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Abstract 

Emerging high-performance paruEleUdistributed scien- 
tiJc applications and environments are increasingly large, 
dynamic and complex. As a result, it requires programming 
systems that enable rhe applicatiuns to detect and dynam- 
ically respond to changing requirements, state and execu- 
tion context by adapting their computational behaviors and 
interactions. In this paper; we present such U programming 
system that extends the Common Component Architecture to 
enable sey-management of component-based scientific ap- 
plications. The programming sysiem separates and cate- 
gorizes. operational requiremenrs of scient@ applications, 
and allows rhem io be speciJied and enforced ut runrime 
through re-configuration, optimization and healing of in- 
dividual components and rhe application. Two scient@ 
simulations are used to illustrate the system and its self- 
managing behaviors. A perJomance evaluation is also pw- 
sented. 

1 Introduction 

Emerging high-performance paralleVdisttibuted simula- 
tions and the phenomena they model are large, complex, 
multi-phasedmulti-scale, dynamic, and heterogeneous (in 
time, space, and state). These simulations implement var- 
ious numerical algorithms, physical constitutive models, 
domain discretizations, domain partitioners, communica- 
tiodinteraction models, and a variety of data structures. 
Further, the choices of algorithms and models have perfor- 
mance implications which are typically not known a pri- 
ori. Advanced adaptive solution techniques, such as vari- 
able step time integrators and adaptive mesh refinement, 
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add a new dimension to the complexity - the application be- 
haviors and its requirements change as the simulation pro- 
ceeds. This dynamism, coupled with the complexity and 
dynamism of emerging paralleVdistributed execution envi- 
ronments, poses a new set of application development and 
runtime management challenges. For example, component 
behaviors and their compositions can no longer be statically 
defined. Further, their performance characteristics can no 
longer be derived from a small synthetic run as they depend 
on the state of the simulations and the underlying system. 
Algorithms that worked well at the beginning of the simu- 
lation may become suboptimal as the solution deviates from 
the space the algorithm was optimized for or as the execu- 
tion context changes. 

Addressing the challenges outlined above requires that 
applications be capable of detecting and dynamically re- 
sponding to changing requirements, state and execution 
context. In this paper we investigse self-managing high- 
performance simulations. We also present a prototype im- 
plementation and evaluation of a programming system for 
developing self-managing applications based on the DOE 
Common Component Architecture (CCA) and the Ccaf- 
feine framework [7]. Finally, we present the self-managing 
shock hydrodynamics simulation and CHq ignition simu- 
lation as case studies. Specific contributions of this pa- 
per include: (1) extension of CCA to enable the defini- 
tion of managed components and applications; (2) design 
and implementation of a runtime framework to support self- 
managing component and application behaviors using dy- 
namically defined rules; (3) a three-phase rule execution 
model to enable consistent and efficient rule execution for 
distributedparalle1 scientific applications; and (4) support 
for performance dnven self-management using the TAU 
framework 141. 

The rest of the paper is organized as follows. Section 2 
introduces the Common Component Architecture (CCA), 
investigates the performance characteristics of CCA-based 
scientific applications, and discusses their implication on 
application management. Section 3 presents a framework 
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for the formulation and execution of self-managing scien- 
tific simulations based on the Ccaffeine CCA framework. 
Section 4 presents the case studies and experimental evalu- 
ations. Section 5 discusses related work. Section 6 presents 
a conclusion. 

2 Component-Based DistributedParaIlel 
Scientific Applications 

2.1 The Common Component Architecture 
KCA) 

Component-based software architectures do address 
some of the key requirements of emerging high- 
performance parallelldistributed scientific applications. 
Specifically, the DOE Common Component Architec- 
ture (CCA) and its implementation, the Ccaffeine frame- 
work [7 ] ,  have been successfully used by a number of ap- 
pIications [13, 14, 1.51. CCA supports the provides-uses de- 
sign pattern. Components provide functions and u x  other 
components' functions viaporfs. Components are peers and 
independently.developed. Further, CCA employs the Single 
Component Multiple Datu (SCMD] model, where all pro- 
cessing nodes execute the same program structure. 

