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Abstract: This paper presents the design and evaluation of Limiting Greedy Connections
(LGC), an active congestion control mechanism for minimizing the
degradation in network performance caused by bandwidth greedy applications.
The primary objectives of the LGC mechanism are to limit the impact of
greedy connections on a congested node, to keep a loose upper bound on the
packet queue occupancy at the intermediate nodes of the network, and to
minimize packet loss. The LGC mechanism is evaluated for a variety of
network topologies, transmitting sources, and node queue parameters, using a
Java-based active network test bed.

1. INTRODUCTION

In spite of large research efforts in industry and academia to eliminate network
congestion, the problem continues to persist and grow. Closed-loop congestion
control mechanisms have become the norm in the Internet today [2]. In these
mechanisms, the network provides negative feedback to the transmitting sources
when it is congested or when congestion is building up. They then rely on the
transmitting sources to exercise control by cutting back their effect rate of
transmission. However, an increasing number of applications such as voice, video,
audio and broadcast services require a constant bit rate of transmission while some
others tend to “grab” as much network bandwidth as available. These applications
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by their very nature tend to ignore or underplay congestion-related feedback from
the network.

In recent years, there has been considerable interest in the Random Early
Detection (RED) [7] mechanism for congestion avoidance. RED gateways have a
FIFO packet queue that is closely monitored to detect the build up of congestion.
Based on queue occupancy, the average queue length (avg) is computed using a low
pass filter with an exponentially weighted moving average. The gateway notifies
connections of congestion either by dropping or by marking packets arriving at the
gateway. If a packet arrives to a full queue, it is discarded. The RED gateway has
two pre-set thresholds called min, (minimum threshold) and max, (maximum
threshold). With every arriving packet, the avg is computed and compared to these
two thresholds. If avg is less than min,, arriving packets are not dropped or marked.
If the computed avg exceeds max,, all arriving packets are marked or dropped. If the
computed avg lies between min,, and max,, the gateway notifies a connection of
congestion with a probability that is roughly proportional to that connections share
of the bandwidth for the bottleneck link. The primary advantage of RED gateways is
that they help in keeping the average queue size low, allow occasional packet bursts
and prevent global synchronization of source windows due to the randomness of the
RED algorithm in marking or dropping packets at a congested node. However, it has
been proven through simulations in [3] that an unresponsive bandwidth greedy
connection gets a larger than fair share of the bandwidth at a bottleneck link when
competing with responsive connections at a RED gateway. Other congestion
avoidance schemes suggested in [3] require multiple queues to be maintained at the
intermediate nodes of the network.

Active networks [4] provide a new networking platform that is flexible and
extensible at runtime and supports the rapid evolution and deployment of
networking technologies to suit current needs. They allow the network nodes to
perform application specific computation on the data flowing through them.
Although, with active networking the possibilities for refining current applications
and introducing new ones are tremendous, it is important to demonstrate the
performance benefits accrued from an active networking platform.

In this paper we presents the design, implementation and evaluation of the
Limiting Greedy Connections (LGC) congestion control mechanism that uses active
network capabilities address the shortcomings of RED and limit the degradation in
network performance caused by bandwidth greedy application flows. LGC limits the
impact of greedy connections at a congested node by: (1) maintaining a loose upper
bound on the buffer queue occupancy at the intermediate nodes of the network, (2)
controlling congestion caused by bandwidth greedy applications, (3) providing a
negative incentive for greedy flows, and (4) addressing scalability to handle multiple
greedy flows. It requires a single FIFO queue to be maintained at the intermediate
active nodes and is optimised for a reservation-less active network.
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The rest of this paper is organized as follows. Section 2 presents the design of
the LGC active congestion control mechanism. Section 3 gives an overview of the
LGC implementation. Section 4 presents an experimental evaluation of LGC.
Section 5 presents our conclusions.
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2. THE LGC CONGESTION CONTROL
MECHANISM

