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1. Introduction

Large-scale parallel/distributed simulations are playing
an increasingly important role in science and engineering
and are rapidly becoming critical research modalities in
academia and industry. However, the increasing complex-
ity, scale and dynamism of these applications and their un-
derlying computing environment, make their efficient and
scalable formulation and runtime management a significant
challenge. This is primarily because the requirements, ob-
jectives and choice of specific solutions depend on runtime
state, context, and content, and are not known a priori.

In this paper we present the design of the rule-
based framework for the runtime management of high-
performance parallel scientific applications. The frame-
work addresses the formulation of application management
behaviors as reaction rules, the injection of rules at run-
time, their correct, efficient and scalable parallel enforce-
ment, and the detection and resolution of rule conflicts. Un-
like rule-based frameworks in business management and
security and resource management domains, the pre-
sented framework focuses on high-performance parallel
scientific applications, which require consistent and ef-
ficient management across processors and components.
The framework is part of the Accord programming sys-
tem [3].

2. Framework Design and Operation

Rule Formulation: Reaction rules used by the frame-
work capture part of the application process that can be
adapted. The rules can be dynamically added, deleted and
modified during application execution, and are interpreted
and executed at runtime by a parallel rule engine. The rules
incorporate high-level knowledge in the form of if-then ex-
pressions, i.e.,IF condition THEN action. This simple con-
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struction of rules is deliberately used to enable efficient ex-
ecution and minimize impact on the performance of the ap-
plications. Thecondition is a logical combination of sen-
sors and events exposed by components and the system, and
the action consists of a sequence of invocations of actua-
tors exposed by components and the system. Two classes
of rules are defined: (1)Component rulesmanage the run-
time behaviors of individual components; (2)Composition
rulesmanage the structure of the application and the inter-
action relationships among components via dynamically re-
placing components.

Rule Execution Model: Traditional rule-based systems
directly invoke actions when rules fire [1]. However, this
approach aggravates rule conflicts when multiple rules are
simultaneously triggered and can lead to both uncertainty
and inconsistency in rule execution. The framework pre-
sented in this paper employs a three-phase rule execution
model, consisting of (1) batch condition inquiry, (2) con-
dition evaluation and conflict resolution and reconciliation,
and (3) batch action invocation.

The batch condition inquiry phase queries all the sen-
sorsS in parallel, gets their valuesV S, and then generates
thepre-condition. Based on thispre-condition, rules whose
conditions are satisfied form the active rule spaceR̄. In next
phase, condition evaluation for all the rules in̄R is per-
formed in parallel. The overall evaluation time in this case
will be determined by the longest evaluation time for an
individual rule. Conflict resolution and reconciliation then
takes place and thepost-conditionis generated. In the fi-
nal phase, the actuatorsA in thepost-conditionare invoked
to produce theconsequence. This may also be done in par-
allel, since the actuators in thepost-conditionare indepen-
dent and free of conflicts. Note that as the rule base becomes
larger, the conflict resolution time will increase. However
the time required for sensor queries, condition evaluations
and actuator invocations will not change too much.

Conflict resolution consists of two steps. First, the rules
that will change thepre-conditionare disabled and a new
set of rulesR̄′ are produced. LetSA represent the variables
exposed both as sensors and actuators by the managed com-



ponents, i.e.,SA = S
⋂

A.
if SA 6= φ then for each ruleRi ∈ R̄

• if SA
⋂

Ai 6= φ and∃si ∈ SA
⋂

Si andai ∈ SA
⋂

Ai

andai = si, V alue(si) 6= V alue(ai), then disableRi from
R̄.

The pre-condition is then relaxed by incrementally
‘deleting’ sensors inCS (a sequence of user specified sen-
sors), until∀a ∈ ⋂

Ai, V alue(a) has at least one value, or
all the senors inCS are exhausted.

if
⋂

Ai 6= φ, ∀Ri ∈ R̄′, ∃a ∈ ⋂
Ai,

⋂
V aluei(a) = φ then

• repeat

– read the nextcs fromCS

– relax cs in the pre-condition

– re-evaluate rules

• until ∀a ∈ ⋂
Ai, V alue(a) has at least one value, orCS is

exhausted.

• if CS is exhausted, an error is reported to users for fur-
ther instructions, else, the post-condition{A, V A} is con-
structed by randomly selecting a value for those actuators
having multiple values.

Reconciliation is required to generate a consistentpost-
conditionfor parallel SCMD applications, as each node may
independently generates a differentpost-conditionbased on
its local context. Rules are statically assigned one of two
priorities. A high priority means that the execution of the
rule is necessary, for example, to avoid an application crash.
A low priority means that the execution of the rule is op-
tional. During reconciliation, actions associated with the
rule with high priority are propagated to all the nodes. If
there are multiple high priority rules, a runtime error is gen-
erated and reported to the user. If only low priority rules in-
volved, reconciliation uses cost functions to select the most
appropriate action at all nodes.

3. Experiment Evaluation

The key concepts underlying the rule framework have
been prototyped in an Accord-based Ccaffeine [2] CCA
framework and evaluated using theCH4 ignition simula-
tion on a 64 node beowulf cluster. The overheads associ-
ated with the initialization and runtime rule execution were
evaluated.

Experiment 1 (Figure 1): This experiment measures the
runtime overhead introduced by the framework in a mini-
mal rule execution mode, i.e., rules are loaded but the exe-
cution is disabled. The application execution time with and
without the framework are plotted on the left and the per-
centage overhead is plotted on the right in Figure 1. The
major overhead in this case is due to the loading and pars-
ing of rules.
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Figure 1. The runtime overhead introduced in
the minimal rule mode.
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Figure 2. The overhead introduced by execut-
ing component and composition rules.

Experiment 2 (Figure 2): This experiment evaluates the
average execution time of component rules and composi-
tion rules. As the number of processors increases, the av-
erage execution times of both, the component rules and the
composition rules, increase slightly. This is reasonable since
nodes must communicate with each other during reconcili-
ation. The figure also shows that the average execution time
of the composition rules is much larger than that of the com-
ponent rules. This is because, in execution of composition
rules, a new component will be instantiated, connected to
other components, and loaded with new rules. However, the
execution of component rules only involves invoking com-
ponent actuators.
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