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Abstract—The emergence of pervasive wide-area distributed computing environments, such as pervasive information systems and 

computational Grids, has enabled new generations of applications that are based on seamless access, aggregation and interaction. 
However, the inherent complexity, heterogeneity and dynamism of these systems require a change in how the applications are 
developed and managed. In this paper we present a programming framework that extends existing programming models/frameworks 
to support the development of autonomic self-managed applications. The framework enables the development of autonomic elements 
and the formulation of autonomic applications as the dynamic composition of autonomic elements. The operation of the proposed 
framework is illustrated using a forest fire management application. 
 

Index Terms—Programming framework, self-management, autonomic, dynamic composition 

 
Manuscript received January, 2005. The research presented in this paper is supported in part by the National Science Foundation via grants numbers ACI 

9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495, CNS 0426354 and IIS 0430826. 
Hua Liu (e-mail: marialiu@caip.rutgers.edu), TASSL, Dept. of Electrical and Computer Engineering, Rutgers Univ., Piscataway, NJ 08854. 
Contact author: Manish Parashar (e-mail: parashar@caip.rutgers.edu), TASSL, Dept. of Electrical and Computer Engineering, Rutgers Univ., Piscataway, NJ 

08854. Phone: (732) 445-5388. Fax: (732) 445-0593 

I. INTRODUCTION 
HE emergence of wide-area distributed computing 
environments, such as pervasive information systems 

and computational Grids, has enabled a new generation of 
applications that are based on seamless access, aggregation 
and interaction. For example, it is possible to conceive a 
new generation of scientific and engineering simulations of 
complex physical phenomena that symbiotically and 
opportunistically combine computations, experiments, 
observations, and real-time data, and can provide important 
insights into complex systems such as interacting black 
holes and neutron stars, formations of galaxies, and 
subsurface flows in oil reservoirs and aquifers etc. Other 
examples include pervasive applications that leverage the 
pervasive information Grid to continuously manage, adapt, 
and optimize our living context, crisis management 
applications that use pervasive conventional and 
unconventional information for crisis prevention and 
response, medical applications that use in-vivo and in-vitro 
sensors and actuators for patient management, and business 
applications that use anytime-anywhere information access 
to optimize profits. 

However, the underlying pervasive distributed 
computing environment is inherently large, complex, 
heterogeneous and dynamic, globally aggregating large 
numbers of independent computing and communication 

resources, data stores and sensor networks. Furthermore, 
these emerging applications are similarly complex and 
highly dynamic in their behaviors and interactions. 
Together, these challenges result in application 
development, configuration and management complexities 
that break current paradigms based on passive components 
and static compositions. Clearly, there is a need for a 
fundamental change in how these applications are 
developed and managed. This has led researchers to 
consider alternative programming paradigms and 
management techniques that are based on the strategies 
used by biological systems to deal with complexity, 
dynamism, heterogeneity and uncertainty. The approach, 
referred to as autonomic computing [15], aims at realizing 
computing systems and applications capable of managing 
themselves with minimal human intervention. 

In this paper we present the Accord programming 
framework that extends existing programming 
models/frameworks to support the development of 
autonomic applications in wide-area distributed 
environments. The framework builds on the separation of 
the composition aspects (e.g., organization, interaction and 
coordination) of elements from their computational 
behaviors that underlies the component- and service-based 
paradigm, and extends it to enable the computational 
behaviors of objects/components/services as well as their 
organizations, interactions and coordination to be managed 
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at runtime using high-level rules. 
Accord is part of project AutoMate [2], which 

investigates autonomic solutions to deal with the challenges 
of complexity, dynamism, heterogeneity and uncertainty in 
Grid environments. The overall goal of project AutoMate is 
to develop conceptual models and implementation 
architectures that can enable the development and 
execution of such self-managing Grid applications.  

The rest of the paper is organized as follows: Section II 
investigates programming challenges, discusses related 
work, and introduces the Accord programming framework. 
A detailed discussion of the Accord framework is presented 
in Section III. In Section IV, we illustrate the operation of 
Accord framework using a forest fire management 
application. Section V describes the prototype 
implementations and presents an experimental evaluation of 
Accord. Section VI presents a conclusion. 

II. APPLICATION DEVELOPMENT AND MANAGEMENT IN 
PERVASIVE GRID ENVIRONMENTS 

A. Challenges and Requirements 
The nature and scale of pervasive information and 

computational Grid environments and applications 
introduce new levels of development and management 
complexities. These include: 
o Heterogeneity: The environments aggregate large 

numbers of independent and geographically distributed 
computational and information resources, including 
supercomputers, workstation-clusters, network elements, 
data-storages, sensors, services, and Internet networks. 
Similarly, applications typically combine multiple 
independent and distributed software elements such as 
components, services, real-time data, experiments and 
data sources. 

o Dynamism: The computation, communication and 
information environment is continuously changing during 
the lifetime of an application. This includes the 
availability and state of resources, services and data. 
Applications similarly exhibit dynamism where the 
runtime behaviors, organizations and interactions of 
components may change during execution. 

o Uncertainty: Uncertainty in these environments is 
caused by multiple factors, including: (1) dynamism, 
which introduces unpredictable and changing behaviors 
that can only be detected and resolved at runtime, (2) 
failures, which have an increasing probability and 
frequency of occurrence as the scale and complexity of 
systems/applications increase, and (3) incomplete 
knowledge, which is typical in large decentralized and 
asynchronous distributed environments. 
The above challenges impose requirements on 

programming frameworks to enable applications that can 
address the challenges. This section studies existing 
programming models and frameworks and their ability to 
address the challenges listed above. It then, introduces 

autonomic computing as means for addressing these 
challenges and presents related autonomic computing 
systems. Finally, the Accord programming framework is 
introduced. 

