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Abstract:  This paper presents the design and evaluation of Limiting Greedy Connections 
(LGC), an active congestion control mechanism for minimizing the 
degradation in network performance caused by bandwidth greedy applications. 
The primary objectives of the LGC mechanism are to limit the impact of 
greedy connections on a congested node, to keep a loose upper bound on the 
packet queue occupancy at the intermediate nodes of the network, and to 
minimize packet loss. The LGC mechanism is evaluated for a variety of 
network topologies, transmitting sources, and node queue parameters, using a 
Java-based active network test bed. 

1. INTRODUCTION 

In spite of large research efforts in industry and academia to eliminate network 
congestion, the problem continues to persist and grow. Closed-loop congestion 
control mechanisms have become the norm in the Internet today [2]. In these 
mechanisms, the network provides negative feedback to the transmitting sources 
when it is congested or when congestion is building up. They then rely on the 
transmitting sources to exercise control by cutting back their effect rate of 
transmission. However, an increasing number of applications such as voice, video, 
audio and broadcast services require a constant bit rate of transmission while some 
others tend to �grab� as much network bandwidth as available. These applications 
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by their very nature tend to ignore or underplay congestion-related feedback from 
the network.  

In recent years, there has been considerable interest in the Random Early 
Detection (RED) [7] mechanism for congestion avoidance. RED gateways have a 
FIFO packet queue that is closely monitored to detect the build up of congestion. 
Based on queue occupancy, the average queue length (avg) is computed using a low 
pass filter with an exponentially weighted moving average. The gateway notifies 
connections of congestion either by dropping or by marking packets arriving at the 
gateway. If a packet arrives to a full queue, it is discarded. The RED gateway has 
two pre-set thresholds called minth (minimum threshold) and maxth (maximum 
threshold). With every arriving packet, the avg is computed and compared to these 
two thresholds. If avg is less than minth, arriving packets are not dropped or marked. 
If the computed avg exceeds maxth, all arriving packets are marked or dropped. If the 
computed avg lies between minth and maxth, the gateway notifies a connection of 
congestion with a probability that is roughly proportional to that connections share 
of the bandwidth for the bottleneck link. The primary advantage of RED gateways is 
that they help in keeping the average queue size low, allow occasional packet bursts 
and prevent global synchronization of source windows due to the randomness of the 
RED algorithm in marking or dropping packets at a congested node. However, it has 
been proven through simulations in [3] that an unresponsive bandwidth greedy 
connection gets a larger than fair share of the bandwidth at a bottleneck link when 
competing with responsive connections at a RED gateway. Other congestion 
avoidance schemes suggested in [3] require multiple queues to be maintained at the 
intermediate nodes of the network.  

Active networks [4] provide a new networking platform that is flexible and 
extensible at runtime and supports the rapid evolution and deployment of 
networking technologies to suit current needs. They allow the network nodes to 
perform application specific computation on the data flowing through them. 
Although, with active networking the possibilities for refining current applications 
and introducing new ones are tremendous, it is important to demonstrate the 
performance benefits accrued from an active networking platform.  

In this paper we presents the design, implementation and evaluation of the 
Limiting Greedy Connections (LGC) congestion control mechanism that uses active 
network capabilities address the shortcomings of RED and limit the degradation in 
network performance caused by bandwidth greedy application flows. LGC limits the 
impact of greedy connections at a congested node by: (1) maintaining a loose upper 
bound on the buffer queue occupancy at the intermediate nodes of the network, (2) 
controlling congestion caused by bandwidth greedy applications, (3) providing a 
negative incentive for greedy flows, and (4) addressing scalability to handle multiple 
greedy flows. It requires a single FIFO queue to be maintained at the intermediate 
active nodes and is optimised for a reservation-less active network. 
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The rest of this paper is organized as follows. Section 2 presents the design of 
the LGC active congestion control mechanism. Section 3 gives an overview of the 
LGC implementation. Section 4 presents an experimental evaluation of LGC. 
Section 5 presents our conclusions. 

