Engineering with Computers
DOI 10.1007/500366-006-0035-9

ORIGINAL ARTICLE

Models, methods and middleware for grid-enabled multiphysics

oil reservoir management

H. Klie - W. Bangerth * X. Gai - M. F. Wheeler -
P. L. Stoffa - M. Sen - M. Parashar - U. Catalyurek -
J. Saltz - T. Kure

Received: 19 April 2005/ Accepted: 1 February 2006
© Springer-Verlag London Limited 2006

Abstract Meeting the demands for energy entails a
better understanding and characterization of the fun-
damental processes of reservoirs and of how human
made objects affect these systems. The need to perform
extensive reservoir studies for either uncertainty
assessment or optimal exploitation plans brings up
demands of computing power and data management in
a more pervasive way. This work focuses on high per-
formance numerical methods, tools and grid-enabled
middleware systems for scalable and data-driven
computations for multiphysics simulation and decision-
making processes in integrated multiphase flow appli-
cations. The proposed suite of tools and systems con-
sists of (1) a scalable reservoir simulator, (2) novel
stochastic optimization algorithms, (3) decentralized
autonomic grid middleware tools, and (4) middleware
systems for large-scale data storage, querying, and re-

H. Klie (X)) - X. Gai - M. F. Wheeler

Center for Subsurface Modeling, The University of Texas
at Austin, Austin, TX 78712, USA

e-mail: klie@ices.utexas.edu

P. L. Stoffa - M. Sen
Institute for Geophysics, The University of Texas
at Austin, Austin, TX 78759-8500, USA

M. Parashar
TASSL, Department of Electrical and Computing
Engineering, Rutgers University, Piscataway, NJ, USA

U. Catalyurek - J. Saltz - T. Kurc
Department of Biomedical Informatics,
Ohio State University, Columbus, OH 43210, USA

W. Bangerth
Department of Mathematics, Texas A&M University,
College Station, TX 77843-3368, USA

trieval. The aforementioned components offer enor-
mous potential for performing data-driven studies and
efficient execution of complex, large-scale reservoir
models in a collaborative environment.

Keywords Reservoir simulation - Multiphysics -
Grid computing - Optimization - Data management -
Large-scale computing

1 Introduction

Simulations oriented to accurately and efficiently pre-
dict the flow of oil and gas in subsurface reservoirs is
transcendental in hydrocarbon exploitation. Through-
out several years, the constant evolution of computing
power has allowed specialists to increase the resolution
of models and the inclusion of increasingly more
complex processes taking place in the reservoir. The
inherent complexity, heterogeneity and dynamism of
oil reservoirs, however, require new approaches to
developing applications for management and under-
standing of these systems. Current technologies are
pushing the envelope to view the reservoir system as a
data-driven framework capable of managing and
adapting itself based on their current state, available
information and their execution context. Moreover,
this data-driven framework should be such that
actionable information can be efficiently extracted
from large volumes of results generated by complex
numerical models and large quantities of data gathered
by sensors.

Therefore, a dynamic, data-driven applications sys-
tem approach offers great potential to address such
complex problems as understanding and management

@ Springer

Engineering with Computers

of reservoir systems. The fundamental process in this
paradigm is dynamic interactions between numerical
models, optimization processes, and data. Dynamic
data-driven approaches are increasingly becoming
more feasible because of the confluence of several
technologies. First, advanced sensor technologies have
improved our ability to capture data at higher resolu-
tion and faster. Second, grid computing is making
possible to realize large-scale, complex numerical
models. Grid computing infrastructure aims to
dynamically and seamlessly link powerful and remote
resources to support the execution of large scale and
disparate processes characterizing a particular prob-
lem. In order to harness wide-area network of re-
sources into a distributed system, a large body of
research has been focused on developing grid middle-
ware frameworks, protocols, and programming and
runtime environments. These efforts have led to the
development of middleware tools and infrastructures
such as Globus [1], Condor-G [2], Storage Resource
Broker [3], Network Weather Service [4], DataCutter
[5], Legion [6], Cactus [7], and Common Component
Architecture (CCA) [8], and many others [9-16]. Ini-
tiatives devoted to analyze the potentialities in grid
computing for lowering infrastructure costs and
impacting the economics of technical computing in the
oil industry have been increasingly reported in latest
conferences and journals; see e.g., special issue in The
Leading Edge [17-21], and our previous work [22-25].
Third, large storage space is becoming more affordable
thanks to off-the-shelf inexpensive disk units and
storage clusters built from commodity items.

Despite these technological advances, effective
implementation of dynamic and data-driven ap-
proaches for reservoir modeling and reservoir studies
requires several challenging issues be addressed. The
massive use of grid computing in diverse energy and
environmental applications is still in its embryonic
stages. Moreover, the design and implementation of
high performance, efficient software systems for man-
aging and analyzing large volumes of data (ranging
from a few terabytes to multiple petabytes in size) is
still a challenging problem.

This paper addresses efficiency issues by exploiting
advanced computational techniques for the autonomic,
seamless and distributed processing of intensive
numerical computations and management of large
amounts of data in reservoir simulation studies. We
illustrate how the latest advances in numerical methods
and tools, grid-enabled autonomic computing middle-
ware, and large-scale data management systems have
driven the conception of new paradigms for the accu-
rate modeling of large fields. To that end, we consider

@ Springer

(1) multiphysics applications that imply the coupling
of flow, geomechanics, petrophysics and seismics; (2)
the determination of optimal well locations; (3) the
efficient uncertainty management and, (4) the flow/
seismic data management. In all these cases, we rely
on the integrated parallel accurate reservoir simulator
(TPARS) which is based on a multiblock approach
for performing scalable simulation of multiphysics,
multiscale and multialgorithm reservoir applications.
The overall approach includes the interplay of
IPARS with discover/automate (a decentralized and
autonomic grid middleware service), geosystems data
access and management (GeoDAM; a data subsetting
and filtering system), Seine/MACE (multiblock
adaptive computational engine), and two very effi-
cient stochastic optimization algorithms such as the
SPSA (simultaneous perturbation stochastic approxi-
mation) and the VFSA (very fast simulated anneal-
ing) to work in a coordinated fashion for the data
driven intense challenge for achieving optimal
exploitation plans.

This work shows how the conjunction and software
engineering of these components offers the possibility
of developing large-scale efficient approaches to per-
form uncertainty analysis and studies leading to
opportune reservoir management decisions. We be-
lieve that the approaches discussed here can also be
applied to other fields such as environmental remedi-
ation and biomedical tissue engineering.

2 Multiphysics oil reservoir management framework

In this section, we present a framework to support
dynamic data-driven reservoir management. This data
driven multiphysics simulation framework (DDMSF)
comprises accurate, multi-resolution, multiphysics
models derivable from diverse data sources, coupled
with dynamic data-driven optimization strategies for
uncertainty estimation and decision-making. Tradi-
tionally, the estimation of model parameters and the
optimization of decision parameters have been treated
separately in decision-making applications. Moreover,
most optimization frameworks have been built under
the assumption of perfect knowledge of (noise-free)
data, forcing specialists to further tune the data when
results do not describe the phenomenon under study.
This process is unreliable and inefficient in practice,
and does not provide, in most cases, a fully unbiased
measurement of uncertainty. The DDMSF aims at
generating a functional and closely connected feedback
loop between data and simulation, driven by
optimization.

Engineering with Computers

The technical approach in the development of the

DDMSF is divided in three major components: the
dynamic decision system (DDS), the dynamic data-
driven assimilation system (DDA) and the autonomic
grid middleware (AGM). The orchestration of these
components provide the computational feedback be-
tween data and the model through optimization (see
Fig. 1).
Dynamic decision system This module utilizes the
current knowledge of a subsurface system as input and
initiates the decision-making process. It also includes
estimates of the reliability and accuracy of proposed
strategies, taking into account both numerical errors as
well as uncertainty in subsurface characterization. This
involves the formulation of objective functions, for-
ward numerical simulation models and optimization
algorithms.

The goals include the optimal scheduling, design and
deployment of observations (e.g., wells) to optimize a
desired response (e.g., optimum economic revenue,
minimum bypassed oil); and (2) fitting numerical
model output to field measured values (e.g., history
matching, seismic data and/or resistivity data fitting
together with well constraints). Finding the optimum is
often an ill-posed problem. Furthermore, due to the
complexity of running forward models, optimization

Fig. 1 Data driven

methods must minimize the number of function eval-
uations. Method that have been used with particular
success are a variant of the simulated annealing algo-
rithm, the VFSA [26, 27] and the SPSA method. [28,
29]

Dynamic data-driven assimilation and analysis sys-
tem Data are acquired from different sources and at
different times and scales. From the data manage-
ment and integration perspective, the simulation and
optimization components interact with both data
generated by simulations and data collected by field
sensors. They are driven by the assimilation and
analysis of these datasets. For example, if the infor-
mation available about the subsurface is insufficient,
then all simulations will be unreliable and result in
large error margins. Subsurface characterization with
geophysical and fluid measurements involves the
quantitative assessment of the 3D spatial distribution
of material properties such as density, P- and S-wave
velocities, electrical resistivity, permeability, porosity,
magnetic polarization, pressures, or temperatures,
from a finite set of noisy measurements. 4D seismic
surveys are of increasing use in industry for reservoir
characterization. This is combined with reservoir
modeling that leads to seismic simulations and pre-
dictions. Only by combining 4D seismics and reser-

multiphysics simulation Dynamic
framewor.k fgr subsurfgce Decision System DDMSF
characterization and oil .
reservoir management
Optimize
+ Economic revenue

+ Environmental hazard
—»

Based on the present subsurface
knowledge and a predictive model

Subsurface chara

Update knowledge |
of model

|
|
i

Improve numerical
model

Processing Middleware

Autonomic
Grid
Middleware

Grid Data Management

@ Springer

Engineering with Computers

voir simulations can pressure and production data be
matched with greater confidence as ambiguities due
to fault transmissibility and sand body connectivity
are reduced.

The datasets in subsurface characterization and oil

reservoir management are large, multi-scale, and they
are generated or collected at disparate locations. The
dynamic data assimilation and analysis component
provides support for data management, data integra-
tion, and data processing for the analysis, interpreta-
tion, storage and retrieval of these large and
heterogeneous data sets.
Autonomic grid middleware Distributed computation
engines and adaptive runtime management strategies
are required to support efficient and scalable imple-
mentations of adaptive geophysical and flow reservoir
simulations in heterogeneous, widely distributed and
highly dynamic grid environments. Control networks
with embedded software sensors and actuators are re-
quired to enable computational components to be ac-
cessed and managed externally, both interactively and
using automated policies, to support runtime moni-
toring, dynamic data injection and control. Self-man-
aging middleware services are necessary to enable
seamless interactions where the application compo-
nents, grid services, resources (systems, CPUSs, instru-
ments, storage) and data (archives, sensors) can
interact symbiotically and opportunistically as peers.
These middleware services must support autonomic
behaviors so that interactions and feedback between
scales, models, simulations, sensor data and history
archives can be orchestrated using high-level policies
and rules to navigate the parameter space and optimize
subsurface modeling.