B. Programming Frameworks for Distributed System 
There has been a significant body of research on 

programming frameworks for parallel and distributed 
computing over the last few decades. Many current 
communication frameworks for distributed and parallel 
computing (i.e., message passing models and shared 
memory models) supplement existing sequential 
programming systems to support interactions between 
distributed entities. These systems typically make very 
strong assumptions about the behavior of the entities, their 
interactions, and the underlying system, especially about 
their static nature and reliable behaviors, which limit their 
applicability to highly dynamic and uncertain computing 
environments. 

Distributed Object Frameworks: Unlike the systems 
described above that essentially address only 
communication aspects, the distributed object frameworks 
provide more complete support for parallel/distributed 
applications, including lifecycle management, location and 
discovery, interaction and synchronization, security, failure 
and reliability [8]. CORBA [9], one of the dominant 
distributed object models, enables the secure interactions 
(based on remote procedure calls, method invocations and 
event notification) between distributed and heterogeneous 
objects using interfaces described by a language-neutral 
interface definition language and through a middleware 
consisting of object resource brokers and interoperability 
protocols (e.g., GIOP, IIOP). CORBA primarily addresses 
distribution and heterogeneity. CORBA also provides 
limited support for dynamism via dynamic invocation 
(DSI/DII) and late binding, which enables customization at 
deployment time. However, the interacting objects and 
interaction are tightly coupled. Further, the model assumes 
a priori (compile-time) knowledge of the syntax and 
semantics of interfaces as well as the interactions required 
by the applications.  

While CORBA does not directly enable dynamic 
adaptation of the behaviors of objects or their interactions, 
it does have the potential to support adaptive runtime 
behaviors by providing portable request interceptors that 
“intercept the flow of a request/reply sequence through the 
ORB at specific points so that services can query the 
request information and manipulate the service contexts 
that are propagated between clients and servers” [9].  Such 
extensions are discussed in Section C.  Note that these 
adaptations are performed by manipulating and redirecting 
messages using interceptors, but the direct adaptation of 
individual objects is not provided. 

Component-based programming frameworks: 
Component models address increasing software complexity 
and changing requirements by enabling the construction of 
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systems as assemblies of reusable components. 
Components are reusable units of composition, deployment 
and execution and lifecycle management [7]. Components 
are completely specified by their interfaces. Current 
component models include CCM, JavaBeans and CCA.  

CORBA Component Model (CCM) [9] extends the 
CORBA distributed object model and similarly supports 
distribution, heterogeneity and security. It also supports 
dynamic instantiation and runtime customization of 
components. However, CCM inherits some of the 
limitations of CORBA including the requirement for a prior 
knowledge about interfaces and interactions. JavaBeans [7] 
is a Java only component model which addresses similar 
issues. JavaBeans also supports runtime bean 
customization.  

The Common Component Architecture (CCA) [1] 
defines a component model especially for scientific 
applications. The model primarily addresses the 
heterogeneity and the separation of interface and 
implementation. CCA targets high-performance parallel 
applications and uses functional calls for inter-component 
interactions. While it does not support runtime 
customization of components, it does allow components to 
be replaced dynamically. It does not address failure or 
security and assumes all components are trusted. 

Note that component-based frameworks also provide 
core mechanisms, such as interceptors in CORBA, the 
BuilderService in CCA, and the container in JavaBeans, 
which can be extended to support dynamic runtime 
adaptation. However the communication pattern between 
components and their coordination are statically defined. 

Service-based models: Service based models, such as 
Web service and Grid service [3] models, have been 
proposed in recent years to address the requirements of 
loosely coupled wide-area distributed environments. These 
models require very little or no prior knowledge of the 
services before invocation. The decoupling between 
application entities provided by these models allows 
applications to be constructed in a more flexible and 
extensible way. However, the runtime behaviors of services 
and applications themselves are still rigid and they 
implicitly assume that context does not change during the 
lifetime of applications, i.e., services can only be 
customized during their instantiation. Further, services in 
the Web services model are assumed to be stateless. While 
the Grid service model allows stateful services, it makes 
strong assumptions about the underlying system, i.e., it 
must support reliable invocation, which is not possible in 
the presence of failures and the lack of global knowledge. 
Current orchestration and choreography for Web and Grid 
services are static and must be defined a priori. 

C. Autonomic Computing Systems 
Addressing these challenges requires applications to be 

autonomic. The essence of autonomic computing is self-
management, which is manifested in four aspects, self-

configuration, self-optimization, self-healing, and self-
protection [15]. Therefore, applications should be capable 
of detecting and dynamically responding to changes in both 
the state of the system and the requirements of the 
applications, to dynamically configure themselves, 
continuously improve their performance, detect, diagnose, 
and repair problems, and defend themselves against attacks. 
This imposes key requirements on the programming 
systems: (1) the applications should be composed from 
discrete, self-managing elements which incorporate 
separate specifications for all of functional, non-functional, 
and interaction-coordination behaviors; (2) The 
specifications of computational (functional) behaviors, 
interaction and coordination behaviors, and non-functional 
behaviors (e.g. performance, fault detection and recovery, 
etc.) should be separated so that their combinations are 
composeable; (3) The interface definitions of these 
elements should be separated from their implementations to 
enable dynamic selection of elements and interactions 
among heterogeneous elements. 

Given these features of a programming system, an 
autonomic application requiring a given set of 
computational behaviors may be integrated with different 
interaction and coordination models or languages (and vice 
versa) and different specifications for non-functional 
behaviors such as fault recovery and QoS to address the 
dynamism and heterogeneity of the application and the 
underlying environments. 

The challenges and requirements outlined above and the 
limitations of current programming frameworks have led 
researchers to investigate alternate approaches that enable 
the development of applications that are capable of 
managing themselves using high-level rules, with minimal 
human intervention. These autonomic applications are 
context aware and self-adapting. 