2. THE LGC CONGESTION CONTROL 
MECHANISM 

Figure 1. An overview of the LGC Congestion Control Mechanism 

Limiting Greedy Connection (LGC) is an active congestion control mechanism 
for minimizing the degradation in network performance caused by bandwidth greedy 
applications. The primary objectives of the LGC are to keep a loose upper bound on 
the packet queue occupancy at the intermediate nodes of the network, and to prevent 
under/over utilization of network resources. The LGC mechanism extends the RED 
queue management techniques to detect the onset of congestion at an intermediate 
node. Once congestion is signalled, competing flows are divided into two distinct 
categories - greedy and non-greedy flows based on the queue occupancy. We rely on 
RED mechanisms to control the non-greedy flows. A process of recursive mobile 
packet filtering controls the �greediest� flow. Specifically, we install a packet filter 
for the identified connection at the congested node and use active messages to 
dynamically move the filter towards the source of the connection. In doing so, the 

Start

Select greedy 
flow (if any) 

Monitor 
packet buffer 

Congestion triggered 

Congestion not triggered 

All other flows Greedy flow 

A

Control by LGC Control by RED 



4 Niraj Prabhavalkar, Manish Parashar, and Prathima Agrawal
 
congested node is relieved of its additional responsibility of filtering packets and 
network resources from the source of the connection to the congested node are 
protected from the aggressive flow. If congestion is not controlled despite filtering 
the greediest flow, the LGC mechanism continues to successively pick out flows in 
order of their greediness and subjects them to active filtering. Figure 1 presents an 
overview of the LGC. The key components of the algorithm are outlined below. 

2.1 Detection/Isolation of Bandwidth-greedy Flows 

When the demand on the network exhausts available resources, the network 
nodes are the first to be affected. Specifically, when a node is congested its packet 
queue gets heavily occupied eventually forcing the node to drop packets that 
overflow the queue. Hence, packet queues at the intermediate nodes in a network are 
the ideal location for detecting the build up of congestion. We use queue occupancy 
metrics to detect bandwidth greedy connections. 

In [3] Dong et. al. have proved that bandwidth consumption at a bottleneck link 
is directly related to the queue occupancy of the connection at the node. A 
connection with a large share of bandwidth consumption on a link has a 
correspondingly larger share of packet queue occupancy at the node. Furthermore, in 
RED gateways it has been observed that maximum disparity between queue 
occupancy for non-greedy and greedy connections occurs when the average queue 
size (avg) exceeds the maximum threshold (maxth). At this time the packet queue is 
about to overflow and we label the node to be in a �severely congested� state. In this 
state, it becomes easier to correctly identify a bandwidth greedy flow at the node.  

To identify the greedy connection at a severely congested node, first we need to 
determine the fair share (f) of a packet queue. The fair share in terms of packet 
queue occupancy (f) is given as follows: 

f = Total queue occupancy(p) / number of connections in the queue(n)  ---- [a] 
Consider an active node having a total packet queue occupancy of 75 packets 

with 5 connections competing for a share of the bandwidth. In this case f = 75/5 = 15 
packets. Ideally, to ensure a fair distribution of bandwidth, each connection should 
not have more than 15 packets buffered at the node. However, a responsive 
connection may also have more than its fair share of packets buffered at the node 
due to several reasons including (see [1]) the bursty nature of Internet traffic, high 
delay-bandwidth links on the receive port of the node, and connections being in 
different phases of operation. We provision for these discrepancies by a factor �k� > 
1. This factor decides the degree of permissible disparity between greedy and non-
greedy sources. Selecting a small value of k may cause the algorithm to wrongly 
classify a responsive source as greedy, while selecting k to be too large will make it 
nearly impossible for the algorithm to detect a greedy connection. We have 
empirically selected k to be loge(3n). A similar value is chosen in [6] for identifying 
flows using disproportionate bandwidth. However, that scheme also relies on the 
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characterization of a conformant TCP source based on an assumed value of round 
trip time for the connection. Our approach for detecting a greedy connection is 
purely based on the queue occupancy of the connections when a node is severely 
congested. We use the observations that if the separation between the minth and 
maxth is sufficiently large, avg is unlikely to increase from minth to maxth before 
providing ample time for the responsive connections to back off. In this case, when 
average queue size exceeds the maxth, and a large disparity occurs between queue 
occupancies of competing connections it is safe to assume that the connection with 
an exceptionally large number of packets buffered at the severely congested node is 
bandwidth greedy. Continuing with our example, k = loge (3*5) or k = 2.708. We 
calculate the responsive share (r) of the packet queue occupancy as: 

r = k*f   ---- [b] 
 In our example r = 2.708 *15 = 40.62. So, in this example, a connection that 
has at most 41 packets in the queue (i.e. 54.66% of queue occupancy) during its 
severely congested state is considered responsive. All connections having more than 
a responsive share of the packet queue are considered unresponsive. Among the 
unresponsive connections identified above, the one having the maximum number of 
packets buffered at the severely congested node is singled out as the �greedy� 
connection.  Combining equations [a] and [b] we have: 