In summary, the optimal oil production process
involves (1) the use of an integrated multi-physics/
multi-block reservoir model (encompassing flow,
geomechanics, petrophysics and seismics) and several
numerical optimization algorithms (global, local and
hybrid approaches) executing on distributed com-
puting systems on the grid; (2) distributed data ar-
chives for historical, experimental (e.g., data from
field sensors) and simulated data; (3) grid services
that provide secure and coordinated access to the
resources and information required by the simula-
tions; (4) external services that provide data, such as
current oil market prices, relevant to the optimization
of oil production or the economic profit; and (5) the
actions of scientists, engineers and other experts, in
the field, the laboratory, and in management offices.
Figure 2 illustrates the interaction of all these com-
ponents for the optimal reservoir management.

@ Springer

In this process, item 1 is implemented by means of
IPARS. The reservoir simulator IPARS is a parallel
framework for modeling coupled multiphase flow,
reactive transport and geomechanics [30-39]. An
attractive feature of IPARS is that it allows for the
coupling of different models in different subdomains
with possibly non-matching grids [31, 35, 40, 41]. Both
forward modeling (comparison of the performance of
different reservoir geostatistical parameter scenarios)
and inverse modeling (searching for the optimal deci-
sion parameters) can greatly benefit from integration
and analysis of simulation, historical, and experimental
data (item 2). Common analysis scenarios in optimi-
zation problems in reservoir simulations involve eco-
nomic mode] assessment as well as technical evaluation
of changing reservoir properties (e.g., the amount of
bypassed oil, the concentration of oil and water). In a
grid environment, data analysis programs need to ac-
cess data subsets on distributed storage systems [42,
43]. This need is addressed by GeoDAM (see Sect. 5).
The discover/automate [22, 24, 44] autonomic grid
middleware provides the support for items 3, 4, and 5.
This middleware couples different components in a
peer-to-peer fashion for oil reservoir optimization
studies. The peer components involved include
sophisticated simulation tools (e.g., IPARS and its
coupling with other physical models), a factory com-
ponent responsible for configuring simulations, exe-
cuting them on resources on the grid, and managing
their execution; optimization service (e.g., VFSA,
SPSA and other optimization algorithms); economic
modeling services that use simulation outputs and
current market parameters (oil prices, costs, etc.) to
compute estimated revenues for a particular reservoir
configuration. These entities dynamically discover and
interact with one another as peers to achieve the
overall application objectives.

The main middleware components of the frame-
work are shown in Fig. 3. In this framework, an ex-
pert can use portals to interact with the Discover
middleware to discover and allocate appropriate re-
source, and to deploy the factory, optimization ser-
vice and economic model peers. Optimizer instances
can get their initial inputs from data subsets provided
by the GeoDAM middleware components. During
the optimization process, multiple experts can col-
laboratively interact with optimizer instances and
IPARS. After simulations and optimization processes
are completed and the results stored in the environ-
ment, additional analysis of the results can be carried
out using GeoDAM data subsetting and data pro-
cessing capabilities.

Engineering with Computers

olldboration/decisions

Fig. 2 Interaction of the several components in DDMSF

3 Description of the multiphysics components
and optimization

In this section, we briefly describe the numerical
models that constitutes the multiphysics model in
IPARS: different flow models, petrophysical descrip-

Fig. 3 The tools, methods,
and middleware components
of the dynamic data driven
multiphysics simulation
framework for subsurface
characterization and oil
reservoir management

Multiphysics Simulation
Optimization Methods

IPARS
Seismic Simulation

SPSA

VFSA

s N

tion, geomechanics and seismics. We also devoted a
brief description of the SPSA and VFSA approaches as
two novel stochastic optimization algorithms suitable
for large-scale implementations. The incorporation of
all these models into a single simulation and optimi-
zation unit entails the efficient application of the right
physics at the right region of the reservoir domain. This
also aids at providing a continuous workflow for finding
optimal operating scenarios (in terms of profitability,
safety or environmental impact) in contrast to the
traditional view of integrating a more prolonged
assemble of tasks in oil reservoir decision making.
Figure 4 illustrates how the integration of different
processes into a single multiphysics unit may simplify
and speedup the decision loop via optimization.

3.1 Reservoir simulation: flow model

The subsurface model consists of a complex interaction
of fluid and rock properties that evolves with time. To
be able to achieve the desired efficiency and accuracy
in the representation of the different phenomena that
take place in the subsurface, IPARS offers sophisti-
cated simulation components encapsulating complex
mathematical models of the physical interaction in the
subsurface, such as geomechanics, chemical reactions,
different porous flow processes (single phase, oil-wa-
ter, air—water, three-phases, compositional), solution

Grid Computing
Resources

Autonomic Computational Engine
Grid Middleware Substrate

Accord

Meteor

Discover Collaboratory

Data Management and Processing

Middleware

GeoDAM
STORM

DataCutter

/

l

Seismic Simulation Datasets
Reservoir Simulation Datasets

Grid Storage Nodes

Storage Clusters

@ Springer

Engineering with Computers

Fig. 4 Integrating multiple
processes for the optimized
oil management

]

Generation of I

Sufolocel |

Dynamic
Resenvoir Simulation

Gassman/ |
Biot Theary |

Geophysical
modeling

Poor agrosmoent

Optimized Field

algorithms (IMPES, fully implicit) and scales [30-39].
An attractive feature of IPARS is that it allows for the
coupling of different models in different subdomains
with possibly non-matching grids [31, 35, 40, 41]. It uses
state-of the-art solvers and runs on parallel and dis-
tributed systems. Solvers for nonlinear and linear
problems include Newton-Krylov methods enhanced
with multigrid, two-stage and physics-based precondi-
tioners [45]. It can also handle an arbitrary number of
wells each with one or more completion intervals.

3.2 Multiblock and Seine/MACE

The multiblock approach From the conceptual and
computational standpoint, different models and flow
interactions may take place in the same domain at
different spatial and temporal scales. In order to deal
with the accurate and efficient solution of these prob-
lems, the spatial physical domain is decomposed (i.e.,
decoupled) in different blocks or subdomains. Domain
decomposition algorithms with non-overlapping do-
mains provide an useful approach for spatial coupling/
decoupling. A subsurface flow example is the multi-
block mortar methodology described in [35, 38, 40, 46—
48]. This approach allows for the coupling of different
physical processes in a single simulation. Physically

@ Springer

Traditional time-lapse data procedure

Integrated IPARS-time-lapse data framework

[

Generation of
Static Model

Dynamic coupled
IPARS
geomechanics and
geophysical
modeling

Poor agreement

Time-lapse
data

Time-lapse
data

Optimization

Good agreement

Optimized Field

driven matching conditions are imposed on block
interfaces in a numerically stable and accurate way
using mortar finite element spaces.

Some of the computational advantages of the mul-
tiblock approach are as follows: (1) multiphysics, dif-
ferent physical processes/mathematical models in
different parts of the domain may be coupled in a
single simulation (e.g., coupling single-phase, two-
phase, and three-phase flows); (2) multinumerics, dif-
ferent numerical techniques may be employed on dif-
ferent subdomains (e.g., coupling mixed finite element
and discontinuous Galerkin (DG) methods, explicit,
adaptive implicit and fully implicit formulations); (3)
multiscale resolution and adaptivity, highly refined re-
gions may be coupled with more coarsely discretized
regions, dynamic grid adaptivity may be performed
locally on each block; and (4) multidomains, highly
irregular domains may be described as unions of more
regular and locally discretized subdomains with the
possibility of having interfaces with non-matching
grids. The latter allows for the construction of grids
that follow large-scale geological features such as
faults, heterogeneous layers, and other internal
boundaries. This is critical for discretization accuracy.
In addition, the appropriate choice of physical models
and numerical methods can reduce substantially the

Engineering with Computers

computational cost with no loss of accuracy. The
multiblock approach leads to coarse level parallel
computations of a domain decomposition type, i.e., it
may be implemented efficiently on massively parallel
computers with near optimal computational load bal-
ance and minimal communication overhead. Figure 5
illustrates the capabilities of the multiblock approach.
When coupling multiple physics and/or multiple
domains (which may have their own grid and timestep)
through interfaces, one must develop appropriate
transmission or matching conditions on the interface.
One approach is the use of mortar finite element
methods [31, 33, 34, 39-41, 49-51]. The interfaces be-
tween blocks are filled with mortars, elements of a fi-
nite element space called the mortar space. Mortar
finite elements also lend themselves to multiscale res-
olution, as one can couple highly refined regions where
one wants to capture fine scale phenomena, with more
coarsely refined regions through the use of a mortar
space [35], thus allowing for nonmatching grids be-
tween subdomains. A posteriori error estimates for
MMFE methods and algorithms for adapting the
mortar and subdomain grids have been developed in
[52]. It is worth to add, that besides supporting the use
of mortar elements, IPARS also comprises discretiza-
tions based on DG approximations for the purpose of
coupling different physical phenomena and/or different
grids [53].
Seine/MACE shared-space interaction framework and
multiblock computational engine A key challenge
presented by the multiblock formulations described
above are the dynamic and complex communication

Explicit | Eully

Implicit
Adaptive F———
ﬁlmpﬁli.cit Sequential
g

o

o

Fig. 5 An illustration of the multiblock paradigm; from left to
right, from top to bottom: multiphysics, multialgorithm, multi-
scale and multidomain

and coordination patterns resulting from the multi-
physics, multinumerics, multiscale and multidomain
couplings. These communication/coordination patterns
depend on the state of the subsurface phenomenon
being modeled are determined by the specific numer-
ical formulation, domain decomposition and/or sub-
domain refinement algorithms used, etc., and are
known only at runtime. Implementing these commu-
nication and coordination patterns using commonly
used parallel programming frameworks is non-trivial.
Message passing frameworks such as MPI [54], which
are the most widely used paradigm, require matching
sends and receives to be explicitly defined for each
interaction. Programming frameworks based on shared
address spaces provide higher-level abstractions that
can support dynamic interactions. However, scalable
implementation of global shared address spaces re-
mains a challenge.