Existing research in autonomic application system can be 
divided into two categories. Systems in the first category 
either extend existing programming languages/systems (for 
example [10]) or defining new adaptation languages (for 
example [11]), and enable adaptive applications where the 
adaptations are statically specified at compile time. These 
systems require that all the possible adaptation must be 
known a priori and must be coded into the application. If 
new adaptations are required or if application requirements 
change, the application code has to be modified and the 
application is re-compiled. 

Systems in the second category enable dynamically-
defined adaptation by allowing adaptations, in the form of 
code, scripts or rules, to be added, removed and modified at 
runtime. Many existing projects in this category directly 
utilize and extend the capabilities of existing programming 
frameworks to enable dynamic adaptation. For example, 
ACT [12] extends CORBA by using a rule-based 
interceptor to dynamically weave new adaptive code into 
the ORB as applications execute. Other projects investigate 
specific coordination languages to describe/adapt the 
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interactions between elements. For example, ALua [13] 
uses the Lua language to perform interaction/coordination 
and adaptation in an interpretive manner and supports the 
execution of dynamically defined adaptation specification 
in an even-driven manner. In both these types of projects, 
the mechanisms of adaptations include (1) interposition ― 
filters [14, 17] or proxies [12, 18] may be interposed 
between interacting elements to change their interaction 
relationships and to introduce dynamism to the execution of 
an application, (2) wrapping [19] ― the interactions may 
be refined at runtime using wrappers to introduce new 
behaviors into existing elements, and (3) superimposition 
[20] ― it enables the software engineers to impose pre-
defined but configurable types of functionalities on 
individual elements. 

D. Accord Programming Framework 
The Accord programming framework presented in this 

paper supports the development of autonomic applications 
that can address the challenges described above. Accord 
enables the definition of autonomic elements with 
programmable behaviors and interactions. Further, it 
enables runtime composition and autonomic management 
of these elements using dynamically defined rules. 

The prototype implementations of Accord extend an 
object oriented framework based on C++ and MPI, and the 
CCAFFEINE CCA Framework. These implementations 
and their evaluation are presented in this paper. 

III. THE ACCORD PROGRAMMING FRAMEWORK FOR 
AUTONOMIC APPLICATIONS 

The Accord programming framework consists of 4 
concepts. The first is an application context that defines a 
common semantic basis for the application. The second is 
the definition of autonomic elements (objects, components, 
services) as the building blocks of autonomic applications. 
The next is the definition of rules and mechanisms for the 
dynamic composition of autonomic elements. And the final 
is an agent infrastructure to support rule enforcement to 
realize self-managing and dynamic composition behaviors. 
Accord builds on the AutoMate middleware infrastructure 
that provides the essential services required to support the 
development and execution of autonomic applications. 
These include naming service, discovery service, lifecycle 
management service, and registration service. 

A. Defining Application Context 
Autonomic elements should agree on a common syntax 

and semantics for defining and describing ontologies, 
namespaces, sensors, actuators, function interfaces and/or 
events to enable elements to understand and interact with 
each other. Using such a common context allows definition 
of rules for autonomic management of elements and 
dynamic composition and interactions between elements. 
As Accord builds on and extends existing frameworks with 
autonomic capabilities, it uses the mechanisms provided by 

these frameworks to define application context. Current 
implementations of Accord extend CCA [1] and OGSA [3], 
and use SIDL and WSDL respectively to define functional 
interfaces, sensors and actuators. Further, these functional 
interfaces, sensors and actuators are used to define if-then 
else rules that specify an element’s runtime behaviors and 
its interaction relationships with other elements. 

B. Defining Autonomic Elements 
An autonomic element is the fundamental building block 

for autonomic applications in the Accord framework. It 
extends traditional objects/components/services to define a 
self-contained modular software unit of composition with 
specified interfaces and explicit context dependencies. 
Additionally, an autonomic element encapsulates rules, 
constraints and mechanisms for self-management, and 
dynamically interacts with other autonomic elements. The 
structure of an autonomic element is shown in Figure 1. It 
is defined by three classes of ports: 

 

Computational
Element

Element
Manager

Operational Port

Control        Port

Functional Port

Autonomic Element

Element Manager

Sensor
Invocation

Function Interface
Invocation Actuator

Invocation

Internal state rules context  
Fig. 1. An autonomic element. 

1. The functional port (Γ) defines a set of functionalities 
γ provided and used by the autonomic element. 

Λ×Ω∈γ , where Ω is the set of inputs and Λ is the 
set of outputs of the elements, and γ defines a valid 
input-output set. 

2. The control port (Σ) is the set of tuples (σ, ξ), where σ 
is a set of sensors and actuators exported by the 
element, and ξ is the constraint set that controls access 
to the sensors/actuators. Sensors are interfaces that 
provide information about the element while actuators 
are interfaces for modifying the state of the element. 
Constraints are based on state, context and/or high-
level access polices, and can control who invokes the 
interfaces, when and how they are invoked. 

3. The operational port (Θ) defines the interfaces to 
formulate, inject and manage rules, and encapsulates a 
set of rules that are used to manage the runtime 
behaviors of the autonomic element. Rules incorporate 
high level guidance and practical human knowledge in 
the form of conditional if-then expressions, i.e., IF 
condition THEN actions. Condition is a logical 
combination of element (and environment) sensors and 
events. Actions consist of a sequence of invocations of 
elements and/or system sensors/actuators, and other 
interfaces. A rule fires when its condition expression 
evaluates to be true which causes the corresponding 
actions to be executed. Two types of rules are defined. 
o Behavior rules control the runtime functional 

behaviors of autonomic elements and applications. 
For example, behavior rules can control the 



 5

algorithms, data representations or input/output 
formats used by an element and an application. 

o Interaction rules control the interactions between 
elements, between elements and their environments, 
and the coordination within an autonomic 
application. For example, an interaction rule may 
define where an element gets inputs and forwards 
outputs, define the communication mechanisms 
used, and specify when the element interacts with 
other elements. 