r = ( loge(3n))*(p/n)  ---- [c] 
Finally, the percentage permissible queue occupancy (qo) is given as: 

qo= 100*r/p = 100* loge(3n)/n ---- [d] 
Figure 3 shows the percentage permissible queue occupancy (qo) plotted against 

the number of connections (n) represented in the queue. The slope of the graph is 
steep for smaller values of n and becomes a gradual decline as n increases. This 
implies that a larger variation in queue occupancy is permitted when fewer 
connections cause severe congestion at a node. One anomaly that appears is that for 
the special case of n=1, a connection will not be classified as greedy even if it 
exhausts the entire packet buffer at the node. This is in fact necessary to ensure that 
a single connection will never be filtered, as there is no competing connection. 
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Figure 2. Percentage of permissible queue occupancy (qo) v/s number of 
connections (n) 

Severe congestion (avg > maxth) at a node may be caused by greedy 
application(s) not responding to congestion notification sent by the RED [7] 
mechanism. If this is the case, the greedy connection(s) is identified by the above. 
All other flows are assumed non-greedy. Non-greedy, conforming sources either 
respond to congestion notification or do not make a heavy demand on network 
bandwidth during congested periods. In the case of non-greedy sources, the control 
loop is stretched from the congested node to the packet source. We rely on RED [7] 
mechanisms and the packet source to control the rate at which packets enter the 
congested node. In the case of greedy connections, stretching the control loop to the 
packet source is ineffective and hence congestion caused by greedy sources is 
controlled within the network and not by relying on the greedy sources to cut back 
their effective rate of packet transmission. We make use of the processing capability 
of an active network to control these greedy connections as described below. 

2.2 Controlling Bandwidth-greedy Flows � Active 
Filtering 

To prevent the severely congested node to degrade into a drop-tail node, it 
becomes imperative to control the non-conforming bandwidth-greedy flows. We feel 
that the only effective way to control the inflow of packets from such a greedy 
connection is by actively filtering packets belonging to the connection. The packet 
filtering must continue until such a time that the queue occupancy of the packet 
buffer at the severely congested node is reduced to acceptable levels. Once this 
happens responsive connections may compete for a fair share of the bandwidth that 
they were previously denied. A packet filter is first installed at the congested node 
for the identified greedy connection. The filter is then progressively migrated 
towards the source of the greedy connection up to the first hop node of the 
connection. In doing so, the packet drops are made early and reduces the wastage of 
network resources.  
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Filtering packets belonging to a flow is a relatively harsh mechanism of 
controlling congestion but is deemed necessary, considering the damage that can be 
done to network resources by the (non-conforming) greedy connection. As multiple 
flows could be identified as bandwidth greedy, we pick out the greediest flow and 
dynamically filter packets belonging to it. If congestion is not controlled in spite of 
actively filtering the greediest flow, the algorithm continues to successively isolate 
and filter the remaining identified greedy flows in the order of their greediness. 

3. LGC IMPLEMENTATION 

LGC active congestion control has been implemented on the RANI (Rutgers 
Active Network Initiative) testbed. There are essentially two ways in which an 
active network can support application oriented processing at intermediate nodes in 
the network. In the language-based approach, the active datagrams carry programs 
that are executed in a suitable environment. Users are allowed to inject code into the 
network making the system highly dynamic and flexible. However, special care 
must be taken to safeguard the system against malicious users and buggy code. In 
the menu-based approach, the active node supports a fixed set of services. 
Designated operators may add new services into the node. Active datagrams carry a 
reference to the type of servicing they require. The implementation details of 
services are hidden from end user applications. We believe that the menu-based 
approach gives a strict administrative control over the services that the network can 
offer and provides a secure infrastructure at the cost of reduced dynamism. Thus, we 
adopt the menu-driven approach in designing our active network for the evaluation 
of LGC.  

3.1 RANI (Rutgers Active Network Initiative) Testbed 

The RANI network consists of a number of active nodes connected to each other 
via virtual links. For simplicity, we assume that the virtual links are reliable in 
delivering datagrams. Any node can communicate with other nodes in the network 
by sending datagrams across the virtual links. Datagrams that do not need active 
processing are referred to as passive datagrams. Passive datagrams are simply stored 
and forwarded similar to traditional network forwarding. Datagrams that request 
additional processing at the intermediate nodes in the network are called active 
datagrams. Each datagram is considered an atomic element and is processed 
individually by the active nodes.  