Associative shared spaces (e.g., tuple spaces) have
been shown to provide a very flexible and powerful
mechanism for extremely dynamic communication and
coordination patterns [55]. In this model, processes
interact by sharing tuples in an associative shared tuple
space. A tuple is a sequence of fields, each of which has
a type and contains a value. The producer of a message
formulates the message as a tuple and places it into the
tuple space. The consumer(s) can associatively look up
relevant tuples using pattern matching on the tuple
fields. The tuple space model provides two funda-
mental advantages: simplicity and flexibility. The
communicating nodes need not care about who pro-
duced or will consume a tuple. Furthermore, the
communicating processes do not have to be temporally
or spatially synchronized. This decoupling allows the
model to effectively support dynamic communication/
coordination. Additionally, the model is accompanied
with a general coordination language, such as Linda,
which defines a set of extremely simple and clear
primitives that present a friendly interface to pro-
grammers. However, scalable implementation of tuple
spaces remains a challenge. In a pure tuple space
environment, all the communication passes through a
logically centralized tuple space with a relatively slow
associative lookup mechanism [56], which is an inher-
ent bottleneck impeding scalability.

Seine/MACE [57, (L. Zhang and M. Parashar, sub-
mitted)] provides a dynamic geometry-based shared
space model to support parallel multiblock simulations
by building on the tuple space model and extending it
to support geometry-based object sharing semantics,
space dynamism, and scalable realizations. The Seine
model builds on two key observations: (a) formulations
of most scientific and engineering applications are

@ Springer

Engineering with Computers

based on geometric multi-dimensional domains (e.g., a
grid or a mesh) and (b) interactions in these applica-
tions are typically between entities that are geometri-
cally close in this domain (e.g., neighboring cells, nodes
or elements). Rather than implementing a general and
global associative space, Seine defines geometry-based
transient interaction spaces, which are dynamically
created at runtime, and each of which is localized to a
sub-region of the global geometric domain. Each tran-
sient interaction space is defined to cover a closed region
of the application domain described by an interval of
coordinates in each dimension. The interaction space
can then be used to share objects between nodes whose
computational sub-domains geometrically intersect
with that region. To share an object using the interaction
space, nodes do not have to know of, or synchronize with
each other at the application layer. Sharing objects in
the Seine model is similar to that in a tuple space model.
Furthermore, multiple shared spaces can exist simulta-
neously in the application domain.

The Seine/MACE programming interface provides
operators to initialize and access the shared spaces.
These include init, register, put, get, and rd, as listed in
Table 1. The Seine runtime is initialized using the init
operator. The creation/destruction of a space does not
require global synchronization and processors can
individually and dynamically join or leave a space at
runtime. A processor joins a space by registering its
region of interaction. A processor leaves a space by de-
registering the relevant region. When the last processor
associated with a space de-registers, the space is de-
stroyed. A processor inserts an object into the shared
space using the put operator, which is functionally
similar to out in Linda. A processor can retrieve an
object using the get operator, which is functionally
similar to in in Linda. The get operator is blocking and
will wait until a matching object is written into the

Table 1 Seine/MACE programming interface

Operators Function description Linda
init Uses a bootstrap mechanism n/a
to initialize the Seine runtime system
register Registers a region with the n/a
Seine framework. Based on
the geometric descriptor registered,
a reference to an existing space
or a newly created space is returned
put Inserts an object into the shared space out
get Removes an object from the shared space. in
The get operator is blocking
rd Copies an object from the shared space rd

without removing it from the
space. Multiple rd can be simultaneously
invoked on an object

@ Springer

space. The rd operator is similar to get, except that
unlike get, the object is not removed from the space.
Arguments to these operators include a geometry
descriptor to identify the space of interest and a tag to
identify the object of interest.

The implementation of a Seine/MACE framework
complements existing interaction frameworks (e.g.,
MPI, OpenMP) and provides scalable geometry-based
shared spaces for dynamic runtime coordination and
localized communication. This framework uses the
Hilbert Space Filling Curve, a locality preserving
recursive mapping from a multi-dimensional coordi-
nate space to a 1D index space, to construct a distrib-
uted directory structure that enables efficient
geometric region registration and lookup of objects in
the shared space. An experimental evaluation on up to
512 processors demonstrates both scalability and low
operational overheads. Details of the implementation
as well as experimental evaluation of Seine/MACE can
be found (L. Zhang and M. Parashar, submitted).

3.3 Coupling flow, geomechanics and seismics

Flow, mechanics, and seismics are all coupled in the
simulation of subsurface processes: a depletion or
injection of fluids will change the pressure of a reser-
voir, and may also affect the mechanical properties of
the rock matrix. These changes in turn will lead to a
deformation of the reservoir, which in turn has an ef-
fect on fluid pressures. Finally, modified rock proper-
ties and a different geometry affect seismic reflections,
wave amplitudes and two-way times which can be
turned to visualize some of the subsurface changes
using seismic imaging.

Within IPARS, fluid flow is described using single-
or multiphase flow equations. However, in order to
couple flow, geomechanics, and seismics, we need a
relationship describing the correspondence between
flow and mechanical properties. We will briefly outline
such description in the following subsections.
Petrophysical model The purpose of fluid substitution
is to simulate the effect of changes in the reservoir fluid
properties on the isotropic elastic parameters. This
analysis is usually accomplished by the use of Biot—
Gassman theory. Applications include: time-lapse
feasibility studies; prediction of amplitude and AVO
(amplitude vs. offset) anomalies; and invasion correc-
tions for better synthetic seismograms.

The Biot-Gassman theory describes the seismic
velocity changes resulting from changes in pore-fluid
saturations. The theory is mainly supported by the
dependence that seismic velocities have with respect to
saturated, dry, fluid and rock matrix bulk modulus, and

Engineering with Computers

shear modulus [58]. The moduli are used to calculate
elastic stiffness which defines wave propagation
velocities. Other rock properties include porosity,
shale volume, and grain density. Rock properties can
be obtained from well logs, laboratory measurements
of core properties, and correlations.

Geomechanics model The effects of geomechanics on
seismic arrival changes have been observed in both
numerical calculations and time-lapse (4D) seismic
field monitoring of reservoirs undergoing depletion.
For strongly stress-sensitive formations, reservoir
characterization requires the integration of seismic
surveillance and geomechanics analysis.

Different coupling methods for flow and geome-
chanics can be categorized as decoupled, explicitly
coupled, iteratively coupled and fully coupled. Dean
et al. [59] compared different coupling techniques in
terms of efficiency and accuracy. Their numerical re-
sults indicated that the iterative method could be as
accurate as a fully coupled scheme if a sufficiently tight
tolerance is specified. For most reservoir compaction/
subsidence problems it is more efficient than the fully
coupled scheme, even though it takes more Newton
iterations to converge. In [60], Gai demonstrated that
iterative coupling may be viewed as a special case of
the fully coupled method, thus it is unconditionally
stable and does not have the time-step constraint as the
explicit method does.

In the iterative coupling technique, the diffusion and
elasticity operator are separated first by operator
splitting. The decoupled equations are then solved
sequentially at each nonlinear iteration as shown in
Fig. 6. First the flow model solves the mass balance
equations for pressure and concentrations by neglecting
rock deformation effects. Then the geomechanics
model uses the updated pressure and concentrations
to compute displacements and stresses. The current
iteration is terminated by updating the porosity
according to a fluid fraction equation that depends on
the computed pressures and fluid velocities The flow
model will take the new porosity values and start
another nonlinear iteration. Iteration continues until a
given tolerance on residuals and pore volume is satisfied.

The effects of geomechanics on seismic arrival
changes have been observed in both numerical calcu-
lations and time-lapse (4D) seismic field monitoring of
reservoirs undergoing depletion [61-63]. The measured
time-shifts are mainly caused by stress redistributions
in the pay-zone and its surroundings as a result of
reservoir compaction. To account for the effects of
stress changes on seismic response, geomechanics
studies need to be integrated into 4D seismic inter-
pretations for strongly stress-sensitive formations.

Seismic model Seismic modeling is carried out using
FDPSV and PWAVE3D codes. FDPSV is a time do-
main explicit staggered grid finite difference code that
solves a first-order stress—displacement system assum-
ing linear elasticity. The algorithm is very general and
is valid for generally heterogeneous isotropic media.
On the other hand, PWAVE23D is a fast algorithm that
works in frequency wave number space. Here the
medium is split into two parts. The background is as-
sumed to be 1D to which perturbations are applied to
approximate 3D variations.

Solving the flow model equations using the petro-
physical relations and plugging in the corresponding
seismic velocities to either FDPSV or PWAVE3D, we
can compute the effect of changes in flow properties on
seismic properties. We do so in Fig. 7: the top panels
show P-wave velocities for an oil reservoir into which
gas is injected at the left; obviously, the gas extends at
the top of the oil reservoir towards the right, reducing
the wave velocities in those areas where the gas con-
centrations are highest. At each time, we can use a
seismic modeling code to predict the seismic signature
of the reservoir (bottom row at different resolution
levels). The effects of the changes in the reservoir are
clearly visible in the seismic predictions. The incorpo-
ration of the geomechanics model into this computa-
tion add further prediction capabilities with respect to
changes in the pore volume. The possibility to predict
and monitor such changes using seismics in oil reser-
voirs that are currently in production, as well as the
ability to interpret the changes in seismic signatures, is
an important aspect of current research in geophysics
and petroleum engineering.

The integration of flow, petrophysics, geomechanics
and seismics models is key to achieve a more efficient
and robust decisions as it was already depicted in
Fig. 4.

Using these relations, we can compute the effect of
changes in flow properties on seismic properties. We
do so in Fig. 7: the top panels show P-wave velocities
for an oil reservoir into which gas is injected at the left;
obviously, the gas extends at the top of the oil reservoir
towards the right, reducing the wave velocities in those
areas where the gas concentrations are highest. At each
time, we can use a seismic modeling code to predict the
seismic signature of the reservoir (bottom row). The
effects of the changes in the reservoir are clearly visible
in the seismic predictions. The possibility to predict
and monitor such changes using seismics in oil reser-
voirs that are currently in production, as well as the
ability to interpret the changes in seismic signatures, is
an important aspect of current research in geophysics
and petroleum engineering.

