Accord: A Programming Framework for
Autonomic Applications

Hua Liu and Manish Parashar, Senior Member, IEEE

Abstract—The emergence of pervasive wide-area distributed computing environments, such as pervasive information systems and
computational Grids, has enabled new generations of applications that are based on seamless access, aggregation and interaction.
However, the inherent complexity, heterogeneity and dynamism of these systems require a change in how the applications are
developed and managed. In this paper we present a programming framework that extends existing programming models/frameworks
to support the development of autonomic self-managed applications. The framework enables the development of autonomic elements
and the formulation of autonomic applications as the dynamic composition of autonomic elements. The operation of the proposed

framework is illustrated using a forest fire management application.

Index Terms—Programming framework, self-management, autonomic, dynamic composition

I. INTRODUCTION

HE emergence of wide-area distributed computing

environments, such as pervasive information systems
and computational Grids, has enabled a new generation of
applications that are based on seamless access, aggregation
and interaction. For example, it is possible to conceive a
new generation of scientific and engineering simulations of
complex physical phenomena that symbiotically and
opportunistically combine computations, experiments,
observations, and real-time data, and can provide important
insights into complex systems such as interacting black
holes and neutron stars, formations of galaxies, and
subsurface flows in oil reservoirs and aquifers etc. Other
examples include pervasive applications that leverage the
pervasive information Grid to continuously manage, adapt,
and optimize our living context, crisis management
applications that use pervasive conventional and
unconventional information for crisis prevention and
response, medical applications that use in-vivo and in-vitro
sensors and actuators for patient management, and business
applications that use anytime-anywhere information access
to optimize profits.

However, the underlying pervasive distributed
computing environment is inherently large, complex,
heterogeneous and dynamic, globally aggregating large
numbers of independent computing and communication

resources, data stores and sensor networks. Furthermore,
these emerging applications are similarly complex and
highly dynamic in their behaviors and interactions.
Together, these challenges result in application
development, configuration and management complexities
that break current paradigms based on passive components
and static compositions. Clearly, there is a need for a
fundamental change in how these applications are
developed and managed. This has led researchers to
consider alternative programming paradigms and
management techniques that are based on the strategies
used by biological systems to deal with complexity,
dynamism, heterogeneity and uncertainty. The approach,
referred to as autonomic computing [15], aims at realizing
computing systems and applications capable of managing
themselves with minimal human intervention.

In this paper we present the Accord programming
framework that extends existing programming
models/frameworks to support the development of
autonomic applications in wide-area distributed
environments. The framework builds on the separation of
the composition aspects (e.g., organization, interaction and
coordination) of elements from their computational
behaviors that underlies the component- and service-based
paradigm, and extends it to enable the computational
behaviors of objects/components/services as well as their
organizations, interactions and coordination to be managed

Manuscript received January, 2005. The research presented in this paper is supported in part by the National Science Foundation via grants numbers ACI
9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS 0430826.

Hua Liu (e-mail: marialiu@caip.rutgers.edu), TASSL, Dept. of Electrical and Computer Engineering, Rutgers Univ., Piscataway, NJ 08854.

Contact author: Manish Parashar (e-mail: parashar@caip.rutgers.edu), TASSL, Dept. of Electrical and Computer Engineering, Rutgers Univ., Piscataway, NJ

08854. Phone: (732) 445-5388. Fax: (732) 445-0593

at runtime using high-level rules.

Accord is part of project AutoMate [2], which
investigates autonomic solutions to deal with the challenges
of complexity, dynamism, heterogeneity and uncertainty in
Grid environments. The overall goal of project AutoMate is
to develop conceptual models and implementation
architectures that can enable the development and
execution of such self-managing Grid applications.

The rest of the paper is organized as follows: Section II
investigates programming challenges, discusses related
work, and introduces the Accord programming framework.
A detailed discussion of the Accord framework is presented
in Section III. In Section IV, we illustrate the operation of
Accord framework using a forest fire management
application. Section V describes the prototype
implementations and presents an experimental evaluation of
Accord. Section VI presents a conclusion.

II. APPLICATION DEVELOPMENT AND MANAGEMENT IN
PERVASIVE GRID ENVIRONMENTS

A. Challenges and Requirements

The nature and scale of pervasive information and
computational Grid environments and applications
introduce new levels of development and management
complexities. These include:

O Heterogeneity: The environments aggregate large
numbers of independent and geographically distributed
computational and information resources, including
supercomputers, workstation-clusters, network elements,
data-storages, sensors, services, and Internet networks.
Similarly, applications typically combine multiple
independent and distributed software elements such as
components, services, real-time data, experiments and
data sources.

o0 Dynamism: The computation, communication and
information environment is continuously changing during
the lifetime of an application. This includes the
availability and state of resources, services and data.
Applications similarly exhibit dynamism where the
runtime behaviors, organizations and interactions of
components may change during execution.

0 Uncertainty: Uncertainty in these environments is
caused by multiple factors, including: (1) dynamism,
which introduces unpredictable and changing behaviors
that can only be detected and resolved at runtime, (2)
failures, which have an increasing probability and
frequency of occurrence as the scale and complexity of
systems/applications increase, and (3) incomplete
knowledge, which is typical in large decentralized and
asynchronous distributed environments.

The above challenges impose requirements on
programming frameworks to enable applications that can
address the challenges. This section studies existing
programming models and frameworks and their ability to
address the challenges listed above. It then, introduces

autonomic computing as means for addressing these
challenges and presents related autonomic computing
systems. Finally, the Accord programming framework is
introduced.

B. Programming Frameworks for Distributed System

There has been a significant body of research on
programming frameworks for parallel and distributed
computing over the last few decades. Many current
communication frameworks for distributed and parallel
computing (i.e., message passing models and shared
memory models) supplement existing sequential
programming systems to support interactions between
distributed entities. These systems typically make very
strong assumptions about the behavior of the entities, their
interactions, and the underlying system, especially about
their static nature and reliable behaviors, which limit their
applicability to highly dynamic and uncertain computing
environments.

Distributed Object Frameworks: Unlike the systems
described above that essentially address only
communication aspects, the distributed object frameworks
provide more complete support for parallel/distributed
applications, including lifecycle management, location and
discovery, interaction and synchronization, security, failure
and reliability [8]. CORBA [9], one of the dominant
distributed object models, enables the secure interactions
(based on remote procedure calls, method invocations and
event notification) between distributed and heterogeneous
objects using interfaces described by a language-neutral
interface definition language and through a middleware
consisting of object resource brokers and interoperability
protocols (e.g., GIOP, IIOP). CORBA primarily addresses
distribution and heterogeneity. CORBA also provides
limited support for dynamism via dynamic invocation
(DSI/DII) and late binding, which enables customization at
deployment time. However, the interacting objects and
interaction are tightly coupled. Further, the model assumes
a priori (compile-time) knowledge of the syntax and
semantics of interfaces as well as the interactions required
by the applications.