The datagram header comprises of a few additional fields as compared to an 
IPv4 header. These include a previous node visited (PrevNode) field, which carries 
the IPv4 address and port number of the last active node visited by the packet. 
Active servicing is requested through a type of service (TOS) field in the header of 
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the active packet. The time to live (TTL) field is modified to represent a time-based 
upper bound on the life of a packet in the RANI network. Lastly, an active (Act) 
field is set to true if the packet is active and is false otherwise. 

The active node is implemented in Java (v1.1) as a user space process on the 
Windows NT operating system. The node runs at the application layer in the TCP/IP 
protocol stack. Application oriented processing of active packets may be required at 
the end nodes as well as intermediate nodes in the network. Thus, we do not 
distinguish between intermediate nodes and end nodes. Virtual links are 
implemented as a UDP (User Datagram Protocol) socket pair � one socket is used 
for receiving datagrams and the other for sending them. Active or passive packets 
are created and subsequently injected into the active network via the user interface at 
the node. These packets are propagated as UDP segments in the RANI network. 

3.2 Mobile Filtering 

The process of mobile filtering begins with the congested node extracting a 
packet belonging to the greedy connection from its packet buffer. This packet 
reveals the source of the greedy connection. A greedy connection identifier (GCI) 
consisting of the source IP address and port number is formed. Next, the virtual link 
object connecting the congested node to the greedy source is obtained from the 
routing table using the GCI. The node uses the GCI to create a packet filter on the 
receive port of this virtual link. The packet filter is installed for time ITime and 
drops packets originating from the identified greedy connection. The virtual link 
object reveals the active node to which it connects. The IP address and port number 
of this active node is called the previous hop identifier (PHI). The node then creates 
and sends an active packet destined for the previous hop requesting the ActiveFilter 
service. This packet contains the GCI of the connection to be filtered in its payload. 
On receiving this message, the previous node invokes the process routine of its 
ActiveFilter service. Execution of this routine at this node involves installation of a 
packet filter for the greedy connection and propagation of the active filter message 
to the next node in the path of the connection that is closer to the greedy source. This 
process continues until the first hop node for the greedy connection is reached. A 
minor technicality overlooked in the example above was the assumption that a node 
can automatically learn if it is the first hop node and stop propagating the mobile 
filter. This is because prior to creating the active filter message each active node 
performs a previous hop check. The check consists of a comparison of the GCI and 
the PHI fields. If they match it means that the filter has reached the first hop node 
for the greedy connection. The packet filter is then installed for a longer duration of 
time FHTime and the node does not propagate the active filter message any further. 
Sending the active filter message to the source of a greedy connection would be 
futile as source is already found to be un-responsive. 
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Once a greedy connection is identified and filtered at the congested node, the 
packet queue occupancy is expected to drop. However, due to the low pass filtering 
mechanism used in the calculation of avg, its value might continue to be greater than 
maxth even after the queue occupancy has decreased. This will again trigger the LGC 
algorithm. To ensure that LGC is not triggered multiple times in a short interval of 
time, a minimum idle period, Tx, is chosen between two consecutive triggers of 
LGC. 

The selection of the two timing parameters, ITime and FHTime, is critical to the 
successful of the active filter mechanism. The ITime parameter is based on the time 
taken for migration of the active filter from an intermediate node to the previous 
node in the path of the greedy connection. If its value is pre-set to a high value, both 
these nodes will suffer the overheads of actively filtering a greedy connection. If its 
value is too low, active filtering at the intermediate node will terminate before it 
begins at the previous node. From empirical measurements on the RANI network, 
we set this parameter to approximately five seconds.  

The FHTime parameter is based on the time it is desired to actively filter a 
greedy connection at its first hop node. If FHTime is too small, the unresponsive 
connection is not be filtered for a sufficiently long period and may congest the 
network again. If it is too large, the connection may close but the packet filter will 
continue to exist adding unnecessary overheads at the node at which it is installed. 
We set FHTime to about 100 seconds in the RANI test bed. 

4. EXPERIMENTAL EVALUATION 

In this section, we experimentally evaluate the ability of the LGC algorithm to 
correctly identify and filter a greedy connection. Since the LGC algorithm is 
triggered only during severe congestion, in our experiment we first force a node into 
severe congestion. Note that in order to reduce complexity, only necessary 
components of the RED algorithm were implemented. 