@ Springer

Engineering with Computers

Iterative Coupling

|

start time step n+1

2| ¢ |

é_ 2 flow model

o % |et I PEL N Lt
gl £ poroelastic model
=i | geet

ol £ No

.5. E conv.

o| E | Yes

updalte f;

Fig. 6 Iterative coupling of reservoir flow and geomechanics

AR
ﬂ‘ﬁ

! TR iy

o b PR
H

W ieY

i "iil'!lli! A 1 A ! il o 'I’:""n"i;:""f'"""'ﬂ""| i |r-p|r||1r|||n|r|-|r||II||||I‘|IMPI'|'
i ' i I

il['
N

| | : j
[IR LA i - IR
2 Iy | il |4 | | | |
ALY AL R 0N WP R P ittt sl o D
|I| 3] l | | : “I] i

Fig. 7 V,, and the corresponding seismic response after 100 days
(left) and 400 days (right) of flow simulation (top). Correspond-
ing synthetic seismograms (bottom) at different resolution levels

3.4 Optimization algorithms
The DDMSF supports a family of different optimiza-
tion algorithms. In [64] some of the authors describe

experiences in comparing different approaches for the
optimal well placement problem. The two algorithms

@ Springer

we describe here and their extensions and hybridiza-
tion with other algorithms open a promising avenue of
research for large-scale applications.

Simultaneous perturbation stochastic — approxima-
tion This method [29] is a random-direction version
of the Kiefer—Wolfowitz algorithm. At each iteration,
we simultaneously perturb all N components of the
present iterate by generating N independent and
identically distributed (i.i.d.) symmetric random vari-
ables (commonly) following a Bernoulli (i.e. +Ax) or
pseudo-Bernoulli distribution. The gradient of the
objective function is the estimate to be the finite dif-
ference approximation to the derivative in the direc-
tion of this perturbation. Therefore, the algorithm
requires only two parallel function evaluations, i.e.
simulations in our case, per iteration. A step in the
descent direction is taken with a step length that is
given by the product of the approximate value of the
gradient and a factor that decreases with successive
iterations.

Besides its efficiency, the SPSA algorithm is

appealing since it works as a variant of the nonlinear
steepest descent method if the objective function is
deterministic, but is equally effective as a stochastic
algorithm if the objective function contains noise. It
can even be converted to a global optimization algo-
rithm by cautious injection of noise into the objective
function. Recently, SPSA has been topic of interest in
several soft computing applications such as neural
networks, see e.g., [65, 66]. Grid computing imple-
mentations for reservoir optimization and management
have been reported in [22, 23, 25].
Very fast simulated annealing This algorithm shares
the property of other stochastic approximation algo-
rithms in relying only on function evaluations. Simu-
lated annealing attempts to mathematically capture the
cooling process of a material by allowing random
changes to the optimization parameters if this reduces
the energy (objective function) of the system. While
the temperature is high, changes that increase the en-
ergy are also likely to be accepted, but as the system
cools (anneals), such changes are less and less likely to
be accepted.

Standard simulated annealing randomly samples
the entire search space and moves to a new point if
either the function value is lower there; or, if it is
higher, the new point is accepted with a certain
probability that decreases over time (controlled by
the temperature decreasing with time) and by the
amount by which the new function value would be
worse than the old one. On the other hand, VFSA
also restricts the search space over time, by increas-
ing the probability for sampling points closer rather

Engineering with Computers

than farther away from the present point as the
temperature decreases. The first of these two parts of
VFSA ensures that as iterations proceed we are more
likely to accept only steps that reduce the objective
function, whereas the second part effectively limits
the search to the local neighborhood of our present
iterate as we approach convergence. The rates by
which these two probabilities change are controlled
by the ‘“schedule” for the temperature parameter;
this schedule is used for tuning the algorithm. VFSA
has been used successfully in several geophysical
inversion applications [27, 67]. Alternative description
of the algorithm can be found in [26].

Both SPSA and VFSA are gradient-free, non-
intrusive optimization algorithms. This feature allows
us to achieve both modularity and flexibility of using
them interchangeably in a black-box fashion. More-
over, they are both suitable for performing a systematic
and dense sampling on those regions that are most
likely to lead a global optimal solution. Construction of
surrogate models out of this sampling (i.e., local re-
sponse surface metamodels) are convenient for even-
tually replacing the behavior of the simulation model
by a cheaper computational model. This is key for
generating faster responses for decision making and
uncertainty analysis in our DDMSF approach.

4 Autonomic computational engine and grid
middleware substrate

Emerging knowledge-based and dynamic data-driven
geosystem management and control applications,
such as the applications described in this paper,
combine computations, experiments, observations,
and real-time data, and are highly heterogeneous and
dynamic in their scales, behaviors, couplings and
interactions. Furthermore, the underlying enabling
computational and information grid is similarly het-
erogeneous and dynamic, globally aggregating large
numbers of independent computing and communica-
tion resources, data stores and sensor networks. To-
gether, these characteristics result in complexities and
challenges that require a fundamentally different
approach to how the applications are formulated,
developed and managed—one in which applications
are capable of managing and adapting themselves in
accordance with high-level rules from the experts
based on their state, the available information and
their execution context [68]. AutoMate [44], an
autonomic computational engine for geosystem
management and control, investigates conceptual
models and implementation architectures to address

these challenges and enable the development and
execution of such self-managing grid applications.
Key research components of AutoMate are described
below.

4.1 Autonomic computational engine

The simulations targeted by this research and the
phenomena they model are inherently dynamic and
heterogeneous (in time, space, and state). Further, they
employ advanced adaptive solution techniques, such as
multi-block and adaptive mesh refinement. As a result,
the appropriate behaviors of application elements and
their compositions can no longer be statically defi-
ned—they depend on the application state, current
information and the execution context, and are know
only at runtime. As a result, applications must be able
to detect and dynamically respond during execution to
changes in both the execution environment and appli-
cation state. This requirement suggests that (1) the
applications should be composed from discrete, self-
managing components that incorporate separate spec-
ifications for all of functional, non-functional and
interaction—coordination behaviors, (2) the specifica-
tions of computational (functional) behaviors, inter-
action and coordination behaviors and non-functional
behaviors (e.g., performance, fault detection and
recovery, etc.) should be separated so that their com-
binations are composedly, and (3) the interface defi-
nitions of these components should be separated from
their implementations to enable heterogeneous com-
ponents to interact and to enable dynamic selection of
components.

The autonomic grid-based computational engine
supports self-managing and optimizing, dynamically
adaptive geosytem simulations, using sophisticated
numerical techniques based on multiblock grids,
adaptive mesh refinement and multigrid. The key
component is the Accord programming framework [69,
70] that enables the definition of autonomic compo-
nents and the dynamic composition, management and
optimization of these components using externally
defined rules and constraints. Autonomic components
in Accord export three programmable ports: a func-
tional port defining the functionalities provided or used
by the component, a control port exposing sensors and
actuators for external monitoring and steering the
component, and an operational port encapsulating
rules for managing runtime behaviors of the compo-
nent. A rule agent (possibly embedded) evaluates and
executes rules to dynamically (and consistently)
change the computational behaviors of components in
response to current context and/or external events and

@ Springer

Engineering with Computers

injected rules/constraints [71]. Accord builds on and
complement emerging components/service based pro-
gramming paradigms. Current implementations of
Accord include:

e An object based prototype of Accord, named
DIOS++ [72], implements autonomic elements as
autonomic objects by associating objects with sen-
sors, actuators and rule agents, and providing a
runtime hierarchical infrastructure consisting of
rule agents and rule engines for the rule-based
autonomic monitoring and control of parallel an d
distributed applications.

e A component based prototype of Accord, named
Accord-CCA [73], based on the DoE CCA and the
Ccaffeine framework in the context of component-
based high-performance scientific applications. This
prototype extends CCA components to autonomic
components by associating them with control and
operation ports and component managers, and
provides a runtime infrastructure of component
managers and composition managers for rule-based
component adaptation and dynamic replacement of
components.

e A service based prototype of Accord, named Ac-
cord-WS [74], based on the WS-Resource specifi-
cations, the Web service specifications, and the Axis
framework. Autonomic elements are implemented
as autonomic service by extending traditional WS-
Resources with service managers for rule-based
management of runtime behaviors and interactions
with other autonomic services, and coordination
agents for programmable communications. A dis-
tributed runtime infrastructure is investigated to
enable decentralized and dynamic compositions of
autonomic services.

Accord is currently being used to enable autonomic
simulations in subsurface modeling, combustion and
other areas [22, 24, 73, 74]. Further, the prototype
implementations interface with advanced feature-
based visualization techniques to enable both interac-
tive [75] as well as rule-based automated [76] visuali-
zation and feature-tracking.

The autonomic runtime application management
substrate provides policies and mechanisms for both
““system sensitive’” and ‘““‘application sensitive”” runtime
adaptations to manage the heterogeneity and dyna-
mism of the applications as well as grid environments.
The former are driven by the current system state and
system performance predictions while the latter are
based on the current state of application. The overall
goal is to maximize solution quality and computational
efficiency for the given set of available resources and

@ Springer

their current state. Prototype implementations [77]
have demonstrated both the feasibility and the effec-
tiveness of the autonomic runtime substrate in man-
aging the complexity, heterogeneity and dynamism of
grid environments.

4.2 Autonomic grid middleware

The content-based grid middleware supports auto-
nomic application behaviors and interactions, and to
enable simulation components, sensors/actuators, data
archives and grid resources and services to seamlessly
interact as peers. For example, simulation components
interact with grid services to dynamically obtain nec-
essary resources, detect current resource states, and
negotiate required quality of service. Further, the data
necessary for simulation is usually sparse and incom-
plete. Therefore, the simulation components must
interact with one another and with data archives and
real-time sensors to enable a better characterization
and understanding of the subsurface model. The sim-
ulation components may interact with other services on
the grid, for example, with optimization services such
as the VFSA or SPSA algorithms to optimize a given
objective function. Finally, the experts (scientist,
engineers, and managers) collaboratively access, mon-
itor, and steer the simulations and data at runtime to
drive the discovery process. The processes described
above must be autonomic in that the behaviors of the
interacting elements and their interactions must be
dynamically orchestrated using high-level polices de-
fined only at runtime. These polices will enable the
elements involved to automatically detect sub-optimal
behaviors at runtime and opportunistically orchestrate
interactions to correct this behavior.

A key component of the middleware is Meteor [78],
a scalable content-based middleware infrastructure
that provides services for content routing, content
discovery and associative interactions. The Meteor
stack consists of three key components: (1) a self-
organizing content overlay, (2) a content-based routing
engine and discovery service (Squid), and (3) the
associative rendezvous messaging substrate (ARMS).
The Meteor overlay is composed of peer nodes, which
may be any node on the grid (e.g., gateways, access
points, message relay nodes, servers or end-user com-
puters). These nodes can join or leave the network at
any time. The overlay topology is based on standard
structured overlays. The content overlay provides a
single operation, lookup (identifier), which requires an
exact content identifier (e.g., name). Given an identi-
fier, this operation locates the peer node where the
content should be stored.