As shown in Figure 1, each computational element is 
associated with an element manager that is delegated to 
manage its execution. The element manager monitors the 
state of the element and its context, and controls the firing 
of rules. Further, element managers cooperate to fulfill 
application objectives as described in the following 
subsections. 

Note that computational elements have to implement and 
export appropriate “sensor” and “actuator” interfaces so 
that their behaviors can be monitored and controlled. 
Adding sensors requires modification/instrumentation of 
the element source code. In case of third-party and legacy 
elements where such a modification may not be possible or 
feasible, proxies [12, 18] can be used to collect relevant 
element information. The element manager implements the 
proxy functions and is interposed between the caller and 
callee elements to monitor, for example, all the method 
invocations for the callee. Actuators can be similarly 
implemented either as new methods that modify internal 
parameters and behaviors of an element, or defined in terms 
of existing methods if the element cannot be modified. The 
adaptability of the elements will be limited in the latter 
case. 

C. RULE EXECUTION MODEL 
A three-phase rule execution model [24] is used to 

ensure correct and efficient parallel rule execution. This 
model provides mechanisms to dynamically detect and 
handle rule conflicts for both, behavior and interaction 
rules. 

Rule execution proceeds as follows. After the evaluation, 
a pre-condition is constructed. Rule conflicts are detected at 
runtime when rule execution changes the pre-condition (a 
sensor-actuator conflict), or the same actuator will be 
invoked multiple times with different values (an actuator-
actuator conflict). Sensor-actuator conflicts are resolved by 
disabling the rules that change the pre-condition. Actuator-
actuator conflicts are resolved by relaxing the pre-condition 
according to user-defined strategies until no actuator is 
invoked multiple times with different values. 

For example, consider element C1 with 3 algorithms: 
algorithm 1 has better cache performance but consumes a 
large communication bandwidth, algorithm 2 has 
comparatively more cache misses but only consumes a 
small bandwidth, and algorithm 3 demonstrates an 
acceptable cache miss and communication delay but has 

lower precision. It is possible that under certain conditions, 
rule evaluation may results in the selection of algorithm 1 
and 2 at the same time to simultaneously decrease cache 
misses and communication delay, and maintain high-
precision. This conflict is detected and resolved by relaxing 
the high-precision requirement, and therefore algorithm 3 
can be selected.  

The Accord framework also provides mechanisms for 
reconciliation among manager instances, which is required 
to ensure consistent adaptations. For example, in parallel 
SCMD (Single Component Multiple Data) applications, 
since each processing node may independently propose 
different and possible conflicting adaptation behaviors 
based on its local state and execution context. Rules are 
statically assigned one of two priorities. A high priority 
means that the execution of the rule is necessary, for 
example, to avoid an application crash. A low priority 
means that the execution of the rule is optional. During 
reconciliation, actions associated with the rule with high 
priority are propagated to all the managers. If there are 
multiple high priority rules, a runtime error is generated and 
reported to the user. If only low priority rules involved, 
reconciliation uses cost functions to select the most 
appropriate action at all involved managers. Details of the 
design and operation of the Accord rule engine can be 
found in [24]. 

D. Dynamic Composition of Autonomic Elements 
1) Definition of Dynamic Composition 

The composition of autonomic elements consists of 
defining an organization of elements and the interactions 
among these elements. The organization of elements is 
based on the composition of functional ports (Γ), and can 
be defined as: 

pcuci i
CC ,,0 0

, Γ⊆Γ∃∝Γ U  

Where, 0C is an autonomic element, iCU is a set of one 

or more autonomic elements, Γ∝  denotes the relation “be 

functionally composeable with”, uc ,0
Γ is the functions used 

by element 0C , and pci ,Γ represents the functions provided 

by the element set iCU . This definition says that element 

0C  is functionally composeable with elements iCU , when 

iCU  can provide all the functions required by 0C . This is 
similar to the composition defined by distributed object 
frameworks such as CORBA [7] and service-based models 
such as Web Services [3]. 

Interactions among elements define how and when 
elements interact − the interaction mechanism (messaging, 
shared-memory, tuple-space) and coordination model (data-
driven or control-driven). For example, CCAFFEINE [1] 
defines interactions as function calls, CORBA [7] uses 
remote method invocations, and Web services and Grid 
services [3] communicate using XML messages. 
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Interactions may be triggered by an event or may be 
actively initiated by an element. 

Dynamic composition introduces dynamism and 
uncertainty into both aspects of composition described 
above, i.e., “which elements are composed” and “how and 
when they interact” are defined only at runtime. 
Compositions are often represented as workflow graphs 
where nodes represent elements and edges represent 
interaction relationships between the elements. Using such 
a workflow graph representation of composition, dynamic 
composition consists of (a) node (element) dynamism – 
elements are replaced, added to or deleted from the 
workflow, and (b) edge (interaction) dynamism - 
interaction relationships are changed, added to or deleted 
from the workflow. 

2) Dynamic Composition in Accord 
In Accord, dynamic composition is performed by a 

multi-agent infrastructure [5] consisting of peer element 
managers associated with computational elements, and a 
composition manager, as shown in Figure 2. 

Application workflow

Interaction
rules Interaction

rules

Interaction
rules

Composition Manager

Interaction
rules

 
Fig. 2. Dynamic composition in Accord. 

