An Autonomic Reservoir Framework for the Stochastic
Optimization of Well Placement

Wolfgang Bangerth Hector Kli€", Vincent Matossiaf)y Manish Parasharand Mary F. Wheelér
ICenter for Subsurface Modeling, The University of Texas at Austin, Austin, TX.
2The Applied Software Systems Laboratory, Rutgers University, Piscataway, NJ.

{bangerth, klie, mfy@ices.utexas.edu,
{vincentm,parasha@-caip.rutgers.edu

Abstract

The adequate location of wells in oil and environmental applications has a significant economical
impact on reservoir management. However, the determination of optimal well locations is both chal-
lenging and computationally expensive. The overall goal of this research is to use the emerging Grid
infrastructure to realize an autonomic self-optimizing reservoir framework. In this paper, we present a
policy-driven peer-to-peer Grid middleware substrate to enable the use of the Simultaneous Perturbation
Stochastic Approximation (SPSA) optimization algorithm, coupled with the Integrated Parallel Accurate
Reservoir Simulator (IPARS) and an economic model to find the optimal solution for the well placement
problem.

1 Introduction

The locations of wells in oil and environmental applications significantly affect the productivity and environ-
mental/economic benefits of a subsurface reservoir. However, the determination of optimal well locations
is a challenging problem since it depends on geological and fluid properties as well as on economic pa-
rameters. This leads to a very large number of potential scenarios that must be evaluated using numerical
reservoir simulations. Reservoir simulators are based on the numerical solution of a complex set of coupled
nonlinear partial differential equations over hundreds of thousands to millions of gridblocks. The high costs
of simulation make an exhaustive evaluation of all these scenarios infeasible. As a result, the well locations
are traditionally determined by analyzing only a few scenarios. Howeverathi®capproach may often

lead to incorrect decisions with a high economic impact.

Optimization algorithms offer the potential for a systematic exploration of a broader set of scenarios
to identify optimum locations under given conditions. These algorithms together with the experienced
judgment of specialists, allow a better assessment of uncertainty and significantly reduce the risk in decision-
making. Consequently, there is an increasing interest in the use of optimization algorithms for finding the
optimum well location in oil industry [4, 8, 17, 32]. However, the selection of appropriate optimization
algorithms, the runtime configuration and invocation of these algorithms, and the dynamic optimization of
the reservoir remains a challenging problem.

The overall goal of this research is to use the emerging Grid infrastructure [7] and its support for seamless
aggregations, compositions and interactions, to realize an autonomic self-optimizing reservoir application.
The application consists of: (1) sophisticated reservoir simulation components that encapsulate complex
mathematical models of the physical interaction in the subsurface, and execute on distributed computing
systems on the Grid; (2) Grid services that provide secure and coordinated access to the resources required
by the simulations; (3) distributed data archives that store historical, experimental and observed data; (4)
sensors embedded in the instrumented oilfield providing real-time data about the current state of the oil field;

(5) external services that provide data relevant to optimization of oil production or of the economic profit
such as current weather information or current prices; and (6) the actions of scientists, engineers and other
experts, in the field, the laboratory, and in management offices.

These components need to dynamically discover one another and interact as peers to achieve the overall
application objectives. First, the simulation components interact with Grid services to dynamically obtain
necessary resources, detect current resource state, and negotiate required quality of service. Next, we recall
that the data necessary for reservoir simulation is usually sparse and incomplete; in particular, this concerns
the data on the geology of the subsurface and on the resident fluids which are very difficult to obtain.
Therefore, the simulation components interact with one another and with data archives and real-time sensor
data to enable better characterization of the reservoir through processes of dynamic data injection, and data
driven adaptations. Next, the reservoir simulation components interact with other services on the Grid, for
example, with optimization services to optimize well placement, with weather services to control production,
and with economic modeling services to detect current and predicted future oil prices so as to maximize
the revenue from the production. Finally, the experts (scientists, engineers, and managers) collaboratively
access, monitor, interact with, and steer the simulations and data at runtime to drive the discovery process.

The overall oil production process described above is autonomic in that the peers involved automatically
detect sub-optimal oil production behaviors at runtime and orchestrate interactions among themselves to cor-
rect this behavior. Further, the detection and optimization process is achieved using policies and constraints
that minimize human intervention. The interactions between instances of peer services are opportunistic,
based on runtime discovery and specified policies, and are not predefined.

In this paper we use our prototype autonomic reservoir framework [15] to investigate the policy-driven
runtime selection and invocation of optimization services to determine optimal well placement and configu-
ration. The specific objectives of this paper include: (1) characterization of the behavior and applicability of
optimization techniques for oil reservoir optimization; (2) formulation of policies for the runtime selection
and invocation of optimization services for well placement; and (3) the design of a prototype policy-driven
framework for autonomic reservoir optimization in Grid environments. In our earlier work [15], we studied
the use of the Very Fast Simulated Annealing (VFSA) [24] optimization technique. In this paper we use
the Simultaneous Perturbation Stochastic Approximation (SPSA) [27, 25] algorithm for optimizing well
placement.

The reservoir framework consists of (i) instances of distributed multi-model, multi-block reservoir sim-
ulation components provided by the IPARS reservoir simulator framework, (ii) optimization services based
on the SPSA algorithm, (iii) economic modeling services, (iv) real-time services providing current economic
data (e.g. oil prices), (v) archives of data that has already been computed, and (vi) experts (scientists, engi-
neers) connected via pervasive collaborative portals. It is built on the Pawn P2P substrate, which provides
JXTA-based [22] peer-to-peer messaging services, and the Discover computational collaboratory, which
combines Grid infrastructure services provided by Globus [6] and interaction and collaboration services.

The rest of this paper is organized as follows. Section 2 describes the well placement problem and intro-
duces the underlying models and components. It also presents the SPSA optimization algorithm. Section 3
describes the design and implementation of the autonomic reservoir framework. Sections 4 describes the
well location optimization process using SPSA. Section 5 derives policies for the selection and invocation
of optimization services for autonomic well placement. Section 6 presents a summary and conclusions.

2 Autonomic Oil Well Placement Optimization

In this section, we specify the mathematical models underlying the reservoir simulation (forward model),
the revenue function (objective function), and the stochastic optimization algorithm. We end the section
with a description of the case study based on a real application problem.