Engineering with Computers

Squid [79] is the Meteor content-based routing en-
gine and decentralized information discovery service.
It support flexible content-based routing and complex
queries containing partial keywords, wildcards, and
ranges, and guarantees that all existing data elements
that match a query will be found. The key innovation
of Squid is the use of a locality preserving and
dimension reducing indexing scheme, based on the
Hilbert Space Filling Curve, which effectively maps the
multidimensional information space to the peer iden-
tifier space. Squid effectively maps complex queries
consisting of keyword tuples (multiple keywords, par-
tial keywords, wildcards, and ranges) onto clusters of
identifiers, and guarantees that all peers responsible for
identifiers in these clusters will be located. Keywords
can be common words or values of globally defined
attributes, depending on the nature of the application
that uses Squid, and are based on common ontologies
and taxonomies.

The ARMS layer [78] implements the associative
rendezvous (AR) interaction paradigm. AR is a para-
digm for content-based decoupled interactions with
programmable reactive behaviors. Rendezvous-based
interactions provide a mechanism for decoupling
senders and receivers, in both space and time. Such
decoupled asynchronous interactions are naturally
suited for large, distributed, and highly dynamic sys-
tems such as pervasive grid environments. AR extends
the conventional name/identifier-based rendezvous in
two ways. First, it uses flexible combinations of key-
words (i.e, keyword, partial keyword, wildcards and
ranges) from a semantic information space, instead of
opaque identifiers (names, addresses) that have to be
globally known. Interactions are based on content de-
scribed by these keywords. Second, it enables the
reactive behaviors at the rendezvous points to be
encapsulated within messages increasing flexibility and
enabling multiple interaction semantics (e.g., broadcast
multicast, notification, publisher/subscriber, mobility,
etc.).

4.3 The discover collaboratory

The utility and cost-effectiveness of large-scale scien-
tific and engineering process can be greatly increased
by transforming the traditional batch applications into
more interactive and collaborative ones. Closing the
loop between the user and the applications enables
experts to drive the discovery process by observing
intermediate results, by changing parameters to lead
the simulation to more interesting domains, play what-
if games, detect and correct unstable situations, and
terminate uninteresting runs early. Furthermore, the

increased complexity and multi-disciplinary nature of
these simulations necessitates a collaborative effort
among multiple, usually geographically distributed
scientists/engineers. As a result, collaboration-enabling
tools are critical for the applications processes.

The overall objective of the Discover computational
collaboratory [80, 81] is to realize a collaborative
problem solving environment that enables geographi-
cally distributed scientists and engineers to collabora-
tively monitor, interact with, and control high
performance applications in a truly pervasive manner.
Its goal is to transform high-performance simulations
into true modalities for research and instruction. Key
features of Discover include detachable, pervasive
(web based) collaborative portals for interaction and
control, mechanisms for web-based runtime visualiza-
tion, scalable interaction and collaboration servers
networks that reliably provide uniform access to re-
mote distributed applications, and security, authenti-
cation, and access control mechanisms that guarantee
authorized access to applications

5 Data management and data processing support

In order to enable dynamic data driven approaches in
simulation studies, we need support for gleaning and
extracting information from results of complex
numerical models, which are large, multi-scale in time
and space, and heterogeneous, and from data gathered
by field sensors. These datasets are stored on large-
scale storage systems, consisting of clusters of disk-
based storage nodes, and can be distributed across
multiple storage nodes in a grid environment. There
are some recent efforts to develop grid services [82, 83]
and Web services [84] implementations of database
technologies [85]. Raman et al. [86] discusses a number
of virtualization services to make data management
and access transparent to grid applications. These
services provide support for dynamic discovery of data
sources and collaboration. Bell et al. [87] develop
uniform web services interfaces for relational data-
bases. The goal is to address interoperability between
database systems at multiple organizations. Smith et al.
[88] address the distributed execution of queries in a
grid environment. In addition to supporting interop-
erability among databases, there is a need for tools that
support storage, management, and querying of very
large and distributed scientific datasets. These datasets
are oftentimes stored in a set of distributed files. In this
work, we develop data handling techniques and mid-
dleware frameworks which form the GeoDAM. Geo-
DAM encapsulates methods, optimizations, and tools

@ Springer

Engineering with Computers

in a distributed service-based software platform to
support large-scale data management, access, and
analysis and to harness the disk and memory capacity
and I/O bandwidth of very large disk-based storage
systems. It builds on two middleware components
DataCutter [5] and STORM [89, 90] that are designed
to provide high performance support for data subset-
ting and distributed data processing.

5.1 STORM and DataCutter

STORM is a service-oriented middleware that sup-
ports data select and data transfer operations on sci-
entific datasets, stored in distributed, flat files, through
an object-relational database model. In STORM, data
subsetting is done based on attribute values or ranges
of values, and can involve user-defined filtering oper-
ations. STORM services provide support to create a
view of data files in the form of virtual tables using
application specific extraction objects. STORM is
structured as a suite of loosely coupled services: (1) the
query service, where clients submit queries to the
database middleware; (2) the meta-data service, that
maintains information about datasets, and indexes and
user-defined filters associated with the datasets; (3) the
indexing service that encapsulates indexes for a dataset;
(4) the filtering service that is responsible for execution
of user-defined filters; (5) the partition generation ser-
vice that allows an application developer to implement
the data distribution scheme employed in the client
program at the server; and (6) the data mover service
which is responsible for transferring selected data ele-
ments to destination processors based on the parti-
tioning description generated by (5). STORM
implements several optimizations to reduce the exe-
cution time of queries. These optimizations include (1)
ability to execute a workflow through distributed fil-
tering operations, and (2) execution of parallelized
data transfer. Both data and task parallelism can be
employed to execute filtering operations in a distrib-
uted manner. If a select expression contains multiple
user-defined filters, a network of filters can be formed
and executed on a distributed collection of machines.
Data is transferred from multiple data sources to
multiple destination processors in parallel by STORM
data mover components.

DataCutter is a middleware system designed to
support processing of large datasets in a distributed
environment. A DataCutter application consists of a
network of interacting application-specific compo-
nents, called filters, one or more filter groups. Filters
are connected through logical streams and collectively
realize the processing structure of the application. A

@ Springer

logical stream denotes a uni-directional data flow from
one filter (i.e., the producer) to another (i.e., the con-
sumer). DataCutter allows for combined use of task-
parallelism, data-parallelism, and pipelining for
reducing execution time of data processing and analy-
sis applications. Using the DataCutter and STORM
components, the GeoDAM system provides the fol-
lowing functionality.

5.2 Data virtualization and data subsetting

A major barrier to effective utilization of distributed
collections of data sets is that the types and formats of
datasets vary widely. Most scientific datasets are stored
in files with different formats, making it difficult to
search for and extract the data of interest. In order to
provide support for data querying and manipulation on
such datasets, a level of abstraction is needed that will
separate application specific characteristics from pro-
cesses that query and analyze the data. These
abstractions are virtual tables based on object-rela-
tional database models, select queries, and distributed
data descriptors. A dataset can be viewed as a table.
The rows of the table correspond to data elements,
each consisting of a set of attributes and attribute
values. The data analysis program that process the data
can be a parallel program implemented using a dis-
tributed-memory programming paradigm. The distrib-
uted data descriptor abstraction is utilized to specify
how data elements selected from the database are to be
distributed across processing nodes. This functionality
is supported by the STORM component. The metadata
and filtering services of STORM implement the sup-
port for on-the-fly generation of virtual tables on top of
the data files of the dataset. The query and partition
generation services provide the support for select
queries and distributed data descriptors.

5.3 Support for management and processing of very
large (100 TB scale) datasets at data centers

With the help of inexpensive disk-based storage, we
are seeing the emergence of data centers with large-
scale mass storage platforms. Because of cost-perfor-
mance considerations and the need to support wide
range of applications, these mass storage platforms are
made up of multiple levels of storage with varying
capacity/bandwidth (from larger, slower disk pools to
smaller, faster disks to memory on compute cluster)
and distance from compute resources.

Several optimizations can be applied when storing
and accessing very large terabyte-scale datasets to

Engineering with Computers

minimize the time spent for retrieving the data of
interest. (1) Data declustering. Efficient access to data
depends on how well the data has been distributed
across storage units, both within a storage level and
across levels. The declustering of the dataset should be
done in such a way that a request to read a portion of
the dataset would be served by as many storage units as
possible and I/O load is distributed based on the 1/O
bandwidth of the storage units. (2) Data indexing. The
datasets can be indexed to speed up searches for data
elements that intersect a given query. When dataset
collections and datasets reach several terabytes or
petabytes in size, the index for the entire dataset can be
extremely large. As a result, it may be very expensive
to manage the index and search for data elements that
satisfy a query using a single index file. In that case, a
hierarchical multi-level indexing scheme may provide
an efficient solution. (3) Data caching and replication.
Multiple queries are expected, the data can be cached
on faster disks or in memory so that it can be accessed
much faster next time it is requested. To use aggregate
system memory effectively, the data to be cached
should be distributed across the nodes in the system,
both to provide a large data cache and to achieve
parallelism when data is accessed. Another optimiza-
tion would be partial replication of input datasets. If
most of the queries to a dataset collection accesses a
common subset of data, that portion can be extracted,
redistributed across the disks at the same or a higher
level storage to minimize search and data extraction
overheads. The support for data declustering and
indexing is provided by the meta-data and indexing
services of STORM. We have also implemented pro-
totype support for data replication and caching in
STORM.

5.4 Distributed storage and processing of data
on storage islands

It is reasonable to anticipate that the collection of
datasets comprising a simulation study will be distrib-
uted across a wide-area network, since computational
and storage demands compel the use of multiple su-
percomputers. A similar expectation is true for field
measured data. PC clusters built from low-cost, com-
modity items are increasingly becoming widely used.
With fast CPUs and high-speed interconnects, they
provide cost-effective compute nodes for computation
intensive applications. With high-capacity, commodity
disks, they create active storage nodes that enhance a
scientist’s ability to store large-scale scientific data.
Active storage clusters can be employed as storage is-
lands, which maintain data from nearby data sources.

For example, an institution may deploy a medium-size
cluster that stores datasets generated by large simula-
tions executed at a nearby supercomputer facility.

A storage island can also be set up near field sensors
that feed data into the storage system. Such configu-
rations have two main advantages. First, it reduces cost
by directing low-bandwidth links to nearby storage and
staging platform, which may have higher-bandwidth
connection to other systems. Second, with proper
middleware systems, the data islands can be utilized as
on-demand dynamic data generation platforms. That
is, we can run codes to integrate data from different
sensors or different simulations, filter out data, or on-
demand produce an aggregate data production on the
data island platform before transferring data to data
centers for data assimilation.

This functionality is supported by the DataCutter
component of GeoDAM. DataCutter allows an appli-
cation developer to implement data processing filters
and execute them storage islands near data sources.