Programmers submit the primary application workflow 
to the composition manager, which decomposes the 
workflow into interaction rules. This decomposition 
process consists of mapping workflow patterns [25] in the 
workflow into corresponding rule templates, and defining 
the required parameters for the templates [26]. The 
composition manager injects these interaction rules into 
corresponding element managers, which then execute the 
rules to appropriately configure the elements and establish 
interaction relationships. Note that there is no centrally 
controlled orchestration. While the interaction rules are 
defined by the composition manager, the actual interactions 
are managed by element managers in a decentralized 
manner.  

The Accord framework supports element and interaction 
dynamism as described below. 

o Dynamically replacing elements: An existing element 
can be replaced by another element as long as the 
functional ports of the two elements are compatible. 
The replacement may be triggered either by the 
composition manager or by the element manager. In 
both cases, the replacement is achieved as follows. 
First, the new element is registered (using the 
registration service provided by AutoMate or the 
underlying framework) in and initiated by the 

element manager, and the old element is notified by 
the element manager to transition to a quiescent state. 
In this state, the old element does not respond to 
invocations or requests and does not produce any 
responses. While, it transfers its rule set to the new 
element and notifies related elements to update their 
interaction rules. The execution of these updated 
interaction rules will establish the interactions 
between the new element and those related elements. 
The old element is then deleted, as described in 
deleting an element in below. If the old element 
crashes, the replacement process is handled entirely 
by the element manager. 

Two tasks are required to enable the transfer of 
state information. First, the element should expose 
sensors and actuators to enable its state to be 
externally queried and modified. Second, rules 
should be defined to direct the element manager to 
periodically query and store the state of the element. 

o Dynamically adding / deleting elements: To add a new 
element, the composition manager creates a new 
element manager, initializes it with interaction rules 
defined by users, and injects corresponding rules into 
managers of related elements. The execution of these 
rules will establish interactions between the new 
element and the existing elements. To delete an 
element, the composition manager notifies related 
element managers to delete corresponding interaction 
rules. Once the element is no longer active in this 
application, it will be terminated by the lifecycle 
service provided by AutoMate or the underlying 
framework. 

o Establishing / deleting / changing interaction 
relationships: Interaction rules will instruct the 
autonomic elements to establish or delete interaction 
relationships at runtime. The composition manager 
may inject new rules and modify existing rules, 
which will be executed by corresponding element 
managers to dynamically change the interaction 
relationships to cope with the dynamism and 
uncertainty of applications and systems. 

The decomposition of the primary application workflow 
into rules enables users to adjust the workflow at runtime 
without recompiling/restarting the applications. The 
interaction relationships are managed and automatically 
adapted to the dynamic context by element managers 
according to interaction rules. As a result, applications can 
be automatically re-configured to manage the dynamism 
and uncertainty of the applications and environments. 

E. Accord Implementation Issues 
The Accord framework assumes the existence of 

common knowledge in the form of an ontology and 
taxonomy that defines the semantics for specifying and 
describing application namespaces, and element interfaces, 
sensors and actuators, and system/application context and 
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content. This common semantics is used for formulating 
rules for autonomic management of elements and dynamic 
composition and interactions between the elements. 
Further, it assumes time-asynchronous system behavior 
with fail-stop failure modes [23]. Finally, Accord assumes 
the existence of an execution environment that provides (1) 
an agent-based control network, (2) support for associative 
coordination, (3) services for content-based discovery and 
messaging, (4) support of context-based access control and 
(5) core services for managing distributed computing 
environment. These requirements are addressed 
respectively by Rudder, Meteor, Sesame/DAIS and the 
underlying Grid middleware on which it builds. 

F. Enabling Self-managing Behaviors using Accord 
In this section we demonstrate how Accord can be used 

to enable autonomic self-managing behaviors in 
applications by dynamically changing the computational 
behaviors of individual elements, by changing their 
interaction relationships, and by adding/deleting/replacing 
elements. All the behaviors described below are defined by 
experts using rules, which may be specified at compile time 
and/or dynamically specified at runtime. Note that many 
these behaviors have been implemented and demonstrated, 
and are described in the publications cited [6, 16]. 

Self-configuration: Autonomic applications can 
dynamically configure themselves in accordance with high-
level functional and nonfunctional requirements in a 
dynamical execution environment. At the element level, 
element managers sense the current execution context of 
the managed elements using underlying context services 
(e.g. NWS), and customize their computational behaviors 
(e.g., select the algorithms or data representatives) and their 
interaction behaviors (e.g., negotiate with related element 
managers to construct the appropriate interaction 
relationship). For example, if a user is working on a PDA 
that typically has poor graphics resolution as well as limited 
memory capacity, a visualization element may dynamically 
adapt its behavior to the current display capacities [16]. If 
two interacting elements detect that the current 
communication channel is congested, they may negotiate to 
decrease the interaction frequency within some tolerance to 
reduce congestion. 

At the application level, when an element is instantiated 
within an application, it will integrate itself seamlessly, and 
the rest of the application will adapt to its presence. For 
example, in the forest fire application described in this 
paper, a new element is dynamically introduced into the 
application to simulate the fire fighters. When it is 
introduced, the element registers itself with the composition 
manger, which then injects corresponding interaction rules 
into the new element and related existing elements. This 
enables the elements to establish interaction relationship 
and the application to continue without interruption. 

Self-optimizing: Elements and applications continually 
seek opportunities to improve their own performance and 

efficiency. At the element level, for example, if minimizing 
execution time is specified as an optimization objective, an 
individual element will select the fastest algorithm for the 
current execution context, application state and its inputs. 
Alternately, if decreasing memory usage is the optimization 
objective, the element will select the algorithm that requires 
the minimal core memory for current execution context. 
These optimizations are specified by experts in the form of 
rules, possibly at runtime based on observed behaviors.   

At the application level, the composition manager may 
decide to replace an element with a new version that offers 
better performance for the current execution context. The 
new version must provide all the active functions as the one 
being replaced (active functions are those functions that are 
currently used by interacting elements in the application) so 
that the replacement is transparent to interacting elements. 