Figure 1. An overview of the LGC Congestion Control Mechanism

Limiting Greedy Connection (LGC) is an active congestion control mechanism
for minimizing the degradation in network performance caused by bandwidth greedy
applications. The primary objectives of the LGC are to keep a loose upper bound on
the packet queue occupancy at the intermediate nodes of the network, and to prevent
under/over utilization of network resources. The LGC mechanism extends the RED
queue management techniques to detect the onset of congestion at an intermediate
node. Once congestion is signalled, competing flows are divided into two distinct
categories - greedy and non-greedy flows based on the queue occupancy. We rely on
RED mechanisms to control the non-greedy flows. A process of recursive mobile
packet filtering controls the “greediest” flow. Specifically, we install a packet filter
for the identified connection at the congested node and use active messages to
dynamically move the filter towards the source of the connection. In doing so, the
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congested node is relieved of its additional responsibility of filtering packets and
network resources from the source of the connection to the congested node are
protected from the aggressive flow. If congestion is not controlled despite filtering
the greediest flow, the LGC mechanism continues to successively pick out flows in
order of their greediness and subjects them to active filtering. Figure 1 presents an
overview of the LGC. The key components of the algorithm are outlined below.

2.1 Detection/Isolation of Bandwidth-greedy Flows

When the demand on the network exhausts available resources, the network
nodes are the first to be affected. Specifically, when a node is congested its packet
queue gets heavily occupied eventually forcing the node to drop packets that
overflow the queue. Hence, packet queues at the intermediate nodes in a network are
the ideal location for detecting the build up of congestion. We use queue occupancy
metrics to detect bandwidth greedy connections.

In [3] Dong et. al. have proved that bandwidth consumption at a bottleneck link
is directly related to the queue occupancy of the connection at the node. A
connection with a large share of bandwidth consumption on a link has a
correspondingly larger share of packet queue occupancy at the node. Furthermore, in
RED gateways it has been observed that maximum disparity between queue
occupancy for non-greedy and greedy connections occurs when the average queue
size (avg) exceeds the maximum threshold (max,,). At this time the packet queue is
about to overflow and we label the node to be in a ‘severely congested’ state. In this
state, it becomes easier to correctly identify a bandwidth greedy flow at the node.

To identify the greedy connection at a severely congested node, first we need to
determine the fair share (f) of a packet queue. The fair share in terms of packet
queue occupancy (f) is given as follows:

f'= Total queue occupancy(p) / number of connections in the queue(n) ---- [a]

Consider an active node having a total packet queue occupancy of 75 packets
with 5 connections competing for a share of the bandwidth. In this case f'=75/5 = 15
packets. Ideally, to ensure a fair distribution of bandwidth, each connection should
not have more than 15 packets buffered at the node. However, a responsive
connection may also have more than its fair share of packets buffered at the node
due to several reasons including (see [1]) the bursty nature of Internet traffic, high
delay-bandwidth links on the receive port of the node, and connections being in
different phases of operation. We provision for these discrepancies by a factor ‘k* >
1. This factor decides the degree of permissible disparity between greedy and non-
greedy sources. Selecting a small value of £ may cause the algorithm to wrongly
classify a responsive source as greedy, while selecting & to be too large will make it
nearly impossible for the algorithm to detect a greedy connection. We have
empirically selected & to be log.(3n). A similar value is chosen in [6] for identifying
flows using disproportionate bandwidth. However, that scheme also relies on the
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characterization of a conformant TCP source based on an assumed value of round
trip time for the connection. Our approach for detecting a greedy connection is
purely based on the queue occupancy of the connections when a node is severely
congested. We use the observations that if the separation between the min, and
maxy, is sufficiently large, avg is unlikely to increase from min, to max, before
providing ample time for the responsive connections to back off. In this case, when
average queue size exceeds the max,, and a large disparity occurs between queue
occupancies of competing connections it is safe to assume that the connection with
an exceptionally large number of packets buffered at the severely congested node is
bandwidth greedy. Continuing with our example, £ = log, (3*5) or £ = 2.708. We
calculate the responsive share (r) of the packet queue occupancy as:
r=[k*] - [b]

In our example r = 2.708 *15 = [40.621. So, in this example, a connection that
has at most 41 packets in the queue (i.e. 54.66% of queue occupancy) during its
severely congested state is considered responsive. All connections having more than
a responsive share of the packet queue are considered unresponsive. Among the
unresponsive connections identified above, the one having the maximum number of
packets buffered at the severely congested node is singled out as the ‘greedy’
connection. Combining equations [a] and [b] we have:

r=/(log(3n)*p/n)] - [c]
Finally, the percentage permissible queue occupancy (go) is given as:
qo= 100*r/p = 100* log.(3n)/n ---- [d]