Ccaffeine [7], developed at Sandia National Labora- 
tories, implements the CCA core specification and pro- 
vides the fast and lightweight glue to integrate external and 
portable peer components into a SCMD style parallel appli- 
cation. Components are created and exist within the Ccaf- 
feine framework. They register themselves and their ports 
with the framework and are dynamically loaded and con- 
nected. As a result, the Ccaffeine framework maintains 
complete knowledge about an application. Further, all the 
components on the same processor reside-in the same ad- 
dress space and these components interact with each other 
using method calls. Component interaction across proces- 
sors use MPI [5 ] .  

2.2 . Behavior and Performance of Component- 
based Scientific Applications 

The component-based programming approach not only 
reduces the burden of developing scientific applications, but 
also benefits their runtime management. With componenti- 
zation [7], the behavior and performance of an application 
can be interpreted as a composition of inhvidual compo- 
nents. For example, the composite performance of a com- 
'ponent assembly is determined by the performance of the 
individual components and the efficiency of their interac- 
tion [21]. Therefore, management behaviors can be system- 
atically enforced at two separate levels - intra-component 
and inter-component. 

The execution of scientific applications typically consists 
of a series of computational phases. Between two succes- 
sive phases, computations within components and commu- 
nications between components are paused, and the com- 
ponents are reconfigured for the next phase. This pause 
between phases has been called a quiet intervat. Runtime 
management is usually performed during these quiet inter- 
vals to ensure the integrity of the numerical computations. 
Changes made to componentslapplications during a quisi 
interval are automatically applied in the next computational 
phase. 

Finally, in case of the Ccaffeine framework, due to 
the underlying SCMD model, connections between com- 
ponents can be made by directly passing ports (i.e., point- 
ers to pure virtual interfaces), which incur negligible over- 
heads [7]. As a result, the overall performance of an ap- 
plication can be simply viewed as a function of the per- 
formance of its constituent components. Further, in case 
of scientific applications, the performance of a component 
is dominated by the cache performance of its implementa- 
tion and the cost of inter-processor communications [21]. 
Cache performance is defined by the degree of data local- 
ity in computation algorithms and is affected by the cache 
size and cache management strategies used by the execution 
environment. Inter-processor communication costs are de- 
fined by software and algorithmic strategies used by the im- 
plementation (e.g., combining communication steps, mini- 
mizingkombining global reductions and barriers, overlap- 
ping communications with computations, etc.), and are af- 
fected by factors such as load-balance and communication 
channel congestion (due to competing application or possi- 
bly malicious attacks). 

3 Self-management of Component-based Sci- 
entific Applications 

As mentioned above, addressing the challenges of 
emerging high-performance scientific applications requires 
a programming system that enables the specification of ap- 
plications, which can detect and dynamically respond, d w  
ing their execution to changes in both the execution environ- 
ment and application state. This requirement suggests that: 
(1) Applications should be composed from discrete self- 
managing components, which incorporate separate specifi- 
cations for all of functional, non-functional and interaction- 
coordination behaviors. (2) The specifications of computa- 
tional (functional) behaviors, interaction and coordination 
behaviors and non-functional behaviors (e.g. performance, 
fault detection and recovery, etc.) should be separated so 
that their combinations are compose-able. (3) The interface 
definitions of these components should be sepmted from 
their implementations to enable heterogeneous components 
to interact and to enable dynamic selection of components. 
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Component-based scientific simulations and the CCA itt- 
- chitecture address some of these requirements and support 
application maintainability and extensibility. The capabil- 
ity of dynamically swapping components has been incorpo- 
rated into the CCA specification and implemented by the 
Ccaffeine framework. However, enabling self-managing 
componentdapplications requires extending CCA to enable 
components that can adapt their behaviors and interactions 
to their current state and execution context in an autonomic 
manner. In this section we describe an extension of the CCA 
architecture, and specifically the Ccaffeine framework [7], 
to support self-management. Using the approaches pro- 
posed in [16, 17, 181, this consists of extending CCA com- 
ponents (including legacy components) to support monitor- 
ing and control and extending the Ccaffeine framework to 
support consistent and efficient rule-based intra-component 
and inter-component self-management behaviors. 