Self-healing: Systems automatically detect, diagnose, 
and repair problems. For example, in a scientific 
simulation, if a solver is detected not to converge, an 
alternate, possibly less accurate solver may be used to 
prevent the application from failing. This can be achieved 
in two ways. If a managed element provides multiple 
solvers, it may switch the solvers based on current state and 
execution context. However, if the solvers are provided by 
separate elements, the composition manager will select and 
instantiate the alternative element, and replace the current 
element with the new one as described previously. 
Similarly, if an adaptive simulation runs out of memory 
(i.e., a memory allocation request fails), rather than 
allowing the application to crash, the application can 
survive but execute at a lower resolution. Once again, 
individual elements may adapt their behavior to reduce 
their core memory requirements, and/or elements may be 
replaced or moved to other nodes. 

Self-protecting: Autonomic systems will defend 
themselves against problems arising from malicious attacks. 
They also will anticipate problems and take steps to avoid 
or mitigate them. In Accord, individual elements contain 
constraints or guards controlling accesses to their 
interfaces, and they may disable certain interfaces by 
modifying these constraints. For example, an element may 
shut down some of its sensors and actuators when its state 
is not conducive to the actions of those sensors and 
actuators. Further, interface constraints in Accord may 
specify credential checks during invocation and an element 
may reject invocations from elements that don’t have the 
required credentials. For example, element A may deny 
access from element B to some critical internal state when 
element B is in an insecure environment. 

Note that self-healing behaviors are used to recover from 
problems that have occurred, while self-protecting 
behaviors try to anticipate and avoid problems before they 
actually happen. Consequently, techniques discussed in 
self-healing can be used for self-protecting. Self-protecting 
behaviors in Accord may use the Sesame/DAIS services 
provided by AutoMate [22]. 
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IV. AUTONOMIC FOREST FIRE APPLICATION: AN 
ILLUSTRATIVE EXAMPLE 

In this section, we use the forest fire application [4] to 
illustrate the Accord programming framework. The 
application predicts the speed, direction, and intensity of 
the fire front as the fire propagates using static and dynamic 
environment and vegetation conditions. The application is 
composed of 5 elements listed below. 

o DSM (Data Space Manager): The forest is represented 
as a 2D space composed of cells. The function of 
DSM is to divide the data space into sub spaces based 
on current system resources using load-balancing 
algorithms, and to send the divided 2D space to 
Rothermel. 

o CRM (Computational Resource Manager): CRM 
provides DSM with system resource information, 
including the number of current available 
computational resources and their usages. 

o Rothermel: Rothermel generates the processes required 
to simulate the fire spread on each subspace in 
parallel. Each subspace consists of a group of 
adjacent cells. A cell is programmed to undergo state 
changes from unburned to burning and finally to 
burned when the fire line propagates through it. The 
direction and value of maximal fire spread is 
computed using Rothermel’s fire spread model. 

o WindModel: WindModel simulates the wind direction 
and intensity. 

o GUI: Experts interact with the above elements using 
the GUI element. 

DSM partitions the 2D space based on the currently 
available computational resources detected by CRM. 
Rothermel then simulates the fire propagation in this 2D 
space according to the current wind information obtained 
from WindModel. When the load on computational nodes is 
unbalanced, DSM will re-partition the 2D space and 
continue the process. The process continues until no 
burning cells remain. 

A. Defining Autonomic Elements 
We use the Rothermel and CRM as examples to illustrate 

the definition of functional, control and operational ports. 

 
Fig. 3.  Examples of port definitions in Accord. 

Functional Port: Rothermel simulates the propagation 

of the fire in the subspaces. An example of its functional 
port definition is shown in Figure 3. The function 
getSpaceState generates information about the space. The 
namespace tns defines the context of this application and 
describes the data structures used. For instance, the data 
structure tns:SpaceDes describes the space information for 
this application, including the direction and value of 
maximal fire spread, the vegetation type and the terrain 
type. 

Control Port: In Rothermel, the sensor getDirection is 
used to get the spread direction of the fire line that has the 
maximal intensity, and the actuator setCellState is used to 
modify the state of a specified cell. The value of the input 
parameter cellState in the actuator setCellState can be one 
of burning, unburned, or burned. This constraint is handled 
by the implementation of setCellState, through either 
providing no response to an invalid input value or returning 
an error. If an error is returned, it will be captured by the 
Rothermel element manager to generate an exception, 
which is handled by the AutoMate middleware or 
forwarded to the user. An example of control port is shown 
in Figure 3. 

Operational Port: The operational port contains the 
rules that are used to manage the runtime behavior of an 
element. The rules may be defined at runtime and injected 
into the element, and will be executed by the element 
manager associated with the computational element. An 
example behavior rule in CRM may be shown in Figure 3. 
When this rule fires, CRM will deduce that the load is 
unbalanced. Note that the threshold (0.5 in this example) 
that triggers the rules can be modified at run time. 

B. Dynamic Composition in the Forest Fire Application 
The primary workflow of the forest fire application is 

decomposed to interaction rules shown in Figure 4 and 5. 
In this example, we illustrate interaction rules for: 

o Establishing a “while” loop among Rothermel, DSM, 
and CRM, which will be terminated when there are 
no burning cells in the data space. The loop control 
flow is established by executing R1, D1, and C1. 

o Establishing synchronous RMI between Rothermel 
and WindModel by executing R2, R3 and W2. In this 
interaction, Rothermel will be blocked until it 
receives a response from WindModel. 

o Establishing notification relationship between (1) 
CRM and DSM by executing C2 and D2, or C3 and 
D2, (2) DSM and Rothermel by executing D2 and R2, 
and (3) WindModel and Rothermel by executing W3 
and R4. 