Figure 3 shows the percentage permissible queue occupancy (go) plotted against
the number of connections (n) represented in the queue. The slope of the graph is
steep for smaller values of n and becomes a gradual decline as n increases. This
implies that a larger variation in queue occupancy is permitted when fewer
connections cause severe congestion at a node. One anomaly that appears is that for
the special case of n=1, a connection will not be classified as greedy even if it
exhausts the entire packet buffer at the node. This is in fact necessary to ensure that
a single connection will never be filtered, as there is no competing connection.
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Figure 2. Percentage of permissible queue occupancy (go) v/s number of
connections ()

Severe congestion (avg > max,;) at a node may be caused by greedy
application(s) not responding to congestion notification sent by the RED [7]
mechanism. If this is the case, the greedy connection(s) is identified by the above.
All other flows are assumed non-greedy. Non-greedy, conforming sources either
respond to congestion notification or do not make a heavy demand on network
bandwidth during congested periods. In the case of non-greedy sources, the control
loop is stretched from the congested node to the packet source. We rely on RED [7]
mechanisms and the packet source to control the rate at which packets enter the
congested node. In the case of greedy connections, stretching the control loop to the
packet source is ineffective and hence congestion caused by greedy sources is
controlled within the network and not by relying on the greedy sources to cut back
their effective rate of packet transmission. We make use of the processing capability
of an active network to control these greedy connections as described below.

2.2 Controlling Bandwidth-greedy Flows — Active
Filtering

To prevent the severely congested node to degrade into a drop-tail node, it
becomes imperative to control the non-conforming bandwidth-greedy flows. We feel
that the only effective way to control the inflow of packets from such a greedy
connection is by actively filtering packets belonging to the connection. The packet
filtering must continue until such a time that the queue occupancy of the packet
buffer at the severely congested node is reduced to acceptable levels. Once this
happens responsive connections may compete for a fair share of the bandwidth that
they were previously denied. A packet filter is first installed at the congested node
for the identified greedy connection. The filter is then progressively migrated
towards the source of the greedy connection up to the first hop node of the
connection. In doing so, the packet drops are made early and reduces the wastage of
network resources.
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Filtering packets belonging to a flow is a relatively harsh mechanism of
controlling congestion but is deemed necessary, considering the damage that can be
done to network resources by the (non-conforming) greedy connection. As multiple
flows could be identified as bandwidth greedy, we pick out the greediest flow and
dynamically filter packets belonging to it. If congestion is not controlled in spite of
actively filtering the greediest flow, the algorithm continues to successively isolate
and filter the remaining identified greedy flows in the order of their greediness.

3. LGCIMPLEMENTATION

LGC active congestion control has been implemented on the RANI (Rutgers
Active Network Initiative) testbed. There are essentially two ways in which an
active network can support application oriented processing at intermediate nodes in
the network. In the language-based approach, the active datagrams carry programs
that are executed in a suitable environment. Users are allowed to inject code into the
network making the system highly dynamic and flexible. However, special care
must be taken to safeguard the system against malicious users and buggy code. In
the menu-based approach, the active node supports a fixed set of services.
Designated operators may add new services into the node. Active datagrams carry a
reference to the type of servicing they require. The implementation details of
services are hidden from end user applications. We believe that the menu-based
approach gives a strict administrative control over the services that the network can
offer and provides a secure infrastructure at the cost of reduced dynamism. Thus, we
adopt the menu-driven approach in designing our active network for the evaluation
of LGC.

3.1 RANI (Rutgers Active Network Initiative) Testbed

The RANI network consists of a number of active nodes connected to each other
via virtual links. For simplicity, we assume that the virtual links are reliable in
delivering datagrams. Any node can communicate with other nodes in the network
by sending datagrams across the virtual links. Datagrams that do not need active
processing are referred to as passive datagrams. Passive datagrams are simply stored
and forwarded similar to traditional network forwarding. Datagrams that request
additional processing at the intermediate nodes in the network are called active
datagrams. Each datagram is considered an atomic element and is processed
individually by the active nodes.