The evaluation was conducted using the RANI testbed running on Intel Pentium 
II 300 MHz processor machines interconnected via a 10BaseT Ethernet LAN at the 
data link layer. The RANI network was built on the Windows NT operating system 
substrate. To bring out the effectiveness of the LGC algorithm we simulate 
responsive and unresponsive connections. The sources are simulated with the help of 
a packet generator that can be selected to behave as a non-greedy or a greedy source. 
The transport mechanism for a non-greedy connection is simulated as a rough 
approximation of a TCP source. A detailed explanation of the implementation of 
TCP can be found in [5]. The transport mechanism for a greedy connection is 
simulated by a constant packet-rate source.  
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Figure 3. Network topology for experiments 

The test active network consisting of six non-greedy sources, one greedy source, 
one interconnecting node and a sink node is shown in Figure 3. Node 1 is the greedy 
source and nodes 2,3,4,5,6 and 7 are non-greedy sources. Node 7 is targeted for 
severe congestion. Node 8 is the common sink for all the sources. Virtual links are 
shown as double-ended arrows. Node 7 is forced into a severely congested state by 
having all the sources transmit packets at approximately the same time. To prevent 
packet drops due to expiration of the TTL field, all packets injected into the network 
have a large value of initial TTL (10 sec.). The queue parameters for node 7 are set 
with queue weight = 0.02, maxth = 25 and buffer size = 50. The non-greedy sources 
inject 50 packets each with an initial TCP slow-start threshold set to 16. The greedy 
source injects 200 packets in 5 bursts with an inter-burst duration of 1 second.  

The observed results are shown in Figure 4, In the figure the x-axis shows the 
packets arriving at node 7 and the y-axis shows the queue size measured in packets. 
The solid line (y = 25) represents the configured value of maxth at the node. Notice 
that the low pass filtering mechanism in calculation of average queue size in RED 
causes avg to change slowly in comparison to the actual queue size. For brevity, the 
first few packet arrivals have been omitted in Figure 5. Initially as the non-greedy 
sources open up their windows, the actual queue size remains low (<10). Once the 
competing sources have sufficiently large windows, the actual queue size increases 
rapidly. When the average queue size crosses maxth (25) at point A, the LGC 
algorithm is triggered. 

From the nodes packet queue we observe that the total queue occupancy is 39 
packets. Of these 21 packets belong to connection 1, 4 packets belong to connection 
2, 5 packets belong to connection 3, 3 packets belong to connection 4 and 2 packets 
each to belong connections 5, 6 and 7. Totally there are seven active connections at 
node 7. Fair queue occupancy is 39/7 = 5.57. With a permissible factor k of 
loge(3*7), the permissible queue occupancy is 5.57 *3.0445  = 17 packets. 
Connection 1 has 21 packets in the node queue and is correctly identified as a greedy 
connection. Since Node 7 is the first-hop node for this connection, the migration of 
the packet filter was not necessary and a packet filter for connection 1 was installed 
at Node 7 for a duration FHTime (100) seconds. Subsequently all packets arriving 
from connection 1 were filtered out at node 7. The throughput for non-greedy 
connections is observed to be 100% after the LGC algorithm came into effect, but 
the greedy connection had a throughput of 53.5% due to active filtering at node 7.  
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Figure 4. LCG - Basic Operation 

Due to the bandwidth greedy nature of connection 1, we observe a sudden drop 
in the queue occupancy once this connection is filtered. This can be observed in the 
region of the graph just after the LGC algorithm is triggered. Eventually the queue 
size is controlled at point B. The time lapse (marked as T in Figure 5) between the 
LGC algorithm coming into effect (point A) and the reduction in average queue 
occupancy (point B) occurs due to the low pass filtering mechanism in the 
calculation of the average queue size. It confirms the requirement for the presence of 
an idle time (Tx > T) between two successive triggers of the LGC algorithm. If the 
LGC algorithm were not suspended for time Tx, it would be triggered multiple times 
since avg exceeds maxth for duration T, despite active filtering of the greedy 
connection. 

5. CONCLUSIONS 

In this paper, we presented the design, implementation and evaluation of the 
LGC active congestion control mechanism. LGC uses active network capabilities to 
address the shortcomings of RED and limit the degradation in network performance 
caused by bandwidth greedy application flows. A process of recursive, active mobile 
filtering is used to throttle non-conformant bandwidth-greedy flows close to the 
source. This relieves the congested nodes and minimizes wasted network resources. 
Experimental results validate the utility of the LGC mechanism in limiting the 
effects of bandwidth-greedy connections. 
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