est common ancestor group is G2 2. Consequently their communication
is via the group G2 which is their coordinator or master. Similarly,
communications between processors Py and Pjy are via the group Gp.

In HPA, the partitioning phase is divided into sub-phases as follows.

e Local partitioning phase: The processors belonging to a processor
group partition the group load based on a local load threshold
and assign a portion to each processor within the group . Parent
groups perform the partitioning among their children groups in a
hierarchical manner.

e Global partitioning phase: The root group coordinator (group level 0)
decides if a global repartitioning has to be performed among its chil-
dren groups at the group level 1 according to the group threshold.

The pseudo-code for the load balancing phase in the general HPA is
given in Table II.

Table II. Load balancing phase in the general HPA

1. In the highest level group, if(my_load greater than local_threshold), perform
the local partition in each group.

2. Loop from group level lev=num _group_level to 1

3. If(group_load greater than group_threshold), perform the group partition
among children groups at lev, broadcast new composite list through parent
group. If(lev equals 1) it is a global partition among groups at level 1.

4. End of the loop

5. Begin computation...

The HPA scheme attempts to exploit the fact that given a group
with adequate number of processors, and an appropriately defined num-
ber of groups, the number of global partitioning phases can be reduced.
The operation of the general HPA is illustrated by the sequence diagram
in Figure 4.

In this figure, we show a two level group hierarchy including the root
group Gg. The hierarchical scheme first creates processor groups. After
these groups are created and the initial grid hierarchy is setup, the
group coordinators/masters partition the initial domain in the global
partitioning phase. At the end of this phase the coordinators have a
portion of the domain that is then partitioned among the processors in
the group subtrees. Recursively, portions of the computational domain

js_hpa.tex; 27/02/2003; 18:19; p.9

10 Li and Parashar

Processor 1 Processor 2 Processor 3 Processor 4
(Group 1 Masten) (Group 1) (Group 2 Masten (Group 2
Computation :I % 2
T Computation
.l Sync¢hronzation in group o
:I to g%t global view in i ‘
group
£
:I Synchronjzation among mastersto ex%’hange ‘
local domainsto get global domain
A:l Partition ajnong mastersto get iR ‘
local domain
Broadcast local domainfo group Broadcas | ld /I_H .
roadcast local domajn to group
T L
i = 1 i
Partition in group
T Partition in group T
N o
= 1 <
T Computation Computation

Figure 4. Sequence diagram of the HPA scheme

are partitioned further and finally assigned to individual processors at
the leaves of the processor group hierarchy. This is the local partitioning
phase.

3.2. Static HPA

In the Static HPA strategy, the group size and the group topology is
defined at startup based on the available processors and the size of the
problem domain. It is static in the sense that once the group configura-
tion is setup it will be fixed for the entire execution of the application.
Even though it is static, SHPA does possess the basic advantages of the
general HPA strategy. It localizes the load redistribution and balancing
within processor groups and enables concurrent communication among
processor groups. Note that, SHPA is still a dynamic load balancing
algorithm [15], as load is dynamically redistributed within and across
processor groups — only the processor group hierarchy remains static.
The load partitioning and assignment procedure is presented in Ta-
ble III. As described in the table, the number of groups, Niotaigroups

js_hpa.tex; 27/02/2003; 18:19; p.10

Hierarchical Partitioning Techniques for SAMR Applications 11

is defined at application startup. The load balancing phase in SHPA is
similar to the steps in Table II.

Table III. Hierarchical Partitioning Algorithm

1. Setup the processor group hierarchy according to group size and group
levels. Apply SFC to obtain the composite grid unit list (GUL).

2. Loop from group level lev=1 to num_group_level

3. Partition the global GUL into Ne, subdomains, where Nj¢, is the number
of processor groups at this level.

4. Assign the load L; on subdomain R; to a group of processors GG; such that
the number of processors NP; in the group G is proportional to the load
L;,ie., NP; = L;/ Loum X N Psym, where Lsum is the total size of load and
N Py, is the total number of processors in the parent group level.