The datagram header comprises of a few additional fields as compared to an
IPv4 header. These include a previous node visited (PrevNode) field, which carries
the IPv4 address and port number of the last active node visited by the packet.
Active servicing is requested through a type of service (TOS) field in the header of
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the active packet. The time to live (77L) field is modified to represent a time-based
upper bound on the life of a packet in the RANI network. Lastly, an active (Acf)
field is set to true if the packet is active and is false otherwise.

The active node is implemented in Java (v1.1) as a user space process on the
Windows NT operating system. The node runs at the application layer in the TCP/IP
protocol stack. Application oriented processing of active packets may be required at
the end nodes as well as intermediate nodes in the network. Thus, we do not
distinguish between intermediate nodes and end nodes. Virtual links are
implemented as a UDP (User Datagram Protocol) socket pair — one socket is used
for receiving datagrams and the other for sending them. Active or passive packets
are created and subsequently injected into the active network via the user interface at
the node. These packets are propagated as UDP segments in the RANI network.

3.2 Mobile Filtering

The process of mobile filtering begins with the congested node extracting a
packet belonging to the greedy connection from its packet buffer. This packet
reveals the source of the greedy connection. A greedy connection identifier (GCI)
consisting of the source IP address and port number is formed. Next, the virtual link
object connecting the congested node to the greedy source is obtained from the
routing table using the GCI. The node uses the GCI to create a packet filter on the
receive port of this virtual link. The packet filter is installed for time /7ime and
drops packets originating from the identified greedy connection. The virtual link
object reveals the active node to which it connects. The IP address and port number
of this active node is called the previous hop identifier (PHI). The node then creates
and sends an active packet destined for the previous hop requesting the ActiveFilter
service. This packet contains the GCI of the connection to be filtered in its payload.
On receiving this message, the previous node invokes the process routine of its
ActiveFilter service. Execution of this routine at this node involves installation of a
packet filter for the greedy connection and propagation of the active filter message
to the next node in the path of the connection that is closer to the greedy source. This
process continues until the first hop node for the greedy connection is reached. A
minor technicality overlooked in the example above was the assumption that a node
can automatically learn if it is the first hop node and stop propagating the mobile
filter. This is because prior to creating the active filter message each active node
performs a previous hop check. The check consists of a comparison of the GCI and
the PHI fields. If they match it means that the filter has reached the first hop node
for the greedy connection. The packet filter is then installed for a longer duration of
time FHTime and the node does not propagate the active filter message any further.
Sending the active filter message to the source of a greedy connection would be
futile as source is already found to be un-responsive.
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Once a greedy connection is identified and filtered at the congested node, the
packet queue occupancy is expected to drop. However, due to the low pass filtering
mechanism used in the calculation of avg, its value might continue to be greater than
max,, even after the queue occupancy has decreased. This will again trigger the LGC
algorithm. To ensure that LGC is not triggered multiple times in a short interval of
time, a minimum idle period, Tx, is chosen between two consecutive triggers of
LGC.

The selection of the two timing parameters, /7Time and FHTime, is critical to the
successful of the active filter mechanism. The /7ime parameter is based on the time
taken for migration of the active filter from an intermediate node to the previous
node in the path of the greedy connection. If its value is pre-set to a high value, both
these nodes will suffer the overheads of actively filtering a greedy connection. If its
value is too low, active filtering at the intermediate node will terminate before it
begins at the previous node. From empirical measurements on the RANI network,
we set this parameter to approximately five seconds.

The FHTime parameter is based on the time it is desired to actively filter a
greedy connection at its first hop node. If FHTime is too small, the unresponsive
connection is not be filtered for a sufficiently long period and may congest the
network again. If it is too large, the connection may close but the packet filter will
continue to exist adding unnecessary overheads at the node at which it is installed.
We set FHTime to about 100 seconds in the RANI test bed.

4. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the ability of the LGC algorithm to
correctly identify and filter a greedy connection. Since the LGC algorithm is
triggered only during severe congestion, in our experiment we first force a node into
severe congestion. Note that in order to reduce complexity, only necessary
components of the RED algorithm were implemented.