2.1 Problem Description

Let us assume that there exists an oil reservoir whose properties are known, at least at a given scale, and
in which a few wells are already operating. The problem is to find the optimum geographical location for
drilling a new well in order to maximize production, oil sweep efficiency or a given revenue value. In
practice, the question of finding optimal operating schedules of new and existing wells, i.e. for example
pumping rates as a function of future time, is also important, but is a much more complicated problem that
we will not consider here. We will also only look at the placement of one well at a time.
The well placement problem is an optimization problem for the well locatien (z, y), which has to
lie in a setP of possible parameter values. In order to describe what we mean by “optimal well location”,
we need to define a scalar objective functjgp) that measures the economic cost of drilling and operating
at positionp minus the revenue we get from the produced oil. The goal is then to minimize this function, or
equivalently to maximize the revenue minus the cost. We will describe this objective function in section 2.3.
With this function defined, the optimization problem consists of finding that positipne P such that
the costf (pop:) is less than or equal to the co&ip) for all other possible source locatiops P. The task
of finding this optimum is complicated by three facts:

e First, the setP does not necessarily have to be continuous; rather, it can, and in fact it will in the
example shown below, consist of single points because our numerical model only allows us to place
wells at a discrete set of positions (the only viable locations are the centers of cells of our finite element
scheme). This discreteness of the Beaif course precludes the computation of derivatives.

e Secondly, eveniP is a continuous set, derivatives ffp) are usually unavailable because of the com-
plexity of computing them; in additiory;(p) may not be differentiable at all, rendering the question
of computing derivatives moot. Therefore we focus on a class of gradient-free optimization methods
which require only the evaluation of the objective functif(p) at certain points. This task is accom-
plished by running a reservoir simulator for a number of trial positjpasd evaluating the economic
objective functionf(p) for the predicted production of a well at positipn

¢ Thirdly, computing function values for models as the ones considered here is expensive: for realistic
simulations, evaluating the objective function for a given well location can easily take many hours
even on fast computers. This forces us to make use of efficient optimization methods, as well as novel
approaches to distributed computing. In the model application considered here, we use a simplified
model that reduces the computing time for one evaluatiofi(pf to about 25 minutes on an AMD
Athlon 2GHz Linux-based desktop computer. This reduction in complexity enables us to completely
map the objective function for all possible well locations in order to verify the path the optimizer is
describing. However, this is neither possible nor economic in realistic applications and it is only used
in this paper to illustrate the effectiveness of the method.

In the following, we provide a brief overview of the mathematical models and optimization methods.
We note that these two parts are essentially independent of one another: the simulator just cépputes
for a givenp € P, without knowledge of what will be done with this value; on the other hand, the optimizer
just asks forf(p) for a givenp, without caring how it is computed. This independence is reflected in the
implementation by making the reservoir simulation model and the optimizer two independent models that
interact only by using the Pawn interaction middleware.

2.2 Mathematical model for the flow in an oil reservoir

We consider a heterogeneous 3D oil reservoir, denotefl,lsurrounded by impermeable rocks (i.e., no
flow boundary conditions). The set of partial differential equations describing the conservation of mass of

each component. = o, w (0il and water) are

9(¢Nm)
BN +V-Un = qm- (@H)

Here,¢ is the porosity of the porous mediu,,, the concentration of a component andg,, the sources
(production and injection rates). The flux&g, are defined using Darcy’s law [9] which, with gravity
ignored, reads as,, = —pn, KAV Py, Wherep,,, denotes the density of a componekitthe permeability
tensor,)\,,, the mobility of a component, ang,, the pressure of a phase. Additional equations specifying
volume, capillary, and state constraints are added, and boundary and initial conditions complement the
system, see [2, 9]. Finallyy,, = S,.pm With S,, denoting saturation of a phase. The resulting system
(omitting gravity terms for simplicity) is

O(dpmSm)
ot

In this paper we consider wells that either produce (a mixture of) oil and water, or at which water is
injected. At an injection well, the source tery is nonnegative (we will use the notatiafj := ¢, to
make this explicit). At a production well, botfy andg,, may be non-positive and we will denote this by
q,, *= —qm. In practice, both injection and production rates are subject to control, and thus to optimization;
however, in this paper we assume that rates are user predefined and are not decision parameters in our
problem.

This model is discretized in space using theanded mixed finite elemanethod which, in the case
considered in this paper, is numerically equivalent toabl-centered finite differencapproach [23, 1].

Time discretization can be either fully implicit, semi-implicit or sequential; here we only consider the se-
guential method in which two linear systems of equations, the pressure equation and the concentration
eqguation, are solved at each time step.

This discrete model is solved by the IPARS (Integrated Parallel Accurate Reservoir Simulator) software
developed at the Center for Subsurface Modeling at The University of Texas at Austin [10, 28, 19, 21, 30,
31, 13, 29]. IPARS is a parallel reservoir simulation framework for modeling multiphase, multiphysics
flow in porous media. It offers sophisticated simulation components that encapsulate complex mathematical
models of the physical interaction in the subsurface, and which execute on parallel and distributed systems.
Solvers employ state-of-the-art techniques for nonlinear and linear problems including multigrid and other
preconditioners [11]. It can handle an arbitrary number of wells each with one or more completion intervals.
Although not used here, IPARS supports multiple physical models and their multiphysics couplings.

=V (pm KAV Py) = Gm. 2

2.3 The economic model

In general, the economic value of production is a function of the time of production and of injection and
production rates in the reservoir. It takes into account fixed costs such as drilling a well, prices of oil, costs
of injection, extraction, and disposal of water and of the hydrocarbons, as well as associated operating costs.
We assume here that operation and drilling costs are fixed, i.e. independent of the well location.

We therefore define our objective function by summing the revenues from produced oil over all produc-
tion wells, and subtracting the costs of disposing produced water and the cost of injecting water. We then
obtain

T
flp) = - / { Z {(COQO_(S) — Cw,dispQu (5))} - Z Cw,injqz(s)} (1+ r)_t dt, (3)
0 prod. wells inj. wells
whereg, andq,, are production rates for oil and water, respectively, gfycare injection rates, each in
barrel per day. The coefficients = 24, ¢, 4isp = 1.5 andc,,;,; = 2 are the prices of oil and the costs of

4

disposing and injecting water, in dollars per barrel each. The exponential factor takes into account that the
drilling costs have to be paid up front and have to be paid off with interest. We choose an interest rate of
r = 10% = 0.1 per year.T is the time horizon up to which we perform our simulations, and up to which we
integrate the revenue. Finally, we defifig) to be the negative total revenue, since we want to minimize
f(p), which then amounts to maximizing the revenue.

