A Framework for Rule-Based Management of Parallel Scientific Applications

Hua Liu and Manish Parashar
The Applied Software Systems Laboratory
Dept of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ08854, USA
Email:{marialiu, parasha@caip.rutgers.edu

1. Introduction struction of rules is deliberately used to enable efficient ex-
ecution and minimize impact on the performance of the ap-
Large-scale parallel/distributed simulations are playing plications. Theconditionis a logical combination of sen-
an increasingly important role in science and engineeringsors and events exposed by components and the system, and
and are rapidly becoming critical research modalities in the action consists of a sequence of invocations of actua-
academia and industry. However, the increasing complex-tors exposed by components and the system. Two classes
ity, scale and dynamism of these applications and their un-of rules are defined: (Ifomponent rulesnanage the run-
derlying computing environment, make their efficient and time behaviors of individual components; @pmposition
scalable formulation and runtime management a significantrules manage the structure of the application and the inter-
challenge. This is primarily because the requirements, ob-action relationships among components via dynamically re-
jectives and choice of specific solutions depend on runtime placing components.

state, context, and content, and are not known a priori. Rule Execution Model: Traditional rule-based systems
In this paper we present. the design of the “_‘le' directly invoke actions when rules fire [1]. However, this
based framework for the runtime management of high- 504 ch aggravates rule conflicts when multiple rules are
performance parallel scientific applications. The frame- simultaneously triggered and can lead to both uncertainty
work addresses the formulation of application management, inconsistency in rule execution. The framework pre-

behaviors as reaction rules, the injection of rules at run- ganied in this paper employs a three-phase rule execution
time, their correct, efficient and scalable parallel enforce- g consisting of (1) batch condition inquiry, (2) con-
ment, and the detection and resolution of rule conflicts. Un- iion evaluation and conflict resolution and reconciliation,
like rule-based frameworks in business management a”dand (3) batch action invocation
security and resource management domains, the pre- L o .

sented framework focuses on high-performance parallel The_ batch condition Inquiry phase queries all the sen-
scientific applications, which require consistent and ef- SO'SS in parallel, gets their valuek 5, and then generates

ficient management across processors and componentd€Pre-condition Based on thipre-condition rules whose

The framework is part of the Accord programming sys- conditions are satisfied form the active rule sp&cm next
tem [3]. phase, condition evaluation for all the rules khis per-

formed in parallel. The overall evaluation time in this case

. . will be determined by the longest evaluation time for an

2. Framework Design and Operation individual rule. Conflict resolution and reconciliation then
takes place and thpost-conditionis generated. In the fi-

K t t of th licati that b nal phase, the actuatarssin the post-conditiorare invoked
work capiure part of the application process nat can bey, produce the&onsequencelhis may also be done in par-

adapt_ed. Th? rules can _be dynami_cally added, _deleted an llel, since the actuators in thst-conditionare indepen-
modd|f|ed dtur(ljngt apptl_lcangn execu;tlloln ' de are mtT(?rr]pret(led dent and free of conflicts. Note that as the rule base becomes
and executed atruntime by a paraflel rule engine. The ru esIarger, the conflict resolution time will increase. However

mcorporate_ hljgh—levs!tkno¥lfgge |nt_theTfrc]>_rm .Of |f|—then X the time required for sensor queries, condition evaluations
pressions, I.elf condition action This simple con- 54 actuator invocations will not change too much.

N _ : Conflict resolution consists of two steps. First, the rules
* The research presented in this paper is supported in part by the
National Science Foundation via grants numbers ACI9984357 (CA- that will change thepre-conditionare disabled and a new
REERS), EIA 0103674 (NGS), EIA-0120934 (ITR), ANI-0335244 set of rulesk’ are produced. Le$ A represent the variables
(NRT), CNS-0305495 (NGS). exposed both as sensors and actuators by the managed com-

Rule Formulation: Reaction rules used by the frame-

ponents, i.e.5A = S A.

if SA # ¢ then for each ruleR; € R E‘EE:%C;M ? § o
o if SANA; # ¢andIs; € SA(S; anda; € SA() A oo H
anda; = s;, Value(s;) # Value(a;), then disable?; from gzs fg : N o
R. g : : 33 \9.423
The pre-condition is then relaxed by incrementally TR :?*m o 00 000 10000
‘deleting’ sensors irC S (a sequence of user specified sen- number of computations emberercempuators
sors), untilVe € () 4;, Value(a) has at least one value, or
all the senors irC'S are exhausted. Figure 1. The runtime overhead introduced in
if) Ai # ¢,YR; € R, 3a € [Ai, () Value;(a) = ¢ then the minimal rule mode.
e repeat

— read the nexts fromC'S

50

— relaxcs in the pre-condition

40
—e— Average component
rule execution

— re-evaluate rules w0

20 —&— Average composition
rule execution

e until Va € () As, Value(a) has at least one value, @S is
exhausted.

0 < number of

execution time (microseconds)

e if CS is exhausted, an error is reported to users for fur-
ther instructions, else, the post-conditiga, V A} is con-
structed by randomly selecting a value for those actuators Figure 2. The overhead introduced by execut-
having multiple values. ing component and composition rules.

Reconciliationis required to generate a consistpost-
conditionfor parallel SCMD applications, as each node may
independently generates a differgasst-conditiorbased on Experiment 2 (Figure 2): This experiment evaluates the
its local context. Rules are statically assigned one of two average execution time of component rules and composi-
priorities. A high priority means that the execution of the tion rules. As the number of processors increases, the av-
rule is necessary, for example, to avoid an application crash erage execution times of both, the component rules and the
A low priority means that the execution of the rule is op- composition rules, increase slightly. This is reasonable since
tional. During reconciliation, actions associated with the nodes must communicate with each other during reconcili-
rule with high priority are propagated to all the nodes. If ation. The figure also shows that the average execution time
there are multiple high priority rules, a runtime error is gen- of the composition rules is much larger than that of the com-
erated and reported to the user. If only low priority rules in- ponent rules. This is because, in execution of composition
volved, reconciliation uses cost functions to select the mostrules, a new component will be instantiated, connected to
appropriate action at all nodes. other components, and loaded with new rules. However, the
execution of component rules only involves invoking com-
ponent actuators.

3. Experiment Evaluation

The key concepts underlying the rule framework have References

been prototyped in an Accord-based Ccaffeine [2] CCA [1] A Abrahams et al. An asynchronous rule-based approach
framework and evaluated using tldeH, ignition simula- ~ for business process automation using obligations. In
tion on a 64 node beowulf cluster. The overheads associ- Third ACM SIGPLAN Workshop on Rule-Based Programming
ated with the initialization and runtime rule execution were (RULE’02), pages 323-345, 2002.

evaluated. [2] B. Allan et al. The CCA core specification in a dis-
Experiment 1 (Figure 1): This experiment measures the tributed memory SPMD frameworkConcurrency Computa-
runtime overhead introduced by the framework in a mini- tion, 14(5):323-345, 2002.

mal rule execution mode, i.e., rules are loaded but the exe{3] H. Liu, M. Parashar, and S. Hariri. A component based pro-
cution is disabled. The application execution time with and ~ 9ramming framework for autonomic applicationsAroceed-
without the framework are plotted on the left and the per- ings of The 1st IEEE International Conference on Autonomic
centage overhead is plotted on the right in Figure 1. The Computing (ICAC-04)2004.

major overhead in this case is due to the loading and pars-

ing of rules.