5. Loop until the leaves of the group tree hierarchy are reached. Partition
the load portion L; and assign the appropriate portion to the individual
processor in the group G;, for i = 0,1, ..., NP; —1, where N P; is the number
of processors in the lowest group level.

The Static HPA is implemented as part of the GrACE toolkit [11].
The groups are created using communicators provided by the MPI
library. Communication within groups is through intracommunicators
while communication between processors belonging to different groups
is through intercommunicators.

Execution Time of RM3D application
(100 steps, size=128x32x32)

8000+

7000+

6000+

5000+ @Non-HPA
0SHPA Noning
4000+

I mHPA Inc

3000+

Execution Time (secs)

2000+

10004

16 32 64 96 128 192 256
Number of Processors

Figure 5. Execution time: Static HPA versus Non-HPA scheme

The Static HPA scheme is evaluated on the IBM SP2 cluster at
San Diego Supercomputer Center. The application used in these ex-
periments is the 3-D Richtmyer-Meshkov instability solver (RM3D)
encountered in compressible fluid dynamics. RM3D has been developed
by Ravi Samtaney as part of the virtual test facility at the Caltech

js_hpa.tex; 27/02/2003; 18:19; p.11

12 Li and Parashar

ASCI/ASAP Center [6]. The experiments measure the total execution
time of RM3D using Static HPA and Non-HPA schemes. To evaluate
the benefits of incremental load balancing, we performed two exper-
iments for Static HPA scheme: SHPA without incremental balancing
(labeled as SHPA Nonlnc in the figure), and SHPA with incremental
load balancing (labeled as SHPA Inc in the figure). In Figure 5, we
observe that SHPA schemes significantly improve the overall execution
time. The maximum performance gain is obtained for 192 processors
using SHPA Inc scheme, about 59% reduction in the overal execu-
tion time as compared to Non-HPA scheme. We also observe that,
for relatively small number of processors, the SHPA Nonlnc scheme
outperforms the SHPA Inc scheme. The reason is that SHPA Nonlnc
scheme has the advantage of better load balancing than the SHPA Inc
scheme since it re-distributes the load globally more frequently. How-
ever, for larger number of processors, due to significant reduction of the
synchronization and global communication overheads with incremental
load balancing, the SHPA Inc scheme outperforms the SHPA Nonlnc
scheme in the long run. As shown by the evaluation, the benefits of
SHPA depends on the appropriate setup of processor group hierarchies,
which in turn depends on the system and the application. The adap-
tive HPA scheme attempts to address this limitation by dynamically
managing processor groups.

3.3. ApaPTIVE HPA

In this section, we propose an Adaptive HPA strategy. In the Static
HPA strategy, the total number of groups is predefined and remains
unchanged throughout the execution of the application. In order to
account for the application’s runtime dynamics, the AHPA proposes
an adaptive strategy. AHPA dynamically partitions the computational
domain into subdomains to match current adaptations. The subdo-
mains created may have unequal loads. The algorithm then assigns
the subdomains to corresponding nonuniform hierarchical processor
groups. The detailed steps are presented in Table IV. Note that the
definition of processor groups may take into consideration the system
architecture - for example, group size can be chosen to match the size
of a SMP node in a SMP cluster.

As shown in Table IV, the AHPA scheme partitions the compu-
tational domain according to its refinement level. This partitioning
scheme naturally matches the state of the grid hierarchy. The parti-
tioning and assignment procedure presented in the table is repeated
at each regrid as the SAMR applications progress. Note that, when
the number of processors assigned to one group is large, SHPA can be

js_hpa.tex; 27/02/2003; 18:19; p.12

Hierarchical Partitioning Techniques for SAMR Applications 13

Table IV. Load partitioning and assignment in Adaptive HPA

1. Use SFC to obtain the composite grid unit list (GUL).

2. Partition the GUL into subdomains such that subdomains R; (i is odd)
consists of subdomains whose refinement level is not greater than i/2 and
R; (j is even) consists of subdomains whose refinement level is not less than
j/2. Ro consists of whole domain.