Note thatf(p) depends on the locatignof the additional well in two ways. First, the injection rates of
the additional well, and thus its associated costs, depend on its location if the bottom hole pressure (BHP) is
prescribed. Secondly, the production rates of the other wells as well as their water-oil ratio depend on where
water is injected.

We remark that other objective functions would also be possible. For example, one may want to mini-
mize the amount of bypassed oil, i.e. oil that is not going to be produced from the reservoir by the given set
of wells. Or, one may wish to minimize the amount of produced water. This last case is somewhat akin to
preventing thevater coningandwater fingeringphenomena [20, 5]. Note, however, that the (negative) cost
of water production already appears as one term in the objective function defined above.

2.4 Optimization

As mentioned above, viable methods for finding the maximum or minimum of our objective function
f(p), p € P, must be content with evaluating-) directly since gradients are not available. In addition,

we are only interested in methods that aefficient i.e. need only a small number of function evaluations, in
order to keep computing times within a manageable range. In a previous study [15], we have used the Very
Fast Simulated Annealing (VFSA) algorithm to find the minimury). Here, we focus on the use of the
Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, see [27, 25].

Stochastic approximation (SA) methods represent an important class of stochastic search algorithms.
Many well-known techniques are special cases of SA, including neural-network backpropagation, perturba-
tion analysis for discrete-event systems, recursive least squares and least mean squares, genetic algorithms
and simulated annealing. SPSA works by starting from an initial guessP and then in each iteration
performing the following steps:

Algorithm 2.1 (SPSA)
1 Setk =1,~v =0.101, a = 0.602.
2 While k < Knax Or convergence has not been reachied

2.1 Compute a random search directidxy, in {—1, +1}.
2.2 Computery, = 5,0k = 7a-
2.3 Evaluatef™ = f(px + cxAg) and f~ = f(pr — cxAg).

2.4 Compute an approximation to the magnitude of the gradient.by (f* — f7)/2¢y.
2.5 Setpri1 = pr — apgpAs-

2.6 Setk =k + 1.

end while

Some comments are in order. Step 2.1 selects Aacto be independent and satisfy certain statistical
properties. The simplest choice that satisfies these requirements is to choose them from a Bernoulli dis-
tribution, i.e.,A; in {—1,+1}. The gain parametels;, a; are a decreasing sequence with respedt. to
Although they may change according to the problem, we have found it suitable to define them as suggested
in [26]. For the present problem, we use= 5 anda = 2 - 107°. Step 2.3 and 2.4 are used to compute an

5

approximation to the magnitude of the gradient giverypy The reader may realize that the update of the
solution depicted in step 2.5 is basically a stochastic version of a steepest descent method (see [27]).

In other words, in each step the algorithm chooses a random direction and looks ahead and back a
certain distancey, in this direction for the value of the objective functigit-). Depending on whether
the function value is smaller in the forward or backward direction, it moves the next iteration forward or
backward byuygy.. In practice, we stop the iteration if it did not make any significant progress in the last
steps (i.e. cycles back and forth), measured by the critépion pr_.| < &; in our computations, we chose
k = 6 and¢ = 2. Note that we do not necessarily stop at an optimum but rather at some random point while
jumping back and forth; however, both the stopping point as well as the best point encountered during the
process are usually very close in value to the global optimum.

The success of this algorithm is due to the fact that even though it only uses two function evaluations
per iteration and uses random directions, it always generates a descent direction (at least with respect to
the given step length). It is thus able to approximate the gradiefit-pfvithout actually computing it, by
generating random directions that, on average, resemble the gradient.

As mentioned above, we only consider a discrete and finité&det the possible well locations. Thus,
the above algorithm requires two modifications:

e ¢, andaggy need to be integers. To enforce this, we always round these values up to the next integer,
i.e. we us€ ;5 |, [75 gx | wherec,, anday g, appear. This, together with the choice/df makes sure
that all iterates and evaluation points are on the integer lattice on which we optimize.

e lterates and evaluation points have to stay within the bounds surroufdiRgr this, letlI(p) be the
closest point inP for a given pointp (which may lie outside of?). Then we usef* = f(II(p +
ckAg))andf~ = f((pr — ckAg)). The new step is computed ps,1 = II(pr + arpgrAg). Since
our feasible regiorP is the set of integers inside a box, this simple procedure always guarantees that
we find a viable step.

With these modifications, the algorithm only ever evaluates points that are members offthe set

We note that in the present context of distributed peer-to-peer applications, SPSA has a number of ad-
vantages compared to some other optimization algorithms, for example the VFSA algorithm mentioned
above [15]. In particular, in step 2.4 of the SPSA algorithm outlined above, we need to perform two func-
tion evaluations, each of which requires running IPARS for a given well location. Since these computations
are independent, they could well be run in parallel, for example on two different clusters. Given the high
cost of running each of these simulations, this can reduce the run-time by a factor of two. Also, there are
modifications of the basic SPSA algorithm that not only compuesearch directior\;, and evaluate the
objective function in forward and backward direction, but rather geneeatera) sayS search directions,
resulting in2S function evaluations [25]. The final update step frpgto py. 1 is then done by incorporat-
ing the information of all these computations. This modification allows a better approximation of the true
gradient off(-) and will thus converge in less iterations. The cost of additional function evaluations could
be buffered by running some or all of the independEntPARS computations in parallel, a task which the
IPARS Factory (to be described below) could easily distribute to available resources. Finally, by starting
at different initial points, the algorithm may converge to the same optimum solution (augmenting the reli-
ability of reaching a unique global solution) or to a set of different solutions (several extrema due to the
ill-posedness of the problem). In the latter case, specialists and management could be interested in looking
at clusters of solutions for comparison against other complex factors not included during the optimization
stage. We have not yet implemented these extensions to the basic SPSA algorithm, but we plan to explore
them in a future work.

7000

6000

r 45000

r 44000

r 43000

2000

1000

800 1600 2400 3200 4000 4800

Figure 1: Permeability field showing the positioning of current wells. The symbolnd ‘+’ indicate
injection and producer wells, respectively.

W

' '
1600 2400 3200 4000 4800 800 1600 2400 3200 4000 4800

4800 4800

4000 4000

3200

3200

2400

2400

1600

8

S

0

2400

Figure 2: Left: Oil saturation at the end of the simulation for the original well distribution. Right: Oil
pressure.