The Accord programming framework decouples 
interaction and coordination from computation, and enables 
both these behaviors to be managed at runtime using rules. 
This enables autonomic elements to change their behaviors, 
and to dynamically establish/terminate/change interaction 
relationships with other elements. Users are responsible for 
the correctness of rules. However, Accord resolves runtime 

(1) Functional port 
<function name=``getSpaceState’’> 
<out name=``space’’ type=``tns:SpaceDes’’/> 
</function> 
(2) Control port 
addSensor(``getDirection’’, ``string’’); 
/* sensor name is getDirection, return type is string */ 
addActuator(``setCellState’’,``cellState’’, ``string’’,``void’’);
/* actuator name is setCellState */ 
/* the name of input is cellState and type is string */ 
/* this actuator has no return */ 
(3) Operation port 
IF isMaxUsageDiff() > 0.5 THEN setLoadBalanced(false); 
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rule conflicts using the three-phase rule execution model 
[24] described in Section III C. Deploying and executing 
rules impact performance, but it increases the robustness of 
the applications and their ability to manage dynamism and 
uncertainty. Further, our observations indicate that the 
runtime changes to interaction relationships are infrequent 
and their overheads are relatively small. As a result, the 
time spent to establish and modify interaction relationships 
is small as compared to typical computation time. An 
evaluation of performance overheads is presented in 
Section V. 

C. Self-managing Behaviors for the Forest Fire 
Application 

The self-managing behaviors for the forest fire 
application enabled by the Accord programming framework 
are illustrated bellow. 

Examples of Autonomic Behaviors: Autonomic 
behaviors are achieved using simple or compound behavior 
rules. 

o Simple behavior rules: These rules affect an individual 
element. For example, DSM has 2 partitioning 
algorithms: a greedyBlockAlgorithm, which is fast 
but consumes more resources, and a graphAlgorithm, 
which is slow but needs fewer resources. DSM needs 
to dynamically select an appropriate algorithm based 
on current system state. The behavior rule is shown 
in Figure 6. 

IF isSystemOverLoaded()==true THEN invoke graphAlgorithm();
                 ELSE invoke greedyBlockAlgorithm();  

Fig. 6. An example of a simple behavior rule for DSM.. 
 

o Compound behavior rules: These rules may affect 
several elements and need to be executed 
collaboratively by corresponding element managers 
associated with these elements. For example, a rule is 
defined to notify the user when the fire is propagating 
towards an important building located at cell X. This 
rule is decomposed by the Rothermel element 
manager based on the sensors, actuators and element 
names contained in the rule, shown in Figure 7. The 
generated sub rules are injected into the 
corresponding element managers in the elements that 
expose these sensors and actuators. The Rothermel 
element manager will collect windNotif from 
WindModel, evaluate the rule and notify the GUI 
when the condition is true. 

 
Fig. 7. The execution of a compound behavior rule. 

 

Examples of Autonomic Interactions 
o Adding new elements: A new element, Fire Fighter 

Model, which models the behaviors of the fire 
fighters, may be added into the primary workflow. 
This element dynamically changes the state of cells 
that it is associated with and informs Rothermel. The 
interaction behavior of the Fire Fighter Model is 
defined by Rule1, and the responding interaction 
behavior of the Rothermel is defined by Rule2, 
shown in Figure 8. 
Rothermel

Fire Fighter
Model

Rule2: IF cellChangeMsg is received THEN
          assign cellChangeMsg to input;
          invoke updateCell with input;

Rule1: IF isFighterWork()==true THEN
          send cellChangeMsg to Rothermel;  

Fig. 8. A new element Fire Fighter Model is added. 
 
o Changing interaction relationships: CRM needs to 

dynamically decrease the frequency of notifications 
to DSM when the communication network is 
congested. This self-adapting behavior can be 
achieved by the combination of a behavior rule Rule1 
and an interaction rule Rule2 injected to CRM, as 
shown in Figure 9. Rule1 increases the threshold 
value to 0.5 when the network is congested. When 
the maximal difference in resource usages among the 
nodes is larger than the threshold, CRM will set 
isResourceBalanced to return false. When the load is 
imbalanced, Rule2 will be triggered and will send the 
loadMsg to DSM. Note that, once the rules, Rule1 
and Rule2 in this example, have been defined, the 
changes of interactions occur in an automatic manner 
without human intervention. Further, this change is 
local to the elements involved, CRM and DSM in the 
example above, and does not affect other elements. 

DSM

CRM

Rule1: IF isSystemCongested()==true
            THEN setThreshold(0.5);
            ELSE  setThreshold(0.3);
Rule2: IF isResourceBalanced()==false
            THEN send loadMsg to DSM;  

Fig. 9. The interaction relationship between DSM and CRM is changed. 

V. PROTOTYPE IMPLEMENTATION AND EVALUATION 

A. Prototype implementation based on a distributed object 
framework 

The key concepts underlying the Accord programming 
framework have been prototyped and evaluated in the 
context of distributed scientific/engineering simulations as 
part of the DIOS++/Discover project [6]. This prototype 
implementation was based on a distributed object 
framework developed using C++ and the Message Passing 
Interface (MPI). In this prototype, computational objects 
were enhanced with sensors, actuators, and behavior rules 
forming their functional, control and operational interfaces. 
The overheads associated with dynamic injection and 
runtime execution of these rules were evaluated. Note that 
the objects could be partitioned across multiple processors 
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and could be dynamically created, deleted, or migrated. 
Rules could span multiple objects across multiple 
processors. This prototype however did not implement 
dynamic composition. 

Autonomic application based on this implementation 
included an autonomic oil reservoir and subsurface 
simulator [21], an autonomic feature-based visualization 
system [16], and an autonomic runtime management system 
for adaptive scientific and engineering simulations. 
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Fig. 10. (a) Runtime overheads introduced in the minimal mode. (b) 

Comparison of computation and rule deployment times. 
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Fig. 11. Comparison of computation and rule execution times. 