While CORBA does not directly enable dynamic
adaptation of the behaviors of objects or their interactions,
it does have the potential to support adaptive runtime
behaviors by providing portable request interceptors that
“intercept the flow of a request/reply sequence through the
ORB at specific points so that services can query the
request information and manipulate the service contexts
that are propagated between clients and servers” [9]. Such
extensions are discussed in Section C. Note that these
adaptations are performed by manipulating and redirecting
messages using interceptors, but the direct adaptation of
individual objects is not provided.

Component-based programming frameworks:
Component models address increasing software complexity
and changing requirements by enabling the construction of

systems as assemblies of reusable components.
Components are reusable units of composition, deployment
and execution and lifecycle management [7]. Components
are completely specified by their interfaces. Current
component models include CCM, JavaBeans and CCA.

CORBA Component Model (CCM) [9] extends the
CORBA distributed object model and similarly supports
distribution, heterogeneity and security. It also supports
dynamic instantiation and runtime customization of
components. However, CCM inherits some of the
limitations of CORBA including the requirement for a prior
knowledge about interfaces and interactions. JavaBeans [7]
is a Java only component model which addresses similar
issues. JavaBeans also supports runtime bean
customization.

The Common Component Architecture (CCA) [1]
defines a component model especially for scientific
applications. The model primarily addresses the
heterogeneity and the separation of interface and
implementation. CCA targets high-performance parallel
applications and uses functional calls for inter-component
interactions. While it does not support runtime
customization of components, it does allow components to
be replaced dynamically. It does not address failure or
security and assumes all components are trusted.

Note that component-based frameworks also provide
core mechanisms, such as interceptors in CORBA, the
BuilderService in CCA, and the container in JavaBeans,
which can be extended to support dynamic runtime
adaptation. However the communication pattern between
components and their coordination are statically defined.

Service-based models: Service based models, such as
Web service and Grid service [3] models, have been
proposed in recent years to address the requirements of
loosely coupled wide-area distributed environments. These
models require very little or no prior knowledge of the
services before invocation. The decoupling between
application entities provided by these models allows
applications to be constructed in a more flexible and
extensible way. However, the runtime behaviors of services
and applications themselves are still rigid and they
implicitly assume that context does not change during the
lifetime of applications, i.e., services can only be
customized during their instantiation. Further, services in
the Web services model are assumed to be stateless. While
the Grid service model allows stateful services, it makes
strong assumptions about the underlying system, i.e., it
must support reliable invocation, which is not possible in
the presence of failures and the lack of global knowledge.
Current orchestration and choreography for Web and Grid
services are static and must be defined a priori.

C. Autonomic Computing Systems

Addressing these challenges requires applications to be
autonomic. The essence of autonomic computing is self-
management, which is manifested in four aspects, self-

configuration, self-optimization, self-healing, and self-
protection [15]. Therefore, applications should be capable
of detecting and dynamically responding to changes in both
the state of the system and the requirements of the
applications, to dynamically configure themselves,
continuously improve their performance, detect, diagnose,
and repair problems, and defend themselves against attacks.
This imposes key requirements on the programming
systems: (1) the applications should be composed from
discrete, self-managing elements which incorporate
separate specifications for all of functional, non-functional,
and interaction-coordination behaviors; (2) The
specifications of computational (functional) behaviors,
interaction and coordination behaviors, and non-functional
behaviors (e.g. performance, fault detection and recovery,
etc.) should be separated so that their combinations are
composeable; (3) The interface definitions of these
elements should be separated from their implementations to
enable dynamic selection of elements and interactions
among heterogeneous elements.

Given these features of a programming system, an
autonomic application requiring a given set of
computational behaviors may be integrated with different
interaction and coordination models or languages (and vice
versa) and different specifications for non-functional
behaviors such as fault recovery and QoS to address the
dynamism and heterogeneity of the application and the
underlying environments.

The challenges and requirements outlined above and the
limitations of current programming frameworks have led
researchers to investigate alternate approaches that enable
the development of applications that are capable of
managing themselves using high-level rules, with minimal
human intervention. These autonomic applications are
context aware and self-adapting.

Existing research in autonomic application system can be
divided into two categories. Systems in the first category
either extend existing programming languages/systems (for
example [10]) or defining new adaptation languages (for
example [11]), and enable adaptive applications where the
adaptations are statically specified at compile time. These
systems require that all the possible adaptation must be
known a priori and must be coded into the application. If
new adaptations are required or if application requirements
change, the application code has to be modified and the
application is re-compiled.

Systems in the second category enable dynamically-
defined adaptation by allowing adaptations, in the form of
code, scripts or rules, to be added, removed and modified at
runtime. Many existing projects in this category directly
utilize and extend the capabilities of existing programming
frameworks to enable dynamic adaptation. For example,
ACT [12] extends CORBA by using a rule-based
interceptor to dynamically weave new adaptive code into
the ORB as applications execute. Other projects investigate
specific coordination languages to describe/adapt the

interactions between elements. For example, ALua [13]
uses the Lua language to perform interaction/coordination
and adaptation in an interpretive manner and supports the
execution of dynamically defined adaptation specification
in an even-driven manner. In both these types of projects,
the mechanisms of adaptations include (1) interposition —
filters [14, 17] or proxies [12, 18] may be interposed
between interacting elements to change their interaction
relationships and to introduce dynamism to the execution of
an application, (2) wrapping [19] — the interactions may
be refined at runtime using wrappers to introduce new
behaviors into existing elements, and (3) superimposition
[20] — it enables the software engineers to impose pre-
defined but configurable types of functionalities on
individual elements.

D. Accord Programming Framework

The Accord programming framework presented in this
paper supports the development of autonomic applications
that can address the challenges described above. Accord
enables the definition of autonomic elements with
programmable behaviors and interactions. Further, it
enables runtime composition and autonomic management
of these elements using dynamically defined rules.

The prototype implementations of Accord extend an
object oriented framework based on C++ and MPI, and the
CCAFFEINE CCA Framework. These implementations
and their evaluation are presented in this paper.