3. Assign the load L; on subdomain R; to a group of processors GG; such that
the number of processors NP; in the group G; is proportional to the load
L;,i.e., NP; = Li/Loum X N Psym, where Lsum is the total size of load and
N Psy, is the total number of processors.

4. Partition the load portion L; and assign the appropriate portion to the
individual processor in the group Gj, for ¢ = 0,1, ..., N Piotalgroups — 1.

applied in this group. Load balancing phase in AHPA is similar to the
steps in Table II with dynamic group sizes and a dynamic number of
group levels.

The AHPA scheme is evaluated using trace-driven simulations. The
simulations are conducted as follows. First, we obtain the refinement
trace for an SAMR application is obtained by running the application
for a single processor. Then the trace file is fed into HPA partitioners to
partition and produce a new trace file for multiple processors. Finally,
the new trace file is input into the SAMR simulator! to obtain the run-
time performance measurements on multiple processors. The simulation
results for the 2D Transport Equation and the Wave3D applications are
shown in Figure 6.

2D Transport Equation Wave3D Application
(100 steps, size = 128x128) (100 steps, size = 32x32x32)
8000
— @ Non-HPA . 7000
2 O Static HPA 8 @ Non-HPA
% | Adaptive HPA % 6000 O Static HPA
= < 5000 m Adaptive HPA
9 @
b 4000
[@
E‘ | ? 3000
é & 2000
= 1000
o
8 16 24 32 48 64 8 16 24 32 48 64
Number of Processors Number of Processors

Figure 6. Communication cost: comparison of Non-HPA, Static HPA and Adaptive
HPA schemes

1 SAMR simulator was developed by Manish Parashar at Rutgers University
as a part of ARMaDA project (http://www.caip.rutgers.edu/TASSL/Projects/
ARMaDA/performance_simulator.html)

js_hpa.tex; 27/02/2003; 18:19; p.13

14 Li and Parashar

In Figure 6, we observe that the communication cost (measured as
the total message size for intra-level and inter-level communication)
is greatly reduced using HPA schemes as compared to the Non-HPA
scheme. This is primarily due to reduced global communication and
concurrent communications in hierarchical processor groups. Compared
to the SHPA scheme, AHPA scheme further reduces communication
costs. In the figure, the communication cost increases as the number
of processors increases due to an increase of inter-processor communi-
cation traffic. An important observation is that, the rate of increase
for the Non-HPA and SHPA schemes are greater than that for the
AHPA scheme. This indicates that the AHPA scheme has a better
scalability. The reduction in communication cost is significant, up to
70%, for the AHPA scheme as compared to the Non-HPA scheme. These
simulations validate that the Adaptive HPA scheme is potentially an
efficient solution to gain better system performance. The experimental
evaluation of the AHPA scheme is in progress and will be released soon.

4. Conclusions

In this paper, hierarchical partitioning and balancing strategies for dis-
tributed implementations of SAMR applications were proposed. HPA
schemes take advantage of the hierarchical organization of the processor
groups to enable the load distribution to reflect the state of the adaptive
grid hierarchy and thereby reducing the global communication and
synchronization costs, improving load balance, exploiting concurrent
communication, and enabling the incremental redistribution. Two vari-
ant HPA scheme were presented, namely, the Static HPA (SHPA) and
the Adaptive HPA (AHPA). In the SHPA scheme, the total number of
groups is defined a priori and the group topology is fixed or static
during the execution of SAMR applications. In the AHPA scheme,
the processor pool is adaptively partitioned into hierarchical groups
at runtime to match the adaptive behavior of the SAMR applications.
The HPA schemes are validated using experiments and simulations. It
is experimentally shown that SHPA reduces communication costs as
compared to the Non-HPA scheme, and reduces overall application ex-
ecution time by up to 59%. AHPA dynamically partitions the processor
pool into hierarchical groups that match the structure of the adaptive
grid hierarchy. Initial evaluations of AHPA show that it can reduce
communication costs by up to 70%. An experimental evaluation of the
AHPA scheme is ongoing.