 
The evaluation of the prototype is presented in Figure 10 

and 11. The experiments were conducted on a 32 node 
Linux cluster using an oil-reservoir simulation application. 
The left plot in Figure 10 shows the runtime overhead due 
to the introduction of sensors, actuators and rules into 
computational objects. No rules were evaluated in this 
experiment. The right plot in Figure 10 compares the rule 
deployment time to the computational time for successive 
iterations. Figure 11 compares rule execution time to the 
computational time for successive iterations. An object rule 
is a rule that manages a single object while an application 
rule manages a set of objects across multiple processors. It 
can be seen from these experiments that the overheads are 
quite tolerable. 

B. Prototype implementation based on the CCA 
component framework 

We are implementing a prototype autonomic component 
framework based on Accord and the CCAFFEINE CCA 
framework. The framework supports the development and 
execution of self-managing autonomic scientific 
applications. It allows CCA components to instantiate and 
export control ports composed of sensors and actuators. It 
also introduces two specialized types of components: (1) 
component manager that monitors and manages the 
computational behaviors of individual components, for 
example, by selecting the appropriate algorithms and 
modifying parameters, and (2) composition manager that 
manages, adapts, and optimizes the execution of an 

application at runtime, for example, by dynamically 
replacing a component that is executing sub-optimally or 
has failed. The two manager components encapsulate the 
Accord operational ports. 

 
Fig. 12. The architecture of an application using the autonomic component 

framework based on Accord and CCAFFEINE. 
Both, the component manager and the composition 

manager components are peers of the managed components 
and other system components, providing and/or using ports 
that are connected to other ports by the CCAFFEINE 
framework. The two manager components are not part of 
the CCAFFEINE framework, and consequently provide the 
programmers the flexibility to integrate them into their 
applications only as needed.  

A sample application using the Accord and CCAFFEINE 
based autonomic component framework is illustrated in 
Figure 12. As shown in the figure, instances of the 
component managers and composition managers on 
different nodes independently evaluate and execute the 
rules to manage and possibly change the computational and 
interaction behaviors of the managed component instances 
based on their local state and execution contexts. However, 
as the CCAFFEINE framework employs the SCMD model 
of computation, all instances of the managed element must 
be adapted in exactly the same way, i.e., the corresponding 
managers must enforce the same actions. As a result, 
reconciliation (discussed in the rule execution model in 
section III C) is used by the managers to select actions that 
are acceptable to all the instances.  

VI. SUMMARY AND CONCLUSION 
As the scale, complexity, heterogeneity and dynamism of 

distributed environments and applications increase, 
conventional paradigms based on passive elements and 
static compositions quickly become insufficient. This has 
led researchers to consider alternative autonomic 
approaches, where applications are context aware and self-
managing.  

In this paper we presented the Accord programming 
framework that supports the development of autonomic 
self-managed applications. It enables the development of 
autonomic elements and the formulation of autonomic 
applications as the dynamic composition of autonomic 
elements, where the runtime computational behavior of the 
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elements as well as their compositions and interactions can 
be managed at runtime using dynamically injected rules. 
Prototype implementations and an evaluation of the 
framework were also presented. The operation of the 
proposed framework is illustrated using a forest fire 
management application. 

The programming overhead and requirements of 
adaptive applications have been widely investigated, both 
in academia and industry. Component software [7, 9] and 
service oriented architecture [3, 27] have been proposed as 
new programming paradigms that separate the development 
and compilation of elements (components and services) and 
applications. These paradigms have been widely accepted 
and integrated with other technologies to enable the 
programming of adaptive applications. Accord builds on 
and extends the paradigms with rules/policies to enable 
adaptations based on both, application/element internal 
state and execution context.  

We believe that extending widely used programming 
paradigms and using rules and polices to support self-
managing behaviors will drive the realization of the vision 
of autonomic computing, leading to the definition of 
community wide open standards and their widespread 
adoption by industry and academia. 
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1

2 3
3. The execution of Rothermel changes the load
distribution among the nodes, from which CRM
may detect the load imbalance and notify DSM.

1. DSM gets resource information from CRM
2. DSM informs Rotherml of the partitioned space

 
Fig. 4. Decomposing the primary workflow for the forest fire application into interaction rules. 

 
----------Rules for Rothermel----------
R1: IF getNumOfBurningCells()==0 THEN

  send terminationMsg to DSM, WindModel, CRM; invoke stop;
R2: IF spaceMsg is received THEN assign spaceMsg to input;
                invoke setSpace with input;

   send windReq to getWindInfor in WindModel; block;
R3: IF windResp is received THEN nonblock; assign windMsg to input;

   invoke simulate with input;
R4: IF windMsg is received THEN assign windMsg to input; invoke simulate with input;

----------Rules for DSM----------
D1: IF terminationMsg is received THEN invoke stop;
D2: IF loadMsg is received THEN assign loadMsg to input;
                 invoke partition with input to output;
                 assign output to spaceMsg; send spaceMsg to Rothermel;

----------Rules for CRM----------
C1: IF terminationMsg is received THEN invoke stop;
C2: IF startSignal is received THEN send loadMsg to DSM;
C3: IF isResourceBalanced()==false THEN send loadMsg to DSM;

----------Rules for WindModel----------
W1: IF terminationMsg is received THEN  invoke stop;
W2: IF windReq is received THEN assign windReq to input; invoke getWindInfor to output;

   assign output to windResp; send windResp to Rothermel;
W3: IF isWindChanged()==true THEN invoke getWindInfor to output;

   assign output to windMsg; send windMsg to Rothermel;  
Fig. 5. Interaction rules

 