4800

4000

3200

2400

1600

800

s L & 4

800 1600 2400 3200 4000 4800

Figure 3: Search space response surface: Expected revef{pé for all possible well locationg € P.
White marks indicate optimal well locations found by SPSA for 7 different starting points of the algorithm.

2.5 Case study

In our case study we consider a 2D reserf@it= [0,4880] x [0,5120] of roughly 25 million f&, which is
discretized by &1 x 64 spatial grid of80 ft length along each horizontal direction, and a deptBft.

Hence, the model consists of 3904 gridblocks. The reservoir under study is located at a doth %f

ft (i.,e., 1 km) and corresponds to a 2D section extracted from the Gulf of Mexico. The porosity has been
fixed at¢ = 0.2 but the reservoir has a heterogeneous permeability field as shown in Figure 1. The fluids
are initially in equilibrium with water pressures set to 2600 psi and oil saturatioto

The original reservoir consists of 5 wells: 2 water injectors and 3 oil producers. Figure 1 shows the
opposite-corner distribution of injectors (bottom left) and producers (top right). Injection and production
rates are computed by specifying a fixed bottom hole pressure (BHP). Since oil flows from the lower left
corner to the upper right corner, one would intuitively guess that the new injection well should be located
somewhere in the neighborhood of the reservoir center. The permeability field suggests that flow should be
faster in the lower part of the reservoir, so the new well should shift its location to the upper part, where
oil is displaced more slowly. This is also indicated by looking at the oil saturation and pressures at the
end of the simulation period & = 2000 days, as shown in Figure 2. However, such analysis is not that
straightforward when more wells are involved.

Given this description of the domain, the parameter space is the set of 3904 points of the integer lattice
P = {40,80,120,...,4840} x {40,80,120,...,5080} of cell midpoints, at which we can place wells in
our computational model. We assume that the well penetrates through the entire depth of the reservoir, that
is, the depths of its bottom and top are fixed. We also fix the BHP operating conditions at the new injection
well to be the same as that at the other injection wells. We note that in general, the BHP and well penetration
parameter could vary and become an elemerit.cAlso, more wells could be placed.

The goal of the case study is then to find the optimal positicn P of a new well, with respect to
the objective functiory (p) defined above. Given enough computing resources, one could evA(pater
all 3904 possibles € P and from this easily determine the optimal well location. For the simple test case
considered here where every function evaluation takes about 20 minutes on a Linux PC consisting of dual
2GHz AMD Athlon chipset, we have actually done this and show the results in Figure 3. However, for more
realistic computations, this is of course not possible, and optimization algorithms have to use much less
than this number of function evaluations. In this paper we achieve this using the SPSA algorithm discussed
above.

Note that while we would in general like to compute the global optimum, we will usually be content if the
algorithm finds a solution that is almost as good. This is important in the present context where the revenue
surface plotted in Figure 3 has 72 local optima, with the global optimum bgipg= {2920,920}) =
—1.09804 - 108. However, there are 5 more local extrema within only half a per cent of this optimal value,
which makes finding the global optimum rather complicated. The white marks in the figure indicate the
best well positions found by the SPSA algorithm when started from seven different points on the top-left to
bottom-right diagonal of the domain. As can be seen, SPSA is able to find very good well locations from
arbitrary starting points, even though it does not find the global optimum every time.

3 Enabling Autonomic Oil Reservoir Optimization using Decentralized Ser-

vices

The overall application scenario is illustrated in Figure 4. The primary peers and services participating in
the application are described below.

1. Client configures and launches IPARS
Factory and Optimization Service on
resource of choice

2. IPARS Factory discovers and initializes
the Optimization Service

3. Client configures IPARS

4_IPARS Factory gets initial guess from the
Optimization Service and launches
IPARS instance on resource of choice

5 IPARS connects to the Optimization
Service and presents revenue

6. Optimization Service generales new
parameter value

7.0nce optimal well placement is
determined, IPARS Factory launches an
IPARS run

8. Scientists/Engineers collaboratively
interact with IPARS

a
Y
i

“861d 110 LIS

Figure 4: Autonomous oil reservoir optimization using decentralized services.

3.1 Integrated Parallel Accurate Reservoir Simulator (IPARS)

IPARS is the reservoir simulator that, together with the economic model, is used to evaluate the objective
function. Itis a peer in our application that takes a number of input files which, among other things, specify
a well positionp, and returns the production history of all wells. IPARS is primarily implemented in Fortran
and C, but is integrated with the framework discussed in this paper using C++ wrappers and the Java Native
Interface.

3.2 IPARS Factory

The IPARS Factory is responsible for configuring instances of IPARS simulations, deploying them on re-
sources on the Grid, and managing their execution. Configuration consists of generating the relevant input
files that select appropriate models from those provided by IPARS, define the structure and properties of the
reservoir to be simulated, and list required parameters. Deployment and management of IPARS instances
use services provided by Discover [14] and Globus [6], and build on the CORBACo0G Kit [18].

3.3 SPSA Optimization service

The SPSA Optimization service runs on the Optimization peer and implements the SPSA algorithm pre-

sented in Section 2.4. It also offers interfaces and mechanisms for interactive and autonomic communica-
tions between the Optimization peer, IPARS instances, and the IPARS Factory. The optimization service

uses the SPSA algorithm to generate guesses of new well positions. This guess is first compared with an
archive of already computed well positions, therefore preventing useless computation of already known

data. If no match is found, the new guess is added to the archive and is forwarded to the IPARS Factory.

The IPARS factory then uses these well positions to initialize and configure a new instance of IPARS.

10

3.4 Economic Modeling Service

The Economic Modeling Service is based on the economic model presented in Section 2.3 and uses the
output produced by an IPARS simulation instance and current market parameters (e.g. oil prices, drilling
costs, etc.) to compute estimated revenues for a particular reservoir configuration.

The market parameters used by the model are variable economic indices including the price of oil per
volume produced, the cost of water per volume, the cost of disposal of water, and the current discount rate.
These indices are obtained using a network information service that collects information at regular inter-
vals from different sources on the Internet. The network information service is implemented as a threaded
Java Servlet and is part of the Discover middleware. The Servlet essentially queries a relevant URL (e.qg.
http://money.cnn.com/markets/commaodities.html), and parses the responses to extract current oil, gas and
water prices. This information is then fed into the economic model during the optimization process.

In general, instead of fixed current prices obtained by the network information services, one may be
able to use a set of “forecasts” of prices, delivered by stochastic or other mathematical models. This would
allow a more realistic planning of future revenues from an oil field. However, this capability is not currently
implemented and is not a part of the prototype application.