Other variants of HPA are also quite promising - for example an
Adaptive HPA taking into consideration the runtime system state. The

js_hpa.tex; 27/02/2003; 18:19; p.14

Hierarchical Partitioning Techniques for SAMR Applications 15

meta-partitioner proposed in [4] can be combined with the HPA scheme
framework to apply different HPA schemes for different system and
application runtime characteristics or for different parts at each level
of the grid hierarchy.

10.

11.

12.

13.

14.
15.

16.

17.

References

Baden, S. B. and S. J. Fink: 1998, ‘Communication overlap in multi-tier parallel
algorithms’. In: Conf. Proc. Supercomputing 98. Orlando, FL.

Berger, M. and J. Oliger: 1984, ‘Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations’. Journal of Computational Physics 53, 484-512.
Buyya, R. (ed.): 1999, High Performance Cluster Computing, Vol. 1. Prentice
Hall.

Chandra, S., J. Steensland, M. Parashar, and J. Cummings: Oct. 2001, ‘An
Experimental Study of Adaptive Application Sensitive Partitioning Strategies
for SAMR Applications’. In: 2nd Los Alamos Computer Science Institute
Symposium.

Colella, P. and et. al.: 2003, ‘Chombo’. URL: http://seesar.lbl.gov/anag/
chombo/.

Cummings, J., M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and D.
Meiron: 2002, ‘A virtual test facility for the simulation of dynamic response in
materials’. Journal of Supercomputing 23, 39-50.

Foster, I., C. Kesselman, and S. Tuecke: 2001, ‘The anatomy of the grid:
Enabling scalable virtual organizations’. International Journal of High
Performance Computing Applications 15, 200-222.

Kohn, S.: 1999, ‘SAMRALI: Structured Adaptive Mesh Refinement Applications
Infrastructure’. Technical report, Lawrence Livermore National Laboratory.
Lo, M. and S. Dandamudi: 1996, ‘Performance of Hierarchical Load Sharing in
Heterogeneous Distributed Systems’. In: Int. Conf. on Parallel and Distributed
Computing Systems. Dijon, France, pp. pp. 370-377.

MacNeice, P.: 1999, ‘Paramesh’. URL: http://esdcd.gsfc.nasa.gov/ESS/
macneice/paramesh/paramesh.html.

Parashar, M.: 2003, ‘GrACE’. URL: http://www.caip.rutgers.edu/
“parashar/TASSL/Projects/GrACE.

Parashar, M. and J. Browne: Jan.1996, ‘On Partitioning Dynamic Adaptive
Grid Hierarchies’. In: 29th Annual Hawaii International Conference on System
Sciences. pp. 604-613.

Pollak, R.: Sep. 1995, ‘A hierarchical load balancing environment for parallel
and distributed supercomputer’. In: International Symposium on Parallel and
Distributed Supercomputing. Fukuoka, Japan.

Sagan, H.: 1994, Space Filling Curves. Springer-Verlag.

Shirazi, B. A., A. R. Hurson, and K. M. Kavi: 1995, Scheduling and load
balancing in parallel and distributed systems. Los Alamitos: IEEE Computer
Society Press.

Steensland, J.: 2000, ‘VAMPIRE’. URL: http://www.tdb.uu.se/~ johans/
research/vampire/vampirel.html.

Teresco, J. D., M. W. Beall, J. E. Flaherty, and M. S. Shephard: 2000, ‘A hi-
erarchical partition model for adaptive finite element computation’. Computer
Methods in Applied Mechanics and Engineering 184, 269—-285.

js_hpa.tex; 27/02/2003; 18:19; p.15

js_hpa.tex; 27/02/2003; 18:19; p.16