III. THE ACCORD PROGRAMMING FRAMEWORK FOR
AUTONOMIC APPLICATIONS

The Accord programming framework consists of 4
concepts. The first is an application context that defines a
common semantic basis for the application. The second is
the definition of autonomic elements (objects, components,
services) as the building blocks of autonomic applications.
The next is the definition of rules and mechanisms for the
dynamic composition of autonomic elements. And the final
is an agent infrastructure to support rule enforcement to
realize self-managing and dynamic composition behaviors.
Accord builds on the AutoMate middleware infrastructure
that provides the essential services required to support the
development and execution of autonomic applications.
These include naming service, discovery service, lifecycle
management service, and registration service.

A. Defining Application Context

Autonomic elements should agree on a common syntax
and semantics for defining and describing ontologies,
namespaces, sensors, actuators, function interfaces and/or
events to enable elements to understand and interact with
each other. Using such a common context allows definition
of rules for autonomic management of elements and
dynamic composition and interactions between elements.
As Accord builds on and extends existing frameworks with
autonomic capabilities, it uses the mechanisms provided by

these frameworks to define application context. Current
implementations of Accord extend CCA [1] and OGSA [3],
and use SIDL and WSDL respectively to define functional
interfaces, sensors and actuators. Further, these functional
interfaces, sensors and actuators are used to define if-then
else rules that specify an element’s runtime behaviors and
its interaction relationships with other elements.

B. Defining Autonomic Elements

An autonomic element is the fundamental building block
for autonomic applications in the Accord framework. It
extends traditional objects/components/services to define a
self-contained modular software unit of composition with
specified interfaces and explicit context dependencies.
Additionally, an autonomic element encapsulates rules,
constraints and mechanisms for self-management, and
dynamically interacts with other autonomic elements. The
structure of an autonomic element is shown in Figure 1. It
is defined by three classes of ports:

. Function Interface
Element Autonomic Element Sensor Invocation Actuator

Manager Invocation Invocation
Operational Port |

Coggﬁa:::nal Control Port ‘
Functional Port {—} {—} {—}
Internal state rules context

Fig. 1. An autonomic element.
1. The functional port (I') defines a set of functionalities
vy provided and used by the autonomic element.
y € Qx A, where Q is the set of inputs and A is the

set of outputs of the elements, and y defines a valid
input-output set.

2. The control port (X) is the set of tuples (o, &), where ¢
is a set of sensors and actuators exported by the
element, and & is the constraint set that controls access
to the sensors/actuators. Sensors are interfaces that
provide information about the element while actuators
are interfaces for modifying the state of the element.
Constraints are based on state, context and/or high-
level access polices, and can control who invokes the
interfaces, when and how they are invoked.

3. The operational port (®) defines the interfaces to
formulate, inject and manage rules, and encapsulates a
set of rules that are used to manage the runtime
behaviors of the autonomic element. Rules incorporate
high level guidance and practical human knowledge in
the form of conditional if-then expressions, i.e., IF
condition THEN actions. Condition is a logical
combination of element (and environment) sensors and
events. Actions consist of a sequence of invocations of
elements and/or system sensors/actuators, and other
interfaces. A rule fires when its condition expression
evaluates to be true which causes the corresponding
actions to be executed. Two types of rules are defined.
oBehavior rules control the runtime functional

behaviors of autonomic elements and applications.
For example, behavior rules can control the

Element Manager ‘

algorithms, data representations or input/output
formats used by an element and an application.

olnteraction rules control the interactions between
elements, between elements and their environments,
and the coordination within an autonomic
application. For example, an interaction rule may
define where an element gets inputs and forwards
outputs, define the communication mechanisms
used, and specify when the element interacts with
other elements.

As shown in Figure 1, each computational element is
associated with an element manager that is delegated to
manage its execution. The element manager monitors the
state of the element and its context, and controls the firing
of rules. Further, element managers cooperate to fulfill
application objectives as described in the following
subsections.

Note that computational elements have to implement and
export appropriate “sensor” and ‘“actuator” interfaces so
that their behaviors can be monitored and controlled.
Adding sensors requires modification/instrumentation of
the element source code. In case of third-party and legacy
elements where such a modification may not be possible or
feasible, proxies [12, 18] can be used to collect relevant
element information. The element manager implements the
proxy functions and is interposed between the caller and
callee elements to monitor, for example, all the method
invocations for the callee. Actuators can be similarly
implemented either as new methods that modify internal
parameters and behaviors of an element, or defined in terms
of existing methods if the element cannot be modified. The
adaptability of the elements will be limited in the latter
case.

C. RULE EXECUTION MODEL

A three-phase rule execution model [24] is used to
ensure correct and efficient parallel rule execution. This
model provides mechanisms to dynamically detect and
handle rule conflicts for both, behavior and interaction
rules.

Rule execution proceeds as follows. After the evaluation,
a pre-condition is constructed. Rule conflicts are detected at
runtime when rule execution changes the pre-condition (a
sensor-actuator conflict), or the same actuator will be
invoked multiple times with different values (an actuator-
actuator conflict). Sensor-actuator conflicts are resolved by
disabling the rules that change the pre-condition. Actuator-
actuator conflicts are resolved by relaxing the pre-condition
according to user-defined strategies until no actuator is
invoked multiple times with different values.

For example, consider element C1 with 3 algorithms:
algorithm 1 has better cache performance but consumes a
large communication bandwidth, algorithm 2 has
comparatively more cache misses but only consumes a
small bandwidth, and algorithm 3 demonstrates an
acceptable cache miss and communication delay but has

lower precision. It is possible that under certain conditions,
rule evaluation may results in the selection of algorithm 1
and 2 at the same time to simultaneously decrease cache
misses and communication delay, and maintain high-
precision. This conflict is detected and resolved by relaxing
the high-precision requirement, and therefore algorithm 3
can be selected.

The Accord framework also provides mechanisms for
reconciliation among manager instances, which is required
to ensure consistent adaptations. For example, in parallel
SCMD (Single Component Multiple Data) applications,
since each processing node may independently propose
different and possible conflicting adaptation behaviors
based on its local state and execution context. Rules are
statically assigned one of two priorities. A high priority
means that the execution of the rule is necessary, for
example, to avoid an application crash. A low priority
means that the execution of the rule is optional. During
reconciliation, actions associated with the rule with high
priority are propagated to all the managers. If there are
multiple high priority rules, a runtime error is generated and
reported to the user. If only low priority rules involved,
reconciliation uses cost functions to select the most
appropriate action at all involved managers. Details of the
design and operation of the Accord rule engine can be
found in [24].