3.5 Discover Computational Collaboratory

Discover [14] is a virtual, interactive computational collaboratory that provides services to enable geo-
graphically distributed scientists and engineers to collaboratively monitor and control high performance
parallel/distributed applications on the Grid. Its primary goal is to bring Grid applications to the scien-
tists’/engineers’ desktops, enabling them to collaboratively access, interrogate, interact with, and steer these
applications using pervasive portals. Key components of the Discover collaboratory include:

e Discover Interaction & Collaboration Middleware Substrate [3] that enables global collaborative
access to multiple, geographically distributed instances of the Discover computational collaboratory,
and provides interoperability between Discover and external Grid services. The middleware substrate
enables Discover interaction and collaboration servers to dynamically discover and connect to one
another to form a peer network. This allows clients connected to their local servers to have global
access to all applications and services across all servers based on their credentials, capabilities and
privileges.

The Discover middleware also integrates Discover collaboratory services with the Grid services pro-
vided by the Globus Toolkit [6] using the CORBA Commaodity Grid (CORBA CoG) Kit [18]. Clients

can use the services provided by the CORBA CoG Kit to discover available resources on the Grid, to
allocate required resources, to run applications on these resources, and use Discover to connect to and
collaboratively monitor, interact with, and steer the applications.

e DIOS Interactive Object Framework (DIOS) [12, 16] that enables the runtime monitoring, inter-
action and computational steering of parallel and distributed applications on the Grid. DIOS enables
application objects to be enhanced with sensors and actuators so that they can be interrogated and con-
trolled. Application objects may be distributed (spanning many processors) and dynamic (be created,
deleted, changed or migrated at runtime). A control network connects and manages the distributed
sensors and actuators, and enables their external discovery, interrogation, monitoring and manipu-
lation. The control network enables sensors and actuators to be encapsulated within, and directly
deployed with the computational objects. The DIOS distributed rule engine allows users to remotely
define and deploy rules and policies at runtime and enables autonomic monitoring and steering of
Grid applications.

11

Figure 5: Pawn architecture: Pawn builds on network and interaction services to enable P2P interactions in
Grid applications.

e Discover Collaborative Portals[14] that provide the experts (scientists, engineers) with collabora-
tive access to other peer components. Using these portals, experts can discover and allocate resources,
configure and launch peers, and monitor, interact with, and steer peer execution. The portal provides
a replicated shared workspace architecture and integrates collaboration tools such as chat and white-
board. It also integrates “Collaboration Streams,” that maintain a navigable record of all client-client
and client-applications interactions and collaboration.

3.6 Pawn peer-to-peer messaging framework

Pawn builds on Project JXTA [22] and enables peers to exchange messages through common services and
interaction modes. Figure 5 shows the services and interaction modalities enabled by the Pawn framework.

Pawn offers four key services to enable dynamic collaborations and autonomic interactions in scientific
computing environments.

The Application Runtime and Control [ARGInnounces the existence of an application to the peer-
group, sends application responses, publishes application update messages, and notifies the peergroup of an
application termination.

TheApplication Monitoring and Steering Service [AM&jables users to interact with an application in
real-time. Using the AMS service a user can monitor, retrieve, or set application data.

The Application Execution Service [AEXnables a peer to remotely start, stop, get the status of, or
restart an application. This service requires a mechanism that supports synchronous and guaranteed remote
calls necessary for resource allocation and application deployment (i.e. transaction oriented interactions) in
a P2P environment.

TheCollaboration Service [Group Communication, Preseneelnds the Discover substrate to provide
collaborative tools and support for group communication and detection of presence.

Every peer can implement all or a subset of these services. Particular services subsets characterize arole
for the peer. There are three distinct roles that a peer can take:

Client Peerthat can deploy applications on available resources for monitoring and/or steering; the client
can also collaborate with other peers in the group using Chat and Whiteboard tools.

Application Peethat exports the application interfaces and controls to the peergroup; these interfaces are
used by other peers to interact with the application. An application may already be enabled to communicate
remotely with a middleware server as in the Discover computational collaboratory [14]; in such a case, the
application peer acts as a proxy peer, relaying queries and responses to and from clients to applications.

Rendezvous Petw distribute or relay messages. Rendezvous peers filter messages as defined by filtering
rules input from the connected clients. Rendezvous peers route messages from a source to a destination,
being reliable TCP unicast messages traveling between specific endpoint addresses to an unreliable group
multicast.

12

Using the Pawn and Discover computational collaboratory, clients can connect to a local server using
the portal, and can use it to discover and access active applications and services on the Grid as long as they
have appropriate privileges and capabilities. Furthermore, they can form or join collaboration groups and
can securely, consistently, and collaboratively interact with and steer applications based on their privileges
and capabilities. The components described above need to dynamically discover and interact with one
another as peers to achieve the overall application objectives. As can be seen in Figure 4, the experts use
the portals to interact with the Discover middleware and the Globus Grid services to discover and allocate
appropriate resource, and to deploy the IPARS Factory, SPSA and Economic Model peers (step 1). The
IPARS Factory discovers and interacts with the SPSA service peer to configure and initialize it (step 2). The
expert interacts with the IPARS Factory and SPSA to define application configuration parameters (step 3).
The IPARS Factory then interacts with the Discover middleware to discover and allocate resources and to
configure and execute IPARS simulations (step 4). The IPARS simulation now interacts with the Economic
Model to determine current revenues, and discovers and interacts with the SPSA service when it needs
optimization (step 5). SPSA provides the IPARS Factory with a new guess for a better well location (step
6), which then uses it to configure and launch new IPARS simulations (step 7). Experts can, at anytime,
discover, collaboratively monitor, and interactively steer IPARS simulations, configure the other services,
and drive the scientific discovery process (step 8). Once the optimal well parameters are determined, the
IPARS Factory configures and deploys a production IPARS run.

These interactions are enabled by the Pawn services that build on JXTAs pipe and resolver services to
providestatefulandguaranteednessaging. In Pawn, messages are platform-independent, and are composed
of source and destination identifiers, a message type, a message identifier, a payload, and a handler tag.
State is maintained by making every message a self-sufficient and self-describing entity that carries enough
information such that, in case of a link failure, it can be resent to its destination by an intermediary peer
without the need to be recomposed by its original sender. In addition, messages can include system and
application parameters in the payload to maintain application state.