6 Results

6.1 Evaluations Seine/MACE interaction
framework

The performance of the Seine/MACE framework has
been evaluated using a parallel multi-block oil reser-
voir simulation consisting of six 3D grid blocks and five
2D mortar-grids at the interfaces of the blocks. The
geometry-based shared spaces were used to share data
on mortar grid objects at the interfaces between blocks.
Note that the application used Seine/MACE for the
couplings between the blocks and MPI for all other
communications.

The experiments were conducted on a 64 node
Beowulf cluster. The Beowulf cluster has 64 Linux-
based computers connected by 100 Mbps full-duplex
switches. Each node has an Intel(R) Pentium-4
1.70 GHz CPU with 512 MB RAM and runs Linux
2.4.20-8 (kernel version). The experiments consist of
measuring the time for register, get and put operations
for a range of system sizes, from 8 to 64 processors. In
each case, the time for each operation was averaged
across the processors. The results are plotted in Fig. 8.
Note that the metric used here is the overall average
cost rather than the average cost per unit size.

As seen in the figures, the system startup time in-
creases as system size increases, while the times for
register, get and put operations decrease. The increase
in startup time is due to the client-server nature of
bootstrapping in the current implementation. As the

@ Springer

Engineering with Computers

system size increases, the average size of objects and
corresponding regions decreases. The reason is that as
the system size increases, each block will be mapped to
a larger number of processors and the size of the sub-
block (and corresponding shared interface) at each
processor will be smaller. Since the size of the regis-
tered region is the dominant factor contributing to the
cost of an operation, the overall cost decreases as the
system size increases.

6.2 Autonomic optimal production

The optimal well location on the grid is illustrated in
Fig. 9. Discover provides the portal for users to inter-
act with different optimization services and the IPARS
factory triggers different parallel instances of IPARS
corresponding to different well configurations. Previ-
ous computed configurations are checked in the data-
base in order to reduce the computations and guide the
optimal search to other unexplored regions. Users can
interact among themselves and the application to
analyze the progress towards the optimal solution.
The optimization of well locations using the VFSA
and SPSA optimization algorithms for two different
scenarios are presented in Fig. 10. The goal is to
maximize profits for a given economic revenue objec-
tive function. The well positions plots (top and bottom
of Fig. 10) show the oil field and the positions of the

Fig. 8 Average execution
time for system initialization

Execution time

wells. Black circles represent fixed production wells
and a gray square at the bottom of the plot is a fixed
injection well. The plots also show the sequence of
guesses for the position of the other injection well re-
turned by the optimization service (shown by the lines
connecting the light squares), and the corresponding
normalized cost value (top and bottom of Fig. 10).
Further details can be found [22, 24].

6.3 Uncertainty management

Another important aspect of autonomic optimization is
to capture the effects of uncertainty: in general, we
may have some information about the properties of an
oil reservoir, but due to its largely inaccessible nature,
our picture may be incomplete. Recent approaches to
cope with this lack of information center around sim-
ulating with several different reservoir models, all of
which fit the knowledge we have, but can be considered
different realizations of a probability space represen-
tation of what we know about the reservoir.

This creates several opportunities for parallelism, all
of which should be exploited for efficient solution of
the problem:

e Simulations for different reservoir models are inde-
pendent of each other; the only information that is
important to us are ensemble averages over our set
of stochastic realizations of our reservoir model.

Execution time per object

> 5 for system initialization 1.6 - for register operation
and per object register, get 1.22 :
and put operations on the 111% 1.5 4
64-node Beowulf cluster —~ 116 ~ 144
[$] " [4]
o 1.14 o 134
(2 (2
% 1.12 T 1.2 4
g 1.1 £
i 1.08 c 114
1.06 14
1.04
1.02 0.9 4
1< y T y T T g T J 0.8 T T T T T T T
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
number of processors number of processors
Execution time per object Execution time per object
0.9 - for get operation for put operation
0.8 A 0.9 -
’ 0.8 o
S 0.7 1 —_
@ o 0.7 -4
g 06 4 % 06 -
T 051 £ o5 -
E 0.4 - £ 04 1
0.3 A1 F 0.3 4
0.2 4 0.2 -
0.1 4 0.1 4
0 — T — T T J Y T ¥ T ¥ T v T 1
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64

number of processors

@ Springer

number of processors

Engineering with Computers

Start Parallel Instance connects fo
IPARS Instances DNSCOVER

(enerale Guesses Send Guesses

— | liquess nutin[lﬂ}
instanfat [PARS

parameler

DISCOVER
Matifies Clients
Clients interact

with IPARS

U, -

DISCOVER

Fig. 9 The autonomic oil reservoir optimization system on the

grid

Fig. 10 Convergence history
for the optimal well
placement in the grid using
VFSA algorithm (top) and
SPSA algorithm (bottom) [91]

Different initial guesses: since optimizers may find
different solutions for non-convex problems when
using different starting positions, we run several
instances of the optimization algorithm in parallel,
in order to compare the best solutions found
by each instance. These runs are completely
independent, however; we are only interested in
comparing the final result of each optimization
run.

Different optimizers: some optimization algorithms
get stuck more easily in local minima; if the prop-
erties of the solution surface as described by the
objective function are unknown, it may be prudent
to run several different optimization algorithms in
parallel, and to compare the quality of the solution
each of them finds. These runs, again, are inde-
pendent of each other.

Finally, IPARS itself can run in parallel. Each
IPARS run may therefore be distributed across a
number of machines, which will be in tight contact
during the solution of a problem.

Guess Y 264.57623 Guess Z 170.17809

¥/ Z positions for Y&Z [0,315]

First
guess on
injection

well
position

Minimizing cost

L1 0.18[}

(Final) 2
lterative o 5 jel |
guesses m
optimizing ; 014t
revenue A

Production wells

Well position : (X=[04880], Y=(0, 5120)

Final Guess

Initial Guess

n z 0121 |

e d

0 0.08[

t o006

20 30 40 50 60
Accepted Cuesses

-0 10

Fixed Injection well

x10

Q-055T
°-oso-\
e-06sf %
: -o70f |
| o7st
e -080f
;085
u-090}
n

¢ -0.95
: -1.00}

0 -105
n-1101

<

\ - o
SN~ \r Ao

\

10 15 20 25
GCuess Number

@ Springer

Engineering with Computers

All these levels of parallelism can be used to dis-
tribute extremely large numbers of simulations across
tightly or loosely coupled clusters of machines. Using
grid technology, we schedule the next IPARS simula-
tion (as requested by a particular instance of a partic-
ular optimization algorithm started from a certain
initial guess) to run on available resources, wait for its
termination, evaluate the result and possible pass the
output on to the next program in line, such as a seismic
simulator. If all this is done, we schedule the next job.
Figure 11 illustrates how a three level parallelism can
be exploited in the grid.

6.4 Flow/Seismic data management

Figure 12 shows the performance of the STORM
component of GeoDAM for querying and subsetting
seismic datasets. The performance numbers were ob-
tained on a 30TB seismic dataset generated by simu-
lations and stored on a 16-node disk-based cluster
storage system, with 4.3 GB/s peak application-level
bandwidth, at the Ohio Supercomputer Center. As
seen from the figure, we can achieve close to 3.5 GB/s
(about 75% of the peak bandwidth) bandwidth
through runtime optimizations (such as distributed I/O,
distributed filtering, multi-threading) implemented by
STORM.

We also evaluated the support for partial replication
using a large dataset with characteristics similar to
those created by oil reservoir management applica-
tions. All of the experiments were carried out on eight

/\

i Op’nmlzer

\

= =
Stochastic Stochashc Stochastic |
realization reailzation b realization
Inial gi guess [Inial guess; Iniial guess: | hmal quess| nnmafgl.ess ... sl guessinital guess| Hniial guess|

ra
3

1 2 'P,‘1 1

m
MQQWWQ®@@
\ | m2 |

l | \in-1)m+ | nm
) (=) (&) (=) () i
N =7

n*m parallel independent runs of IPARS

Fig. 11 Uncertainty analysis leads to a three level of parallelism

@ Springer

nodes in a Linux cluster where each node has a PIII
933 MHz CPU, 512 MB main memory, and three
100 GB IDE disks. The nodes are inter-connected via a
Switched Fast Ethernet. We generated a 0.35 TB size
dataset, with the same domain partitioning as the
simulator code, so that we can manage the distribution
of attributes for a more controlled experimental envi-
ronment. Each grid point is stored as a tuple and each
tuple consists of 21 attributes. Sixteen time steps worth
of data is created using a grid of size 1,024 x 1,024 x
256. The data is partitioned into 8 x 8 x 256 x 1
size chunks on X, Y, Z and TIME dimensions (attri-
butes). Each chunk is roughly 1.3 MB in size. The
metadata associated with a chunk includes lower and
upper bounds of each attribute along with a (filename,
offset, size) triple that is required to retrieve it. The
chunks were declustered across the data nodes. Each
node maintains a local index of its chunks’ metadata.
The index takes a query as input and returns the list of
chunks whose bounds intersect with the range of the
query. The attributes that we will focus on are SOIL
(oil saturation), which has a uniform distribution in [0,
1], and the VX (oil velocity in x-dimension) attribute
which has a standard normal distribution. Queries are
sliding window queries,each of which is of the form

= [(Ix, Iy, I7, Isorw, lvx):(hx, hy, hr, hsow, hvx)]-

Figure 13 shows the time taken to execute the
queries. Performance of replication ratios 0.5 and 1.0
are shown in the above figures. The replicated data is
partitioned along SOIL and VX dimensions using both
uniform and recursive partitioning techniques. This

STORM /0 Performance

4500
02 Threads
4000 4| M4 Threads l__
OMax
3500 -
3000 o
2]
i
£ 2500 —
£
g
& 2000 [=
g
1500 — -
1000 - ks
500 - -
0 b T -
1 2 4 8 16

XI0 nodes
Fig. 12 Querying seismic data using STORM

Engineering with Computers

200
180
160
140 -
120 -
100 -
80
60
40 +
20 +
0

Time (seconds)

0 1 2 3 4 5 6 7 8 9 10
Query Number

r-0.5 ——

u-05 --o---

r-1.0 ——

U-10 —mems

original —=—

Fig. 13 Query execution time with different replicas

decreases spurious I/O and improves query perfor-
mance. We can see increased benefits for the sliding
window queries as the replication ratio is increased.

7 Conclusions

Grid computing enables the development of large oil
engineering applications to an unprecedented scale.
The philosophy of “on-demand” availability of com-
putational resources is a challenging topic of research
for dealing with the different processes and scales
governing the exploration and production phase of a
IeServoir.