D. Dynamic Composition of Autonomic Elements

1) Definition of Dynamic Composition
The composition of autonomic elements consists of
defining an organization of elements and the interactions
among these elements. The organization of elements is
based on the composition of functional ports (I'), and can
be defined as:

CO Cr UCI ’Elrco,u - 1—‘ci,p
Where, C,is an autonomic element, [JC,; is a set of one

or more autonomic elements, oc. denotes the relation “be

functionally composeable with”, I"

. is the functions used

by element C, and Fc,,p represents the functions provided
by the element set |J C, . This definition says that element
C, is functionally composeable with elementsJC, , when

UC,; can provide all the functions required by C, . This is

similar to the composition defined by distributed object
frameworks such as CORBA [7] and service-based models
such as Web Services [3].

Interactions among elements define how and when
elements interact — the interaction mechanism (messaging,
shared-memory, tuple-space) and coordination model (data-
driven or control-driven). For example, CCAFFEINE [1]
defines interactions as function calls, CORBA [7] uses
remote method invocations, and Web services and Grid
services [3] communicate using XML messages.

Interactions may be triggered by an event or may be
actively initiated by an element.

Dynamic composition introduces dynamism and
uncertainty into both aspects of composition described
above, i.e., “which elements are composed” and “how and
when they interact” are defined only at runtime.
Compositions are often represented as workflow graphs
where nodes represent elements and edges represent
interaction relationships between the elements. Using such
a workflow graph representation of composition, dynamic
composition consists of (a) node (element) dynamism —
elements are replaced, added to or deleted from the
workflow, and (b) edge (interaction) dynamism -
interaction relationships are changed, added to or deleted
from the workflow.

2) Dynamic Composition in Accord

In Accord, dynamic composition is performed by a
multi-agent infrastructure [5] consisting of peer element
managers associated with computational elements, and a
composition manager, as shown in Figure 2.

Application workflow

Composition Manager

Interaction Interaction
) Interaction
ruleés Interaction rules rules
rules
 E—
—
o —
3 —
| —] —
—

Fig. 2. Dynamic composition in Accord.

Programmers submit the primary application workflow
to the composition manager, which decomposes the
workflow into interaction rules. This decomposition
process consists of mapping workflow patterns [25] in the
workflow into corresponding rule templates, and defining
the required parameters for the templates [26]. The
composition manager injects these interaction rules into
corresponding element managers, which then execute the
rules to appropriately configure the elements and establish
interaction relationships. Note that there is no centrally
controlled orchestration. While the interaction rules are
defined by the composition manager, the actual interactions
are managed by eclement managers in a decentralized
manner.

The Accord framework supports element and interaction
dynamism as described below.

o Dynamically replacing elements: An existing element
can be replaced by another element as long as the
functional ports of the two elements are compatible.
The replacement may be triggered either by the
composition manager or by the element manager. In
both cases, the replacement is achieved as follows.
First, the new element is registered (using the
registration service provided by AutoMate or the
underlying framework) in and initiated by the

element manager, and the old element is notified by
the element manager to transition to a quiescent state.
In this state, the old element does not respond to
invocations or requests and does not produce any
responses. While, it transfers its rule set to the new
element and notifies related elements to update their
interaction rules. The execution of these updated
interaction rules will establish the interactions
between the new element and those related elements.
The old element is then deleted, as described in
deleting an element in below. If the old element
crashes, the replacement process is handled entirely
by the element manager.

Two tasks are required to enable the transfer of
state information. First, the element should expose
sensors and actuators to enable its state to be
externally queried and modified. Second, rules
should be defined to direct the element manager to
periodically query and store the state of the element.

o Dynamically adding / deleting elements: To add a new
element, the composition manager creates a new
element manager, initializes it with interaction rules
defined by users, and injects corresponding rules into
managers of related elements. The execution of these
rules will establish interactions between the new
element and the existing elements. To delete an
element, the composition manager notifies related
element managers to delete corresponding interaction
rules. Once the element is no longer active in this
application, it will be terminated by the lifecycle
service provided by AutoMate or the underlying
framework.

o Establishing / deleting / changing interaction
relationships: Interaction rules will instruct the
autonomic elements to establish or delete interaction
relationships at runtime. The composition manager
may inject new rules and modify existing rules,
which will be executed by corresponding element
managers to dynamically change the interaction
relationships to cope with the dynamism and
uncertainty of applications and systems.

The decomposition of the primary application workflow
into rules enables users to adjust the workflow at runtime
without recompiling/restarting the applications. The
interaction relationships are managed and automatically
adapted to the dynamic context by element managers
according to interaction rules. As a result, applications can
be automatically re-configured to manage the dynamism
and uncertainty of the applications and environments.

E. Accord Implementation Issues

The Accord framework assumes the existence of
common knowledge in the form of an ontology and
taxonomy that defines the semantics for specifying and
describing application namespaces, and element interfaces,
sensors and actuators, and system/application context and

content. This common semantics is used for formulating
rules for autonomic management of elements and dynamic
composition and interactions between the elements.
Further, it assumes time-asynchronous system behavior
with fail-stop failure modes [23]. Finally, Accord assumes
the existence of an execution environment that provides (1)
an agent-based control network, (2) support for associative
coordination, (3) services for content-based discovery and
messaging, (4) support of context-based access control and
(5) core services for managing distributed computing
environment. These requirements are addressed
respectively by Rudder, Meteor, Sesame/DAIS and the
underlying Grid middleware on which it builds.

F. Enabling Self-managing Behaviors using Accord

In this section we demonstrate how Accord can be used
to enable autonomic self-managing behaviors in
applications by dynamically changing the computational
behaviors of individual elements, by changing their
interaction relationships, and by adding/deleting/replacing
elements. All the behaviors described below are defined by
experts using rules, which may be specified at compile time
and/or dynamically specified at runtime. Note that many
these behaviors have been implemented and demonstrated,
and are described in the publications cited [6, 16].

Self-configuration: ~ Autonomic applications can
dynamically configure themselves in accordance with high-
level functional and nonfunctional requirements in a
dynamical execution environment. At the element level,
element managers sense the current execution context of
the managed elements using underlying context services
(e.g. NWS), and customize their computational behaviors
(e.g., select the algorithms or data representatives) and their
interaction behaviors (e.g., negotiate with related element
managers to construct the appropriate interaction
relationship). For example, if a user is working on a PDA
that typically has poor graphics resolution as well as limited
memory capacity, a visualization element may dynamically
adapt its behavior to the current display capacities [16]. If
two interacting elements detect that the current
communication channel is congested, they may negotiate to
decrease the interaction frequency within some tolerance to
reduce congestion.