Pawn implements application-level communication guarantees by combining stateful messages, mes-
sage queueing, and a per-message acknowledgment table maintained at every peer. This messaging is usec
to enable the key application-level interactions such as :

Synchronous/Asynchronous Communicati©ommunication in JXTA can be synchronous (using block-
ing pipes) or asynchronous (using non-blocking pipes or the resolver service). In order to provide reliable
messaging, Pawn combines these communication modalities with stateful messaging and guarantee mecha-
nism.

Dynamic Data InjectionPawn leverages JXTA pipes mechanisms and combines it with its guaranteed
message delivery mechanism to provide Dynamic Data Injection.

Remote Procedure Calls (PawnRPCQhe PawnRPC mechanism provides the low-level constructs for
building applications interactions across distributed peers. Using PawnRPC, a peer can dynamically invoke
a method on a remote peer by passing its request as an XML message through a pipe.

4 Reservoir Optimization using the Pawn Framework

In this section, we describe how Pawn is used to support the prototype autonomic oil reservoir optimization
application outlined in section 2. Every interacting component is a peer that implements Pawn services. The
IPARS Factory, SPSA, and the Discover collaboratory are Application peers and implement ARC and AEX
services. The Discover portals are Client peers and implement AMS and Group communication services.
Key operations in the process include peer deployment (e.g. IPARS Factory deploys IPARS), peer discovery
(e.g IPARS Factory discovers SPSA), peer initialization and configuration (e.g. Expert configures SPSA),
autonomic optimization (e.g IPARS and SPSA interactively optimize revenue), interactive monitoring and

13

DISCOVER Server 1-GS! for Verification of
Corba CoGKit authenticity
Globus toolkit 2-MDS&GRAM to Find
Available Resources 7
3-Deploy application /

Client e 1)
Optimizer

Figure 6: Peer deployment.

steering (e.g. Experts connect to, monitor, and steer IPARS), and collaboration (e.g. Experts collaborate
with one another). These operations are described below.

4.1 IPARS Factory and SPSA Optimization Service Deployment

The IPARS Factory and SPSA Optimization peers are deployed using Globus services accessed through
Discover/CORBACO0G. The SPSA peer is a C++ program that is integrated with Pawn using the Java Native
Interface. Figure 6 presents the sequence of operations involved. The deployment is orchestrated by the
Expert through the Discover portal. The portal gives the Expert secure access to all the machines registered
with Globus Meta Directory Service (MDS) to which the Expert has access privileges. Authentication
and authorization is based on the Globus Grid Security Infrastructure (GSI) service. Once authenticated, the
Expert can use the portal to deploy the IPARS Factory and SPSA peers on machines of choice after verifying
their availability and current status (load, CPU, memory). Deployment uses the Globus GRAM service. The
portal also gives the Expert access to already deployed services and applications for collaborative monitoring
and steering using Discover.

4.2 Peer Initialization and Discovery

At startup, peers use the underlying JXTA discovery service to publish an advertisement to the peergroup.
This advertisement describes the functionalities and services offered by the peer. It also contains a pipe
advertisement for input and output communications, and the RPC interfaces offered by the peer for remote
monitoring, steering, service invocation and management. To enable peers to mutually identify each other,
the peer that discovers an advertisement sends its advertisement back to the discovered peer. This discovery
process is also used by IPARS instances to discover the SPSA service.

4.3 IPARS and SPSA Configuration

The Expert uses the portal and the control interfaces exported to configure the SPSA service and to define its
operating parameters. The Expert also configures the IPARS Factory by specifying the parameters for IPARS
simulations. The IPARS Factory uses these parameters to set up IPARS instances during the optimization
process, and initialize the SPSA service. Note that the Expert can always use the interaction and control

interfaces to modify these configurations. The configuration uses AMS to send application parameters to the
IPARS Factory and SPSA peer. A response is generated and sent back (using AEX) to the client to confirm

the configuration change.

4.4 Oil Reservoir Optimization

The reservoir optimization process consists of two phases, an initialization phase and an iterative optimiza-
tion phase as described below.

14

If guess in DB
send response to Clients
and get new guess from

Optimizer clients

If guess not in DB: Compute and ,‘
instantiate IPARS Send 7l
& —_oend ‘
with guess as Normalized |

parameter Revenue ,(\ iR
i L] |

IPARS
simulation

guess in Generate and | Optimization Service

DalaBase ' Send guess

Figure 7: Optimization process.

Initialization phase:In the initialization phase, SPSA provides the IPARS Factory with an initial guess of
well parameters based on its configuration by the Expert and the IPARS Factory. This is done using the
channel established during discovery and is used by the IPARS Factory to initialize and deploy an IPARS
instance.

Iterative optimization phaseln the iterative optimization phase, the IPARS instance uses the Economic
Model along with current market parameters to estimate the current reyénufor the trial well locations

p. SPSA uses this value to generate an updated guess of the well pargmpeters then sends new trial

well locations to the IPARS Factory. The IPARS Factory now configures a new instance of IPARS with the
updated well parameters and deploys it. This process continues until the required terminating condition is
reached. Figure 7 shows the overall optimization process between IPARS Factory, IPARS, and SPSA. Note
that Experts can connect to any of these peers at any time and steer the optimization process.

Well parameter and revenue archivitter each evaluation of a trial well location, these well parameters and

the corresponding revenue computed by IPARS and the Economic Model are stored in an archive (a MySQL
database) maintained by an archival peer. During the optimization process, when a new trial location is
received from SPSA, the IPARS Factory checks the archive before launching an IPARS instance. If the
current location is already present in the archive, the corresponding normalized revenue value is sent back
to SPSA and a redundant IPARS instance is avoided.

Note that peer interactions during the optimization process are highly dynamic and require synchronous
or asynchronous RPC semantics with guarantees, rather than document exchanges typically supported by
P2P systems. In Pawn, these interactions are enabled by PawnRPC, which provides the same semantics as
the traditional RPC in a client-server system, but is implemented in a purely P2P manner.

4.5 Production Runs and Collaborative Monitoring and Steering:

Once the optimization process terminates and the optimal well parameters are determined, the IPARS Fac-
tory allocates appropriate resources, configures a production run based on these parameter, and launches
this run on the allocated resources.

Experts can now collaboratively connect to the running application, collectively monitor its execution
and interactively steer it. Figure 8 presents the client peer’s portal interface used by the Experts. The portal
interface can also be used to access, monitor and steer the IPARS Factory, the SPSA Optimization service,
and the Economic Model.