The present paper has offered a broad overview of
recent computational developments aiming at facili-
tating the incorporation of more complex processes,
data, interaction and understanding of the oil reservoir.
The advent of new sensor technology and computing
power has established new and shorter scientific con-
nections between different areas that have traditionally
coexisted in an isolated fashion in the industry, such as
reservoir simulation, geophysics, petrophysics and
geomechanics.

We have shown how grid middleware and data
management tools enable and support the computation
of different physics, scales, algorithms towards reduc-
ing uncertainty, increasing the reliability of production
decision-making and oil exploitation planing.

The present team believes that the development of
more flexible and efficient grid environments would
enable engineers and scientists to efficiently exploit
this technology and significantly increase the under-
standing and control the oil reservoir studies.

Acknowledgments The authors want to thank the National
Science Foundation (NSF) for its support under the ITR grant

EIA-0121523/ EIA-0120934, grants #ACI-9619020 (UC Sub-
contract #10152408), #EIA-0121177, #ACI-0203846, #ACI-
0130437, #ANI-0330612, #ACI-9982087, #CCF-0342615, #CNS-
0406386, #CNS-0426241, #ACI-9984357, #EIA -0103674, #ANI-
0335244, #CNS-0305495, #CNS-0426354 and #IIS-0430826,
Lawrence Livermore National Laboratory under Grant
#B517095 (UC Subcontract #10184497), and grants from Ohio
Board of Regents BRTTC #BRTT02-0003.

References

1. Foster I, Kesselman C (eds) (1999) Globus: a toolkit based grid
architecture. Morgan Kaufman, San Francisco, pp 259-278

2. Frey J, Tannenbaum T, Foster I, Livny M, Tuecke S (2001)
Condor-G: a computation management agent for multi-
institutional grids. In: Proceedings of the 10th IEEE sym-
posium on high performance distributed computing
(HPDC10). IEEE Press, New York

3. Rajasekar A, Wan M, Moore R (2002) MySRB &
SRB—components of a data grid. In: The 11th international
symposium on high performance distributed computing
(HPDC-11)

4. Wolski R, Spring N, Hayes J (1999) The Network Weather
Service: a distributed resource performance forecasting ser-
vice for metacomputing. J Future Gener Comput Syst 15(5-
6):757-768

5. Beynon MD, Kurc T, Catalyurek U, Chang C, Sussman A,
Saltz J (2001) Distributed processing of very large datasets
with DataCutter. Parallel Comput 27(11):1457-1478

6. Grimshaw AS, Wulf WA, the Legion Team (1997) The le-
gion vision of a worldwide virtual computer. Commun ACM
40(1):39-45

7. Allen G, Dramlitsch T, Foster I, Karonis N, Ripeanu M,
Seidel E, Toonen B (2001) Supporting efficient execution in
heterogeneous distributed computing environments with
Cactus and Globus. In: Proceedings of the ACM/IEEE
SC1001 conference. ACM Press, New York

8. Common Component Architecture Forum. http://www.cca-
forum.org

9. Allcock W, Chervenak A, Foster I, Kesselman C, Salisbury
C, Tuecke S (2001) The DataGrid: towards an architecture
for the distributed management and analysis of large scien-
tific datasets. J Netw Comput Appl 23:187-200

10. Casanova H, Dongarra J (1998) Applying Netsolve’s net-
work-enabled server. IEEE Comput Sci Eng 5(3):57-67

11. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001)
Grid Information services for distributed resource sharing.
In: 10th IEEE symposium on high performance distributed
computing

12. Oldfield R, Kotz D (2001) Armada: a parallel file system for
computational grids. In: Proceedings of CCGrid2001: IEEE
international symposium on cluster computing and the grid.
IEEE Computer Society Press, Brisbane, Australia

13. Sato M, Nakada H, Sekiguchi S, Matsuoka S, Nagashima U,
Takagi H (1997) Ninf: a network based Information Library
for a global world-wide computing infrastructure. In: Pro-
ceedings of HPCN’97 (LNCS-1225), pp 491-502

14. Thain D, Basney J, Son S, Livny M (2001) Kangaroo ap-
proach to data movement on the grid. In: Proceedings of the
10th IEEE symposium on high performance distributed
computing (HPDC10)

15. Thain D, Bent J, Arpaci-Dusseau A, Arpaci-Dusseau R,
Livny M (2001) Gathering at the well: creating communities
for grid I/O. In: Proceedings of supercomputing 2001. Den-
ver, CO, USA

@ Springer

Engineering with Computers

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

Vazhkudai S, Tuecke S, Foster I (2001) Replica selection in
the Globus data grid. In: International workshop on data
models and databases on Clusters and the grid (DataGrid
2001). IEEE Computer Society Press, New York

Beve D (2003) eBusiness and geophysics, vol 22. The
Leading Edge, Provo, pp 53-53

Beve D, Popovici M (2003) Integrated Internet collabora-
tion, vol 22. The Leading Edge, Provo, pp 54-57

Fuller J, Fay J (2003) How the Internet is influencing today’s
E&P business, vol 22. The Leading Edge, Provo, pp 65-68
Hanley S (2003) The collaborative power of IT leads industry
transformation, vol 22. The Leading Edge, Provo, pp 62-64
Karbarz F (2003) Grid computing for seismic processing, vol
22. The Leading Edge, Provo, pp 58-60

Bangerth W, Matossian V, Parashar M, Klie H, Wheeler M
(2005) An autonomic reservoir framework for the stochastic
optimization of well placement. Cluster Comput J Netw
Softw Tools 8(4):255-269

Klie H, Bangerth W, Wheeler MF, Parashar M, Matossian V
(2004) Parallel well location optimization using stochastic
algorithms on the grid computational framework. In: 9th
European conference on the mathematics of oil recovery
(ECMOR). EAGE, August 30-September 2 2004
Matossian V, Bhat V, Parashar M, Peszynska M, Sen M,
Stoffa P, Wheeler MF (2005) Autonomic oil reservoir opti-
mization on the grid. Concur Comput Pract Exp 17(1):1-26
Parashar M, Klie H, Catalyurek U, Kurc T, Bangerth W,
Matossian V, Saltz J, Wheeler MF (2005) Application of
grid-enabled technologies for solving optimization problems
in data-driven reservoir studies. J Future Gener Comput Syst
Spec Issue Eng Auton Syst 21(1):19-26

Ingber L (1989) Very fast simulated reannealing. Math
Comput Model 12:967-993

Sen M, Stoffa P (1995) Global optimization methods in
geophysical inversion. Elsevier, Amsterdam

Spall JC (1992) Multivariate stochastic approximation using
a simultaneous perturbation gradient approximation. IEEE
Trans Autom Control 37:332-341

Spall JC (2003) Introduction to stochastic search and opti-
mization: Estimation, simulation and control. Wiley, New
Jersey

Gai X, Dean R, Wheeler MF, Liu R (2003) Coupled geo-
mechanical and reservoir modeling on parallel computers.
In: SPE 79700, proceedings of SPE reservoir symposium,
Houston, TX

Lu Q, Peszynska M, Wheeler MF (2001) A parallel multi-
block black-oil model in multi-model Implementation. In:
2001 SPE reservoir simulation symposium, Houston, TX,
SPE 66359

Minkoff S, Stone CM, Arguello JG, Bryant S, Eaton J,
Peszynska M, Wheeler MF (1999) Staggered in time coupling
of reservoir flow simulation and geomechanical deformation:
Step 1—one-way coupling. In: 1999 SPE symposium on res-
ervoir simulation, Houston, TX, SPE 51920

Parashar M, Wheeler JA, Pope G, Wang K, Wang P (1997)
A new generation EOS compositional reservoir simulator.
Part II: framework and multiprocessing. In: 14th SPE sym-
posium on reservoir simulation, Dallas, TX, Society of
Petroleum Engineers, pp 31-38

Peszynska M, Lu Q, Wheeler MF (2000) Multiphysics cou-
pling of codes. In: Bentley LR, Sykes JF, Brebbia CA, Gray
WG, Pinder GF (eds) Computational methods in water re-
sources. A. A. Balkema, Amsterdam, pp 175-182
Peszynska M, Wheeler MF, Yotov I (2002) Mortar upscaling
for multiphase flow in porous media. Comput Geosci
6(1):73-100

@ Springer

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Wang P, Yotov I, Wheeler MF, Arbogast T, Dawson CN,
Parashar M, Sepehrnoori K (1997) A new generation EOS
compositional reservoir simulator. Part I: formulation and
discretization. In: 14th SPE symposium on reservoir simu-
lation, Dallas, TX, Society of Petroleum Engineers, pp 55—
64

Wheeler MF (2002) Advanced techniques and algorithms for
reservoir simulation, II: the multiblock approach in the
integrated parallel accurate reservoir simulator (IPARS). In:
Chadam J, Cunningham A, Ewing RE, Ortoleva P, Wheeler
MF (eds) IMA volumes in mathematics and its applications,
vol 131. Resource recovery, confinement, and remediation of
environmental hazards. Springer, Berlin Heidelberg New
York

Wheeler MF, Peszynska M (2002) Computational engineer-
ing and science methodologies for modeling and simulation
of subsurface applications. Adv Water Resource 25(8):1147—
1173

Wheeler MF, Wheeler JA, Peszyniska M (2000) A distributed
computing portal for coupling multi-physics and multiple
domains in porous media. In: Bentley LR, Sykes JF, Brebbia
CA, Gray WG, Pinder GF (eds) Computational methods in
water resources. A. A. Balkema, Amsterdam, pp 167-174
Arbogast T, Cowsar LC, Wheeler MF, Yotov I (2000) Mixed
finite element methods on non-matching multiblock grids.
SIAM J Numer Anal 37:1295-1315

Lu Q (2000) A parallel multi-block/multi-physics approach
for multi-phase flow in porous media. PhD Thesis, University
of Texas at Austin

Narayanan S, Catalyurek U, Kurc T, Zhang X, Saltz J (2003)
Applying Database support for large scale data driven sci-
ence in distributed environments. In: Proceedings of the 4th
international workshop on grid computing (Grid 2003),
Phoenix, Arizona, pp 141-148

Saltz J et al (2003) Driving scientific applications by data in
distributed environments. In: Dynamic data driven applica-
tion systems workshop, held jointly with ICCS 2003, Mel-
bourne, Australia

Parashar M, Liu H, Li Z, Matossian V, Schmidt C, Zhang G,
Hariri S (2006) AutoMate: enabling autonomic grid appli-
cations. Cluster Comput J Netw Softw Tools Appl Spec Issue
Auton Comput 9(2):161-174

Lacroix S, Vassileski Y, Wheeler J, Wheeler M (2003) Itera-
tive solution methods for modeling multiphase flow in porous
media fully implicitly. STAM J Sci Comput 25(3):905-926

Li J, Wheeler MF (2000) Uniform convergence and super-
convergence of mixed finite element methods on anisotrop-
ically refined grids. STAM J Numer Anal 38(3):770-798
Peszynska M, Lu Q, Wheeler MF (1999) Coupling different
numerical algorithms for two phase fluid flow. In: Whiteman
JR (ed) MAFELAP Proceedings of mathematics of finite
elements and applications. Brunel University, Uxbridge, UK,
pp 205-214

Wheeler MF, Yotov I (1998) Physical and computational
domain decompositions for modeling subsurface flows. In:
Mandel J et al (eds) 10th international conference on do-
main decomposition methods, contemporary mathematics,
vol 218. American Mathematical Society, pp 217-228
Wheeler MF, Arbogast T, Bryant S, Eaton J, Lu Q, Pes-
zyniska M, Yotov I (1999) A parallel multiblock/multidomain
approach to reservoir simulation. In: 15th SPE symposium
on reservoir simulation, Houston, TX. Society of Petroleum
Engineers. SPE 51884, pp 51-62

Wohlmuth BI (2000) A mortar finite element method using
dual spaces for the Lagrange multiplier. SIAM J Numer
Anal 38:989-1012

Engineering with Computers

51

52.