At the application level, when an element is instantiated
within an application, it will integrate itself seamlessly, and
the rest of the application will adapt to its presence. For
example, in the forest fire application described in this
paper, a new element is dynamically introduced into the
application to simulate the fire fighters. When it is
introduced, the element registers itself with the composition
manger, which then injects corresponding interaction rules
into the new element and related existing elements. This
enables the elements to establish interaction relationship
and the application to continue without interruption.

Self-optimizing: Elements and applications continually
seek opportunities to improve their own performance and

efficiency. At the element level, for example, if minimizing
execution time is specified as an optimization objective, an
individual element will select the fastest algorithm for the
current execution context, application state and its inputs.
Alternately, if decreasing memory usage is the optimization
objective, the element will select the algorithm that requires
the minimal core memory for current execution context.
These optimizations are specified by experts in the form of
rules, possibly at runtime based on observed behaviors.

At the application level, the composition manager may
decide to replace an element with a new version that offers
better performance for the current execution context. The
new version must provide all the active functions as the one
being replaced (active functions are those functions that are
currently used by interacting elements in the application) so
that the replacement is transparent to interacting elements.

Self-healing: Systems automatically detect, diagnose,
and repair problems. For example, in a scientific
simulation, if a solver is detected not to converge, an
alternate, possibly less accurate solver may be used to
prevent the application from failing. This can be achieved
in two ways. If a managed element provides multiple
solvers, it may switch the solvers based on current state and
execution context. However, if the solvers are provided by
separate elements, the composition manager will select and
instantiate the alternative element, and replace the current
element with the new one as described previously.
Similarly, if an adaptive simulation runs out of memory
(i.e., a memory allocation request fails), rather than
allowing the application to crash, the application can
survive but execute at a lower resolution. Once again,
individual elements may adapt their behavior to reduce
their core memory requirements, and/or elements may be
replaced or moved to other nodes.

Self-protecting: Autonomic systems will defend
themselves against problems arising from malicious attacks.
They also will anticipate problems and take steps to avoid
or mitigate them. In Accord, individual elements contain
constraints or guards controlling accesses to their
interfaces, and they may disable certain interfaces by
modifying these constraints. For example, an element may
shut down some of its sensors and actuators when its state
is not conducive to the actions of those sensors and
actuators. Further, interface constraints in Accord may
specify credential checks during invocation and an element
may reject invocations from elements that don’t have the
required credentials. For example, element A may deny
access from element B to some critical internal state when
element B is in an insecure environment.

Note that self-healing behaviors are used to recover from
problems that have occurred, while self-protecting
behaviors try to anticipate and avoid problems before they
actually happen. Consequently, techniques discussed in
self-healing can be used for self-protecting. Self-protecting
behaviors in Accord may use the Sesame/DAIS services
provided by AutoMate [22].

IV. AUTONOMIC FOREST FIRE APPLICATION: AN
ILLUSTRATIVE EXAMPLE

In this section, we use the forest fire application [4] to
illustrate the Accord programming framework. The
application predicts the speed, direction, and intensity of
the fire front as the fire propagates using static and dynamic
environment and vegetation conditions. The application is
composed of 5 elements listed below.

o DSM (Data Space Manager): The forest is represented
as a 2D space composed of cells. The function of
DSM is to divide the data space into sub spaces based
on current system resources using load-balancing
algorithms, and to send the divided 2D space to
Rothermel.

0 CRM (Computational Resource Manager): CRM
provides DSM with system resource information,
including the number of current available
computational resources and their usages.

0 Rothermel: Rothermel generates the processes required
to simulate the fire spread on each subspace in
parallel. Each subspace consists of a group of
adjacent cells. A cell is programmed to undergo state
changes from unburned to burning and finally to
burned when the fire line propagates through it. The
direction and value of maximal fire spread is
computed using Rothermel’s fire spread model.

o0 WindModel: WindModel simulates the wind direction
and intensity.

0 GUI: Experts interact with the above elements using
the GUI element.

DSM partitions the 2D space based on the currently
available computational resources detected by CRM.
Rothermel then simulates the fire propagation in this 2D
space according to the current wind information obtained
from WindModel. When the load on computational nodes is
unbalanced, DSM will re-partition the 2D space and
continue the process. The process continues until no
burning cells remain.

A. Defining Autonomic Elements

We use the Rothermel and CRM as examples to illustrate
the definition of functional, control and operational ports.

(1) Functional port

<function name=""getSpaceState’’>

<out name=""space’’ type=""tns:SpaceDes’’/>

</function>

(2) Control port

addSensor("*getDirection’’, *string’’);

/* sensor name is getDirection, return type is string */
addActuator("“setCellState’’," ‘cellState’’, **string’’, *void’’);
/* actuator name is setCellState */

/* the name of input is cellState and type is string */

/* this actuator has no return */

(3) Operation port

IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false);

Fig. 3. Examples of port definitions in Accord.
Functional Port: Rothermel simulates the propagation

of the fire in the subspaces. An example of its functional
port definition is shown in Figure 3. The function
getSpaceState generates information about the space. The
namespace tns defines the context of this application and
describes the data structures used. For instance, the data
structure tns:SpaceDes describes the space information for
this application, including the direction and value of
maximal fire spread, the vegetation type and the terrain
type.

Control Port: In Rothermel, the sensor getDirection is
used to get the spread direction of the fire line that has the
maximal intensity, and the actuator setCellState is used to
modify the state of a specified cell. The value of the input
parameter cellState in the actuator setCellState can be one
of burning, unburned, or burned. This constraint is handled
by the implementation of setCellState, through either
providing no response to an invalid input value or returning
an error. If an error is returned, it will be captured by the
Rothermel element manager to generate an exception,
which is handled by the AutoMate middleware or
forwarded to the user. An example of control port is shown
in Figure 3.

Operational Port: The operational port contains the
rules that are used to manage the runtime behavior of an
element. The rules may be defined at runtime and injected
into the element, and will be executed by the element
manager associated with the computational element. An
example behavior rule in CRM may be shown in Figure 3.
When this rule fires, CRM will deduce that the load is
unbalanced. Note that the threshold (0.5 in this example)
that triggers the rules can be modified at run time.