4.6 Sample Results from the Oil Reservoir Optimization Process

Sample results from the oil reservoir optimization process are shown in Figures 3 and 9. The first shows the
computed revenue for each possible well location, and the points which SPSA chooses as optimal well loca-
tions for a number of different initial guesses. Figure 9 shows the path the SPSA iterates take for a particular
initial guess. Note that, in general, starting at different initial values yields different end points, which is not

15

. Application
Application Control responses

object list Snu pois ey Users list Group chat

applications

mpit (Criine)

Ee bz Orine)

" ® PPARS Factory

Similation Model = HYDROLOGY IMPE!
Mumber of wells = 4

Start time = 0

Humber of s =1

f=0biect List for IPARS /5 = GroupChat

B otiects ery is bein rocessed
= [[ACIPARS Oil Reservolr Simulation g b LR

E-L] Views

T e speoetats |l IPARS Reserv 0ir Simulation A

| woms_|[rresee sy st Shate

i dusHistory [4 wells, shoul try on 2 processors
| Sacomens sl s ot seracrowiessans

Figure 8: Graphical user interface of the Expert’s portal.

Well position : X=(0AB80L Y=[0,51200

I T - —
b -GE0F 3 1 1 ! =
) s

B 065 T T I T i
4

;0701 | — f - —
boarst t - t ! —
¥

8 "'ﬁ.-_so - H H : H —d
F+G.BE - : } : ! I
u-ggop - | | =
N

¢ 0951 : 4 . + —
II "10? 1 . ! : 4 |—

g-105F ; ,_/_"\-, 1
:-1_1_1: N\/\

Figure 9: Computed well positions and economic revenue during the optimization process.

16

suprising given that the shown surface has 72 local optima. However, in all cases we investigated, the found
optimum is within half a per cent of the global one. In view of this, the algorithm performs very favorably
and took on average only 25-30 iterations to converge.

5 Policy-driven reservoir optimization

A key objective of the research presented in this paper is to formulate policies that can be used by the
autonomic self-optimizing reservoir framework to discover, select, configure, and invoke appropriate opti-
mization services to determine optimal well locations.

The choice of optimization service depends on the size and nature of the reservoir. The SPSA algorithm
studied in this paper is suited for larger reservoirs with relatively smooth characteristics. In case of reser-
voirs with many randomly distributed maxima and minima, the VFSA algorithm studied in our previous
paper [15] can be employed during the initial optimization phase. Once convergence slows down, VFSA
can be replaced by SPSA. Alternate optimization schemes (e.g., genetic algorithms, local methods such as
Newton) can also be used if convergence breaks down. We plan to study and characterize the behavior and
interaction of these schemes in a future work.

Similarly, policies can also be used to manage the behavior of the reservoir simulator. For example, the
policy may monitor convergence of the optimizer and as it approaches the solution, it may use a finer mesh
and/or smaller timesteps. The policy may even attempt to activate other numerical algorithms (e.g., time
discretization schemes, solvers) or physical models (e.g., one-, two-, or three-phase flow, geomechanical).
Moreover, the policy may replace IPARS by some other simulator capable of using unstructured grids or
adaptive mesh refinement in order to generate more accurate simulations.

In an alternative scenario, policies may be defined to enable various optimizers to execute concurrently
on dynamically acquired Grid resources, and select the best well location among these based on some metric
(e.g., estimated revenue, time or cost of completion). This aspect is important for speeding up the search, or
for studying the effects of parameters that were not included at the start of the optimization. For instance,
some topological difficulties or unforeseen costs for drilling a well may eventually arise in some parts of the
reservoir. In such a case, the expert may decide to stop the process based on a small set of nearly optimal
solutions or perturb the course of the optimization (e.g. by the introduction or removal of decision variables,
constraints or trial points).

The autonomic reservoir framework and the underlying Pawn peer-to-peer middleware substrate pre-
sented in this paper enable the decoupling of services and the separation of policy and mechanism. This
allows external policies, such as those outlined above, to be dynamically defined and used to manage the
behavior of the components/services, and to orchestrate interactions between them to achieve overall opti-
mization goals of the reservoir.

6 Summary and Conclusions

In this paper we presented the design, development, and operation of a prototype autonomic self-optimizing
reservoir framework that uses peer-to-peer interactions between applications and services on the Grid to
enable the autonomic optimization of well placement and operation to maximize overall revenue. The appli-
cation consisted of instances of distributed multi-model, multi-block reservoir simulation components pro-
vided by IPARS, stochastic optimization services provided by SPSA, economic modeling services, real-time
services providing current economic data (e.g. oil prices), archives for already computed data, and experts
(scientists, engineers) connected via pervasive collaborative portals. It was built on the Pawn P2P substrate,
which provided JXTA-based peer-to-peer messaging services, and the Discover computational collabora-
tory, which combines Grid infrastructure services provided by Globus and interaction and collaboration

17

services. Sample outputs from the optimization process were presented that showed how the interaction of
all these components can be used to solve the economically important question of where to place a new well
into an existing reservoir. This problem is computationally very challenging due to the enormous complex-
ity of optimizing a complicated mathematical model, and can benefit from the distributed and autonomous
features of the approach presented here. Furthermore, the formulation of policies for the autonomic selec-
tion, configuration and invocation of optimization services are necessary ingredients of adaptively changing
the components used in the optimization.

The prototype autonomic Grid application presented in this paper demonstrated the potential of the
emerging Grid infrastructure and its support for secure and seamless interactions, enabling a new generation
of autonomic applications. These applications will be based on peer-to-peer interactions between applica-
tion components, Grid services, resources, and data, and will use separately defined policies to orchestrate
these interactions and enable self-managing and self-optimizing behaviors. We believe that such autonomic
behaviors will be critical for addressing the scale, complexity, heterogeneity and dynamism inherent in Grid
applications and environments.

Acknowledgments

The research presented in this paper is supported in part by the National Science Foundation (NSF) via grants
numbers ACI 9984357 (CAREERS), EIA 0103674 (NGS), NSF EIA-0121523/EIA-0120934 (ITR), ANI-
0335244 (NRT), CNS-0305495 (NGS) and by DOE ASCI/ASAP (Caltech) via grant number 82-1052856.

References

[1] T. Arbogast, M. F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with tensor
coefficients as cell-centered finite differenc€AM J. Numer. Anal34(2):828—-852, 1997.