The evaluation was conducted using the RANI testbed running on Intel Pentium
IT 300 MHz processor machines interconnected via a 10BaseT Ethernet LAN at the
data link layer. The RANI network was built on the Windows NT operating system
substrate. To bring out the effectiveness of the LGC algorithm we simulate
responsive and unresponsive connections. The sources are simulated with the help of
a packet generator that can be selected to behave as a non-greedy or a greedy source.
The transport mechanism for a non-greedy connection is simulated as a rough
approximation of a TCP source. A detailed explanation of the implementation of
TCP can be found in [5]. The transport mechanism for a greedy connection is
simulated by a constant packet-rate source.

()
Tt
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Figure 3. Network topology for experiments

The test active network consisting of six non-greedy sources, one greedy source,
one interconnecting node and a sink node is shown in Figure 3. Node 1 is the greedy
source and nodes 2,3,4,5,6 and 7 are non-greedy sources. Node 7 is targeted for
severe congestion. Node 8 is the common sink for all the sources. Virtual links are
shown as double-ended arrows. Node 7 is forced into a severely congested state by
having all the sources transmit packets at approximately the same time. To prevent
packet drops due to expiration of the TTL field, all packets injected into the network
have a large value of initial TTL (10 sec.). The queue parameters for node 7 are set
with queue weight = 0.02, max,, = 25 and buffer size = 50. The non-greedy sources
inject 50 packets each with an initial TCP slow-start threshold set to 16. The greedy
source injects 200 packets in 5 bursts with an inter-burst duration of 1 second.

The observed results are shown in Figure 4, In the figure the x-axis shows the
packets arriving at node 7 and the y-axis shows the queue size measured in packets.
The solid line (y = 25) represents the configured value of max,, at the node. Notice
that the low pass filtering mechanism in calculation of average queue size in RED
causes avg to change slowly in comparison to the actual queue size. For brevity, the
first few packet arrivals have been omitted in Figure 5. Initially as the non-greedy
sources open up their windows, the actual queue size remains low (<10). Once the
competing sources have sufficiently large windows, the actual queue size increases
rapidly. When the average queue size crosses max, (25) at point A, the LGC
algorithm is triggered.

From the nodes packet queue we observe that the total queue occupancy is 39
packets. Of these 21 packets belong to connection 1, 4 packets belong to connection
2, 5 packets belong to connection 3, 3 packets belong to connection 4 and 2 packets
each to belong connections 5, 6 and 7. Totally there are seven active connections at
node 7. Fair queue occupancy is 39/7 = 5.57. With a permissible factor & of
log.(3*7), the permissible queue occupancy is [5.57 *3.0445 | = 17 packets.
Connection 1 has 21 packets in the node queue and is correctly identified as a greedy
connection. Since Node 7 is the first-hop node for this connection, the migration of
the packet filter was not necessary and a packet filter for connection 1 was installed
at Node 7 for a duration FHTime (100) seconds. Subsequently all packets arriving
from connection 1 were filtered out at node 7. The throughput for non-greedy
connections is observed to be 100% after the LGC algorithm came into effect, but
the greedy connection had a throughput of 53.5% due to active filtering at node 7.
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Figure 4. LCG - Basic Operation

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop
in the queue occupancy once this connection is filtered. This can be observed in the
region of the graph just after the LGC algorithm is triggered. Eventually the queue
size is controlled at point B. The time lapse (marked as T in Figure 5) between the
LGC algorithm coming into effect (point A) and the reduction in average queue
occupancy (point B) occurs due to the low pass filtering mechanism in the
calculation of the average queue size. It confirms the requirement for the presence of
an idle time (Tx > T) between two successive triggers of the LGC algorithm. If the
LGC algorithm were not suspended for time Tx, it would be triggered multiple times
since avg exceeds max, for duration T, despite active filtering of the greedy
connection.

S. CONCLUSIONS

In this paper, we presented the design, implementation and evaluation of the
LGC active congestion control mechanism. LGC uses active network capabilities to
address the shortcomings of RED and limit the degradation in network performance
caused by bandwidth greedy application flows. A process of recursive, active mobile
filtering is used to throttle non-conformant bandwidth-greedy flows close to the
source. This relieves the congested nodes and minimizes wasted network resources.
Experimental results validate the utility of the LGC mechanism in limiting the
effects of bandwidth-greedy connections.
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