B. Dynamic Composition in the Forest Fire Application

The primary workflow of the forest fire application is
decomposed to interaction rules shown in Figure 4 and 5.
In this example, we illustrate interaction rules for:

0 Establishing a “while” loop among Rothermel, DSM,
and CRM, which will be terminated when there are
no burning cells in the data space. The loop control
flow is established by executing R1, D1, and C1.

0 Establishing synchronous RMI between Rothermel
and WindModel by executing R2, R3 and W2. In this
interaction, Rothermel will be blocked until it
receives a response from WindModel.

0 Establishing notification relationship between (1)
CRM and DSM by executing C2 and D2, or C3 and
D2, (2) DSM and Rothermel by executing D2 and R2,
and (3) WindModel and Rothermel by executing W3
and R4.

The Accord programming framework decouples
interaction and coordination from computation, and enables
both these behaviors to be managed at runtime using rules.
This enables autonomic elements to change their behaviors,
and to dynamically establish/terminate/change interaction
relationships with other elements. Users are responsible for
the correctness of rules. However, Accord resolves runtime

rule conflicts using the three-phase rule execution model
[24] described in Section III C. Deploying and executing
rules impact performance, but it increases the robustness of
the applications and their ability to manage dynamism and
uncertainty. Further, our observations indicate that the
runtime changes to interaction relationships are infrequent
and their overheads are relatively small. As a result, the
time spent to establish and modify interaction relationships
is small as compared to typical computation time. An
evaluation of performance overheads is presented in
Section V.

C. Self-managing Behaviors for the Forest Fire
Application

The self-managing behaviors for the forest fire
application enabled by the Accord programming framework
are illustrated bellow.

Examples of Autonomic Behaviors: Autonomic
behaviors are achieved using simple or compound behavior
rules.

0 Simple behavior rules: These rules affect an individual
element. For example, DSM has 2 partitioning
algorithms: a greedyBlockAlgorithm, which is fast
but consumes more resources, and a graphAlgorithm,
which is slow but needs fewer resources. DSM needs
to dynamically select an appropriate algorithm based
on current system state. The behavior rule is shown
in Figure 6.

IF isSystemOverlLoaded()==true THEN invoke graphAlgorithm();
ELSE invoke greedyBlockAlgorithm();

Fig. 6. An example of a simple behavior rule for DSM..

o0 Compound behavior rules: These rules may affect
several elements and need to be executed
collaboratively by corresponding element managers
associated with these elements. For example, a rule is
defined to notify the user when the fire is propagating
towards an important building located at cell X. This
rule is decomposed by the Rothermel element
manager based on the sensors, actuators and element
names contained in the rule, shown in Figure 7. The
generated sub rules are injected into the
corresponding element managers in the elements that
expose these sensors and actuators. The Rothermel
element manager will collect windNotif from
WindModel, evaluate the rule and notify the GUI

when the condition is true.
IF ((Rothermel.getStatus(*Y")=="burning” AND WindModel.getDirection=="east")
OR (Rothermel.getStatus(*Z")=="burning” AND WindModel.getDirection=="south"))
THEN send alarm to GUI;

§IF getDirection() =="east” THEN send windNotif to Rothermel,
{IF getDirection() =="south” THEN send windNotif to Rothermel;

Rothermel fm:

WindMadel

|

{IF windNotif is received THEN assign windNotif to direction; cell'Y cell X

{IF (direction =="east’ AND getStatus("Y") =="bumning")
i OR (direction =="south” AND getStatus(""Z") =="bumning”) cell Z
{THEN send alarm to GUI;

Fig. 7. The execution of a compound behavior rule.

Examples of Autonomic Interactions

O Adding new elements: A new element, Fire Fighter
Model, which models the behaviors of the fire
fighters, may be added into the primary workflow.
This element dynamically changes the state of cells
that it is associated with and informs Rothermel. The
interaction behavior of the Fire Fighter Model is
defined by Rulel, and the responding interaction
behavior of the Rothermel is defined by Rule2,
shown in Figure 8.

Rule2: IF cellChangeMsg is received THEN
Rothermel . -
assign cellChangeMsg to input;
invoke updateCell with input;
F'rfﬂgbger:ter Rulel: IF isFighterWork()==true THEN
send cellChangeMsg to Rothermel;

Fig. 8. A new element Fire Fighter Model is added.

0 Changing interaction relationships: CRM needs to
dynamically decrease the frequency of notifications
to DSM when the communication network is
congested. This self-adapting behavior can be
achieved by the combination of a behavior rule Rulel
and an interaction rule Rule2 injected to CRM, as
shown in Figure 9. Rulel increases the threshold
value to 0.5 when the network is congested. When
the maximal difference in resource usages among the
nodes is larger than the threshold, CRM will set
isResourceBalanced to return false. When the load is
imbalanced, Rule2 will be triggered and will send the
loadMsg to DSM. Note that, once the rules, Rulel
and Rule2 in this example, have been defined, the
changes of interactions occur in an automatic manner
without human intervention. Further, this change is
local to the elements involved, CRM and DSM in the
example above, and does not affect other elements.

Rulel: IF isSystemCongested()==true
THEN setThreshold(0.5);
ELSE setThreshold(0.3);
Rule2: IF isResourceBalanced()==false
THEN send loadMsg to DSM,;

Fig. 9. The interaction relationship between DSM and CRM is changed.

V. PROTOTYPE IMPLEMENTATION AND EVALUATION

A. Prototype implementation based on a distributed object
framework

The key concepts underlying the Accord programming
framework have been prototyped and evaluated in the
context of distributed scientific/engineering simulations as
part of the DIOS++/Discover project [6]. This prototype
implementation was based on a distributed object
framework developed using C++ and the Message Passing
Interface (MPI). In this prototype, computational objects
were enhanced with sensors, actuators, and behavior rules
forming their functional, control and operational interfaces.
The overheads associated with dynamic injection and
runtime execution of these rules were evaluated. Note that
the objects could be partitioned across multiple processors

and could be dynamically created, deleted, or migrated.
Rules could span multiple objects across multiple
processors. This prototype however did not implement
dynamic composition.

Autonomic application based on this implementation
included an autonomic oil reservoir and subsurface
simulator [21], an autonomic feature-based visualization
system [16], and an autonomic runtime management system
for adaptive scientific and engineering simulations.

1600 m without 120000 @ computation
51400 DIOS++| | 100000 time
1200 owith =
"o 1000 DIOS++ § 80000 + Orule
£ 800 S 60000 | deployment
_5 600 §40000 | time
g 4o g 20000 1
® o number of 0 - number of

1 2 4 8 16 32 processors 1 2 3 4 iterations

Fig. 10. (a) Runtime overheads introduced in the minimal mode. (b)
Comparison of computation and rule deployment times.