[2] K. Aziz and A. Settari. Petroleum Reservoir SimulatiomApplied Science Publishers Ltd., London,
1979.

[3] V. Bhat and M. Parashar. Discover middleware substrate for integrating services on the grid. In
T. M. Pinkston and V. K. Prasanna, editdPspceedings of the 10th International Conference on High
Performance Computing (HiPC 20Q3Jolume 2913 ofLecture Notes in Computer Sciengages
373-382. Springer-Verlag, December 2003.

[4] A. C. Bittencourt and R. N. Horne. Reservoir development and design optimizatid®@PEnAnnual
Technical Conference and ExhibitioBan Antonio, Texas, October 1997. SPE 38895.

[5] G. Chavent and J. JaffreMathematical models and finite elements for reservoir simulatidarth-
Holland, Amsterdam, 1986.

[6] I. Foster and C. Kesselman, editor&lobus: A Toolkit Based Grid Architectyrpages 259-278.
Morgan Kaufman, 1999.

[7] I. Foster and C. KesselmanThe Grid 2: Blueprint for a New Computing Infrastructurd/iorgan
Kaufman, 2004.

[8] B. Guyaguler and R. N. Horne. Uncertainty assessment of well placement optimizat®fPEIAnnual
Technical Conference and Exhibitiodew Orleans, Louisiana, September, October 2001. SPE 71625.

[9] R. Helmig. Multiphase flow and transport processes in the Subsurf8peinger, 1997.

18

[10] IPARS: Integrated Parallel Reservoir Simulator. http://www.ices.utexas.edu/CSM.

[11] S. Lacroix, Y. Vassilevski, and M. F. Wheeler. Iterative solvers of the Implicit Parallel Accurate
Reservoir Simulator (IPARSNumerical Linear Algebra with Applicationd:537-549, 2001.

[12] H. Liu and M. Parashar. DIOS++: A framework for rule-based autonomic management of distributed
scientific applications. In H. Kosch, L. Boszormenyi, and H. Hellwagner, editsogeedings of the
9th International Euro-Par Conference (Euro-Par 2008plume 2790 ol ecture Notes in Computer
Sciencepages 66—73. Springer Verlag, 2003.

[13] Q. Lu, M. Pesziiska, and M. F. Wheeler. A parallel multi-block black-oil model in multi-model
implementation SPE Journal7(3):278-287, September 2002. SPE 79535.

[14] V. Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An environment for Web-based
interaction and steering of high-performance scientific applicati@wncurrency and Computation:
Practice and Experiencd 3(8-9):737—754, 2001.

[15] V. Matossian, V. Bhat, M. Parashar, M. Pegla, M. Sen, P. Stoffa, and M. F. Wheeler. Autonomic oil
reservoir optimization on the griConcurrency and Computation: Practice and Experiermaeepted
for publication, 2003.

[16] R. Muralidhar and M. Parashar. A distributed object infrastructure for interaction and ste€ong.
currency and Computation: Practice and Experient®(10):957-977, 2003.

[17] Y. Pan and R.N. Horne. Improved methods for multivariate optimization of field development schedul-
ing and well placement design. BPE Annual Technical Conference and Exhibitibiew Orleans,
Louisiana, 27-30, September 1998. SPE 49055.

[18] M. Parashar, G. von Laszewski, S. Verma, K. Keahey J. Gawor, and N. Rehn. A CORBA commodity
grid kit. Special Issue on Grid Computing Environments, Concurrency and Computation: Practice
and Experiencgl4:1057-1074, 2002.

[19] M. Parashar, J. A. Wheeler, G. Pope, K. Wang, and P. Wang. A new generation EOS compositional
reservoir simulator. Part Il: Framework and multiprocessindzdarteenth SPE Symposium on Reser-
voir Simulation, Dallas, Texapages 31-38. Society of Petroleum Engineers, June 1997.

[20] D. W. Peaceman.Fundamentals of numerical reservoir simulatiofElsevier Scientfic Publishing
Company, Amsterdam-Oxford-New York, first edition, 1977.

[21] M. Peszyiska, Q. Lu, and M. F. Wheeler. Multiphysics coupling of codes. In L. R. Bentley, J. F. Sykes,
C. A. Brebbia, W. G. Gray, and G. F. Pinder, editadBamputational Methods in Water Resources
pages 175-182. A. A. Balkema, 2000.

[22] Project IXTA:http://www.jxta.org , 2001.

[23] T. F. Russell and M. F. Wheeler. Finite element and finite difference methods for continuous flows in
porous media. In R. E. Ewing, editdrhe Mathematics of Reservoir Simulatipages 35-106. SIAM,
Philadelphia, 1983.

[24] M. Sen and P. StoffaGlobal Optimization Methods in Geophysical Inversig&isevier, 1995.

[25] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-
mation. |[EEE Trans. Autom. ContrpB7:332-341, 1992.

19

[26] J. C. Spall. Adaptive stochastic approximation by the simulateous perturbation méHade Trans.
Autom. Contr.45:1839-1853, 2000.

[27] J. C. Spall. Introduction to stochastic search and optimization: Estimation, simulation and control
John Wiley & Sons, Inc., Publication, New Jersey, 2003.

[28] P. Wang, I. Yotov, M. F. Wheeler, T. Arbogast, C. N. Dawson, M. Parashar, and K. Sepehrnoori. A new
generation EOS compositional reservoir simulator. Part I: Formulation and discretizatidfourin
teenth SPE Symposium on Reservoir Simulation, Dallas, Tpgaes 55-64. Society of Petroleum
Engineers, June 1997.

[29] M. F. Wheeler and M. Pesiagka. Computational engineering and science methodologies for modeling
and simulation of subsurface applications. Advances in Water Resources, in press.

[30] M. F. Wheeler, M. Pesfska, X. Gai, and O. EI-Domeiri. Modeling subsurface flow on PC cluster. In
A. Tentner, editorHigh Performance Computingages 318-323. SCS, 2000.

[31] M. F. Wheeler, J. A. Wheeler, and M. Pefigka. A distributed computing portal for coupling multi-
physics and multiple domains in porous media. In L. R. Bentley, J. F. Sykes, C. A. Brebbia, W. G.
Gray, and G. F. Pinder, editor€omputational Methods in Water Resourcpages 167-174. A. A.
Balkema, 2000.

[32] B. Yeten, L. J. Durlofsky, and K. Aziz. Optimization of nonconventional well type, location, and
trajectory. SPE Journal8(3):200-210, 2003. SPE 86880.

20