53.

54.

S5.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Yotov I (1996) Mixed finite element methods for flow in
porous media. PhD Thesis, Rice University, Houston, TX.
TR96-09, Dept. Comp. Appl. Math., Rice University and
TICAM report 96-23, University of Texas at Austin
Wheeler MF, Yotov I (2005) A posteriori error estimates for
the mortar mixed finite element method. SIAM J Numer
Anal 43(3):1021-1042

Peszynska M, Sun S (2002) Reactive transport model cou-
pled to multiphase flow models. In: Hassanizadeh SM,
Schotting RJ, Gray WG, Pinder GF (eds) Computational
methods in water resources. Elsevier, Amsterdam, pp 923-
930

Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J
(1996) MPI: the complete reference. MIT Press, New York
Carriero N, Gelernter D (1989) Linda in context. Commun
ACM 32(0001-0782):444-458

Sterck H, Markel R, Pohl T, Rude U (2003) A lightweight
Java taskspaces framework for scientific computing on
compuatational grids. In: Proceedings of the 18th annual
ACM symposium on applied computing, 1-58113-624-2,
Melbourne, FL, USA, pp 1024-1030

Zhang L, Parashar M (2004) A dynamic geometry-based
shared space interaction framework for parallel scientific
applications. In: Proceedings of the 11th annual international
conference on high performance computing (HiPC 2004), vol
3296. LNCS, Springer, Bangalore, pp 189-199

Bourbie T, O OC, Zinsner B (1987) Acoustics of porous
media. IFP Publications, Paris

Dean R, Gai X, Stone C, Minkoff S (2003) A comparison of
techniques for coupling porous flow and geomechanics. In:
Tthe SPE reservoir simulation symposium. Houston, TX,
SPE 79709

Gai X (2004) A coupled geomechanics and reservoir flow
model on parallel computers. PhD Thesis, The University of
Texas at Austin

Kenter C, van den Beukel A, Hatchell P, Maron K, Mole-
naar M (2004) Geomechanics and 4D: evaluation of reser-
voir characteristics from time-shifts in the overburden. In:
Presented at Gulf Rocks 2004, Houston, TX, June 5-9.
ARMA/NARMS 04-627

Minkoff S, Stone C, Arguello J, Bryant S, Eaton J, Peszynska
M, Wheeler M (1999) Coupled geomechanics and flow sim-
ulation for time-lapse seismic modeling. In: Expanded Ab-
stracts, 1667-1670. Soc Expl Geophys

Molenaar M, Hatchell P, van den Beukel A (2004) 4D in-situ
stress as a complementary tool for optimizing field man-
agement. In: Presented at Gulf Rocks 2004, Houston, TX,
June 5-9. ARMA/NARMS 04-639

Bangerth W, Klie H, Wheeler M, Stoffa P, Sen M (2006) On
optimization algorithms for the reservoir oil well placement
problem. Comput Geosci (in press)

Ji XD, Familoni BD (1999) A diagonal recurrent neural
network-based hybrid direct adaptive SPSA control system.
IEEE Trans Autom Control 44:1469-1473

Maeda Y, Toshiki T (2003) FPGA implementation of a pulse
density neural network with learning ability using simulta-
neous perturbation. IEEE Trans Neural Netw 14:688-695
Chunduru RK, Sen MK, Stoffa PL (1997) Hybrid optimi-
zation methods for geophysical inversion. Geophysics
62:1196-1207

Parashar M, Browne J (2005) Conceptual and implementa-
tion models for the grid. Proc IEEE Spec Issue Grid Comput
93(3):653-668

Liu H, Parashar M (2006) Accord: a programming frame-
work for autonomic applications. IEEE Trans Syst Man
Cybern Spec Issue Eng Auton Syst 36(3):341-352

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Liu H, Parashar M, Hariri S (2004) A component-based
programming framework for autonomic applications. In: the
1st IEEE international conference on autonomic computing
(ICAC-04), New York, pp 10-17

Liu H, Parashar M (2005) A framework for rule-based
autonomic management of parallel scientific applications. In:
The 2nd IEEE international conference on autonomic
computing (ICAC-05), Seattle, WA, USA

Liu H, Parashar M (2005) Rule-based monitoring and
steering of distributed scientific applications. Int J High
Perform Comput Netw 3(4):272-282

Liu H, Parashar M (2005) Enabling self-management of
component-based high-performance scientific applications.
In: The 14th IEEE international symposium on high per-
formance distributed computing (HPDC-14). Research Tri-
angle Park, NC, pp 59-68

Liu H, Bhat V, Parashar M, Klasky S (2005) An autonomic
service architecture for self-managing grid applications. In:
Proceedings of the 6th IEEE/ACM international workshop
on grid computing (Grid 2005). Seattle, WA, USA

Chen J, Silver D, Parashar M (2003) Real time feature
extraction and tracking in a computational steering envi-
ronment. In: Proceedings of the 11th high performance
computing symposium (HPC 2003), Orlando, FL

Liu H, Jiang L, Parashar M, Silver D (2005) Rule-based
visualization in the discover computational steering collab-
oratory. J Future Gener Comput Syst Spec Issue Eng Auton
Syst 21(1):53-59

Chandra S, Parashar M, Yang J, Zhang Y, Hariri S (2005)
Investigating autonomic runtime management strategies for
SAMR applications. Int J Parallel Programm 33(2-3):247-259
Jiang N, Parashar M (2004) Enabling applications in sensor-
based pervasive environments. In: Proceedings of
BROADNETS 2004: workshop on broadband advanced
sensor networks (BaseNets 2004), San Jose, CA, USA
Schmidt C, Parashar M (2004) Enabling flexible queries with
guarantees in P2P systems. IEEE Netw Comput Spec Issue
Inform Dissem Web 8(3):19-26

Mann V, Parashar M (2003) DISCOVER: a computational
collaboratory for interactive grid applications. In: Berman F,
Fox G, Hey T (eds) Grid computing: making the global
infrastructure a reality. Wiley, New York, pp 727-744
Parashar M, Muralidhar R, Lee W, Wheeler M, Arnold D,
Dongarra J (2005) Enabling interactive oil reservoir simula-
tions on the grid. Concur Comput Pract Exp 17(11):1387-1414
Foster I, Kesselman C, Nick J, Tuecke S (2002) Grid services
for distributed system integration. IEEE Comput 36(6):37-46
Foster I, Kesselman C, Nick JM, Tuecke S (2002) The
physiology of the grid: an open grid services architecture for
distributed systems integration. http://www.globus.org/re-
search/papers/ogsa.pdf

Graham S, Simeonov S, Boubez T, Davis D, Daniels G,
Nakamura Y, Neyama R (2002) Building Web services with
Java: making sense of XML, SOAP, WSDL, and UDDI.
SAMS Publishing, USA

Data Access and Integration Services. //http://www.cs.ma-
n.ac.uk/grid-db/documents.html

Raman V, Narang I, Crone C, Haas L, Malaika S, Mukai T,
Wolfson D, Baru C. Data access and management services
on grid. http://www.cs.man.ac.uk/grid-db/documents.html
Bell WH, Bosio D, Hoschek W, Kunszt P, McCance G, Si-
lander M. Project Spitfite—towards grid web service data-
bases. http://www.cs.man.ac.uk/grid-db/documents.html
Smith J, Gounaris A, Watson P, Paton NW, Fernandes A,
Sakellariou R. Distributed query processing on the grid.
http://www.cs.man.ac.uk/grid-db/documents.html

@ Springer

Engineering with Computers

89. Narayanan S, Kurc T, Catalyurek U, Saltz J (2003) Database 91. Parashar M, Matossian V, Bangerth W, Klie H, Rutt B, Kurc

support for data-driven scientific applications in the grid. T, Catalyurek U, Saltz J, Wheeler M (2005) Towards dynamic
Parallel Process Lett 13(2):245-271 data-driven optimization of oil well placement. In: Sunderam
90. Weng L, Agrawal G, Catalyurek U, Kurc T, Narayanan S, V et al (eds) Proceedings of the workshop on distributed data
Saltz J (2004) An approach for automatic data virtualization. driven applications and systems. International conference on
In: The 13th IEEE international symposium on high-per- computational science 2005 (ICCS 2005), vol 3514-3516,
formance distributed computing (HPDC-13) Springer, Berlin Heidelberg New York, pp 656-663

@ Springer

	Models, methods and middleware for grid-enabled multiphysics oil reservoir management
	Abstract
	Introduction
	Multiphysics oil reservoir management framework
	Fig1
	Description of the multiphysics components �and optimization
	Reservoir simulation: flow model
	Fig2
	Fig3
	Multiblock and Seine/MACE
	Fig4
	Fig5
	Coupling flow, geomechanics and seismics
	Tab1
	Optimization algorithms
	Fig6
	Fig7
	Autonomic computational engine and grid middleware substrate
	Autonomic computational engine
	Autonomic grid middleware
	The discover collaboratory
	Data management and data processing support
	STORM and DataCutter
	Data virtualization and data subsetting
	Support for management and processing of very large (100 TB scale) datasets at data centers
	Distributed storage and processing of data �on storage islands
	Results
	Evaluations Seine/MACE interaction framework
	Autonomic optimal production
	Uncertainty management
	Fig8
	Fig9
	Fig10
	Flow/Seismic data management
	Fig11
	Fig12
	Conclusions
	Acknowledgments
	References
	Fig13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