120000 O computation
100000 _ time
€ 80000] ij rule exec
8 time
S 60000
€ D app rule
Py 40000 exec time
£ 20000
0 ; L number of
1 2 3 iterations

Fig. 11. Comparison of computation and rule execution times.

The evaluation of the prototype is presented in Figure 10
and 11. The experiments were conducted on a 32 node
Linux cluster using an oil-reservoir simulation application.
The left plot in Figure 10 shows the runtime overhead due
to the introduction of sensors, actuators and rules into
computational objects. No rules were evaluated in this
experiment. The right plot in Figure 10 compares the rule
deployment time to the computational time for successive
iterations. Figure 11 compares rule execution time to the
computational time for successive iterations. An object rule
is a rule that manages a single object while an application
rule manages a set of objects across multiple processors. It
can be seen from these experiments that the overheads are
quite tolerable.

B. Prototype implementation based on the CCA
component framework

We are implementing a prototype autonomic component
framework based on Accord and the CCAFFEINE CCA
framework. The framework supports the development and
execution of self-managing autonomic scientific
applications. It allows CCA components to instantiate and
export control ports composed of sensors and actuators. It
also introduces two specialized types of components: (1)
component manager that monitors and manages the
computational behaviors of individual components, for
example, by selecting the appropriate algorithms and
modifying parameters, and (2) composition manager that
manages, adapts, and optimizes the execution of an

10

application at runtime, for example, by dynamically
replacing a component that is executing sub-optimally or
has failed. The two manager components encapsulate the
Accord operational ports.

[user component

B Component manager
[composttion manager

[CCA framework + TAU |
Mode y

| CCA framework + TAU |

Nodez

Fig. 12. The architecture of an application using the autonomic component
framework based on Accord and CCAFFEINE.

Both, the component manager and the composition
manager components are peers of the managed components
and other system components, providing and/or using ports
that are connected to other ports by the CCAFFEINE
framework. The two manager components are not part of
the CCAFFEINE framework, and consequently provide the
programmers the flexibility to integrate them into their
applications only as needed.

A sample application using the Accord and CCAFFEINE
based autonomic component framework is illustrated in
Figure 12. As shown in the figure, instances of the
component managers and composition managers on
different nodes independently evaluate and execute the
rules to manage and possibly change the computational and
interaction behaviors of the managed component instances
based on their local state and execution contexts. However,
as the CCAFFEINE framework employs the SCMD model
of computation, all instances of the managed element must
be adapted in exactly the same way, i.e., the corresponding
managers must enforce the same actions. As a result,
reconciliation (discussed in the rule execution model in
section III C) is used by the managers to select actions that
are acceptable to all the instances.

VI. SUMMARY AND CONCLUSION

As the scale, complexity, heterogeneity and dynamism of
distributed environments and applications increase,
conventional paradigms based on passive elements and
static compositions quickly become insufficient. This has
led researchers to consider alternative autonomic
approaches, where applications are context aware and self-
managing.

In this paper we presented the Accord programming
framework that supports the development of autonomic
self-managed applications. It enables the development of
autonomic elements and the formulation of autonomic
applications as the dynamic composition of autonomic
elements, where the runtime computational behavior of the

elements as well as their compositions and interactions can
be managed at runtime using dynamically injected rules.
Prototype implementations and an evaluation of the
framework were also presented. The operation of the
proposed framework is illustrated using a forest fire
management application.

The programming overhead and requirements of
adaptive applications have been widely investigated, both
in academia and industry. Component software [7, 9] and
service oriented architecture [3, 27] have been proposed as
new programming paradigms that separate the development
and compilation of elements (components and services) and
applications. These paradigms have been widely accepted
and integrated with other technologies to enable the
programming of adaptive applications. Accord builds on
and extends the paradigms with rules/policies to enable
adaptations based on both, application/element internal
state and execution context.

We believe that extending widely used programming
paradigms and using rules and polices to support self-
managing behaviors will drive the realization of the vision
of autonomic computing, leading to the definition of
community wide open standards and their widespread
adoption by industry and academia.

REFERENCES

[1] Common Component Architecture Tutorial,
http://acts.nersc.gov/events/workshop2003/slides/cca/.

[2] M. Agarwal, V. Bhat, Z. Li, H. Liu, B. Khargharia, V. Matossian, V.
Putty, C. Schmidt, G. Zhang, S. Hariri and M. Parashar, “Automate:
Enabling Autonomic Applications on the Grid,” In Proc. of the
Autonomic Computing Workshop, Seattle, WA, 2003, pp. 48-57.

[3] I Foster, C. Kesselman, J. M. Nick and S. Tuecke, “The Physiology
of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration,” Open Grid Service Infrastructure Work Group,
Global Grid Forum, Tech. Rep., 2002.

[4] B. Khargharia, S. Hariri, M. Parashar, L. Ntaimo and B. U. Kim,
“vGrid: A framework for building autonomic applications,” In Proc.
of the 1° International Workshop on Heterogeneous and Adaptive
Computing-CLADE 2003, Seattle, Washington, 2003.

[5] M. Parashar, Z. Li, H. Liu, V. Matossian and C. Schmidt, “Enabling
Autonomic Grid Applications: Requirements, Models and
Infrastructures,” Self-Star Properties in Complex Information
Systems, Lecture Notes in Computer Science, Springer Verlag.
Editors: O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S.
Leonardi, A. van Moorsel, and M. van Steen, Vol. 3460, 2005.

[6] H. Liu and M. Parashar, “Rule-based Monitoring and Steering of
Distributed Scientific Applications,” International Journal of High
Performance Computing and Networking (IJHPCN), issue 1,
Inderscience, 2005.

[71 C. Szyperski, “Component Software Beyond Object-Oriented
Programming,” 2™ ed., Component Software Series, Addison-
Wesley, Great Britain, 2002.

[8] H. E. Bal, J. G. Steiner and A. S. Tanenbaum, “Programming
Languages for Distributed Computing Systems,” ACM Computing
Surveys, 21(3), 1989, 261-322.

[91 “Common Object Broker Resource Architecture (CORBA),” Object
Management Group (OMG), http://www.corba.org.

11

[10] P. Boinot, R. Marlet, J. Noyé, G. Muller, and C. Cosell, “A
declarative approach for designing and developing adaptive
components,” In Proc. Of the 15" IEEE International Conference on
Automated Software Engineering, pages 111-119, IEEE, 2000.

[11] G. Duzan, J. Loyall, and R. Schantz, “Building adaptive distributed

applications with middleware and aspects,” In Proc. of the 3"

International Conference on Aspect-oriented Software Development,

pages 66-73, Lancaster, UK, 2004, ACM.

S. M. Sadjadi, and P. K. McKinley, “ACT: An Adaptive CORBA

Template to Support Unanticipated Adaptation,” In Proc. of the 24"

International Conference on Distributed Computing Systems

(ICDCS’04), Hachioji, Tokyo, Japan, pages 74-83, 2004.

C. Ururahy, N. Rodriguez, and R. Ierusalimschy, “ALua: Flexibility

for parallel programming,” Computer Languages, 28(2):155-180,

2002.

[14] M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable
systems overview and prospective vision,” In Proc. of the 23"
international conference on distributed computing systems
workshops, pages 84-89, Providence, Rhode Island, 2003, IEEE.

[15] M. Parashar and S. Hariri, “Autonomic Computing: An Overview,”
Unconventional Programming Paradigms, Lecture Notes in
Computer Science, Springer Verlag, 2005.

[16] H. Liu, L. Jiang, M. Parashar, and D. Silver, “Rule-based
Visualization in the Discover Computational Steering
Collaboratory,” the Journal of Future Generation Computer System,
Elsevier Science, Jan 2005.

[17] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for

building composite web services,” http://mortimer.law.uga.edu/

jesse/4900/review 10 presentation.ppt, 2004.

S. M. Sadjadi and P. K. McKinley, “Transparent self-optimization in

existing corba applications,” In Proc. of the first international

conference on autonomic computing, NYC, NY, 2004.

[19] E. Truyen,W. Joosen, P. Verbaeten, and B. N. Jorgensen, “On

interaction refinement in middleware,” in Proc. of the 5"

International Workshop on Component-Oriented Programming,

2000.

J. Bosch, “Superimposition: A component adaptation technique,”

Information and Software Technology, 1999.

V. Bhat, V. Matossian, M. Parashar, M. Peszynska, M. Sen, P. Stoffa,

and M. F. Wheeler, “Autonomic Oil Reservoir Optimization on the

Grid,” Concurrency and Computation: Practice and Experience,

John Wiley and Sons, accepted October 2003.

G. Zhang, and M. Parashar, “Context-aware Dynamic Access Control

for Pervasive Applications,” In Proc. of the Communication

Networks and Distributed Systems Modeling and Simulation

Conference (CNDS 2004), San Diego, CA, USA, 2004

F. Cristina, and C. Fetzer, “The Timed Asynchronous Distributed

System Model,” IEEE Transactions on Parallel and Distributed

Systems, IEEE Computer Society Press, 10(6), 1999, 642-657.

[24] H. Liu and M. Parashar. “A framework for rule-based autonomic
management of parallel scientific applications,” In Proc. Of the 2™
IEEE International Conference on Autonomic Computing (ICAC-05),
Seattle, Washington, 2005.

[25] W.M.P.Van Der Aalst and et al., “Workflow patterns,” distributed
and parallel databases, 14(3), pages 5-51, 2003.

[26] H. Liu and M. Parashar, “A Component-based Programming

Framework for Autonomic Grid Applications,” PhD proposal,

Rutgers University, 2004.

“Decentralized Orchestration of Composite Web Services,”

http://www.research.ibm.com/irl/projects/decentralized.shtml.

H. Liu and M. Parashar, “Enabling Self-management of Component-

based High-Performance Scientific Applications,” In Proc. of the14™

IEEE international symposium on high performance distributed

computing (HPDC-14), Research Triangle Park, NC, 2005.

[12

—

[13

—

[18

=

[20

[t}

[21

—

[22

—

[23

[t}

[27

—

[28

=

1. DSM gets resource information from CRM

2. DSM informs Rotherml of the partitioned space
3. The execution of Rothermel changes the load
distribution among the nodes, from which CRM
may detect the load imbalance and notify DSM.

Rule D1: termination rule

Rule D2 (with C2 in CRM, or with
C3 in CRM): establishing
notification relationship between
DSM and CRM

loadMsg

spaceMsg

Rule D2 (with R2 in Rothermel): Rule C1: termination rule
establish notification relationship Rule C2: starting the application
between DSM and Rothermel Rothermel) iRule C2 (with D2 in CRM):
i establishing notification relationship
Rule R1: termination rule between CRM and DSM
Rules R2 (with D2 In DSM): Rule C3 (with D2 in CRM):
establishing notification establishing notification relationship
relationship between Rothermel between CRM and DSM
and DSM windMsg
Rules R2 and R3 (with W2 In Rule W1: termination rule
WindModel): establishing RMI Rule W2 (with R2 and R3 in
relationship between Rothermel Rothermel): establishing RMI
and WindModel windReq relationship between WindModel
Rules R4 (with W3 In windResp and Rothermel
WindModel): establishing Rule W3 (with R4 in Rothermel):
notification relationship between: establishing notification
Rothermel and WindModel Wind relationship between WindModel
Model and Rothermel

Fig. 4. Decomposing the primary workflow for the forest fire application into interaction rules.

R1: IF getNumOfBurningCells()==0 THEN

send terminationMsg to DSM, WindModel, CRM; invoke stop;
R2: IF spaceMsg is received THEN assign spaceMsg to input;

invoke setSpace with input;

send windReq to getWindInfor in WindModel; block;
R3: IF windResp is received THEN nonblock; assign windMsg to input;

invoke simulate with input;
R4: IF windMsg is received THEN assign windMsg to input; invoke simulate with input;

D1: IF terminationMsg is received THEN invoke stop;
D2: IF loadMsg is received THEN assign loadMsg to input;
invoke partition with input to output;
assign output to spaceMsg; send spaceMsg to Rothermel;

C1: IF terminationMsg is received THEN invoke stop;
C2: IF startSignal is received THEN send loadMsg to DSM;
C3: IF isResourceBalanced()==false THEN send loadMsg to DSM;

W1: IF terminationMsg is received THEN invoke stop;
W2: IF windReq is received THEN assign windReq to input; invoke getWindInfor to output;
assign output to windResp; send windResp to Rothermel;
W3: IF isWindChanged()==true THEN invoke getWindInfor to output;
assign output to windMsg; send windMsg to Rothermel;
Fig. 5. Interaction rules