3.1 Defining Managed Components 

In order to monitor and control the behaviors and perfor- 
mance of CCA components, the components must imple- 
ment and’export appropriate “sensor” and “actuator” inter- 
faces. Note that the sensor and actuator interfaces are sim- 
ilar to those used in monitoring/steering systems [12, 22, 
231, However, these systems focus on interactive manage- 
ment through users manually invoking sensorslactuators, 
while this paper focuses on automatic management based 
on user-defined rules. Adding sensors requires modifica- 
tiordinstrumentation of the component source code. In case 
of third-party and legacy components, where such a mod- 
ification may not be possible or feasible, proxy compo- 
nents [21] are used to collect relevant component informa- 
tion. A proxy provides the same interfaces as the actual 
component and is interposed between the caller and callee 
components to monitor, for example, all the method invoca- 
tions for the callee component. Actuators can similarly be 
implemented either as new methods that modify intem’al pa- 
rameters and behaviors of a component, or defined in terms 
of existing methods if the component cannot be modified. 
The adaptability of the components may be limited in the 
latter case. In the CCA based implementation, both sensors 
and actuators are exposed via invoking the ‘addsensor’ or 
‘addActuator’ methods defined by a specialized RulePort, 
which is shown in Figure 1. 

Management and adaptation behaviors can be dynam- 
ically specified by developers in the form of rules. Two 
classes of rules are defined, 

Component rules address intra-component manage- 
ment. These rules manage the runtime behaviors of in- 
dividual components, including dynamic selection of 
algorithms, implementations, data representation, in- 
putloutput format used by the components, etc., based 

class RulePort: public virtual Port { 
public: 

RulePott(): Port() { 1 
virtual -RulePoit[) [ I 
virtual void loadRules(cons1 chaP fiteName) MrOw(Exception) = 0;  
virhrd void addSensor(Sensor ‘snr) throw(Exception) = 0; 
virtual void addActuator(Actuator ‘atr) Ihrow(Exception) = 0;  
virtual void setFrequencyO thmw(€xcepfion) - 0; 
virtual void fire() throw(Exception) = 0: 

t: 

Figure I. The Ruleport specification. 

on the current state and execution context of the com- 
ponent. 

Composirion rules address inter-component manage- 
ment. These rules manage the structure of the appli- 
cation and the interaction relationships among com- 
ponents based on the current applicatiodsystem state, 
changing requirements, and changing execution con- 
text. Intra-component management behaviors include 
dynamic composition of components, definition.of co- 
ordination relationships and selection of communica- 
tion mechanisms. For example, composition rules can 
be used to add, delete or replace a component. 

Management rules incorporate high-level guidance and 
practical human knowledge in the form of conditional if- 
then expressions, i.e., IF condition THEN action. This sim- 
ple construction of rules is deliberately used to enable ef- 
ficient execution and minimize impact on the performance 
of the application. The condition is a logical combination 
of sensors (exposed by components) and performance data, 
and the action consists of a sequence of invocations of actu- 
ators exposed by components. The rules are interpreted and 
executed by the runtime framework, which is discussed in 
the next section. 

3.2 Enabling Runtime Self-management 

To enable runtime self-management, two specialized 
component types are defined (see Figures 2 and 3): (1) 
Component manager that monitors and manages the behav- 
iors of individual components, e.g., selecting the optimal al- 
gorithms or modifying internal states, and (2) Composition 
manager that manages, adapts and optimizes the execution 
of an application at runtime. Both, component and com- 
position managers are peers of user components and other 
system components, providing andor using ports that are 
connected to other ports by the Ccaffeine framework. The 
two managers are not part of the Ccaffeine framework, and 
consequently provide the programmers the flexibility to in- 
tegrate them into their appiications only as needed.’ 

The design of the component manager and composition 
manager components are based on the following observa- 
tions and considerations. 
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I CCA Ccaflwine framework I 
~~~ 

Component manager Composition manager 

Controllable component 

Figure 2. A self-managing application com- 
posed of 5 components. The black fines 
denote computational port connections be- 
tween components, and the dotted lines are 
port connections constructing the manage- 
ment framework. 

. 

Scientific applications may contain tens of compo- 
nents, but only a few of them need to be dynamically 
monitored and controlled. Therefore, we encapsulate 
the manager functionalities into two component types 
and provide programmers with the flexibility of inte- 
grating them with other components in the applica- 
tions. For example, in Figure 3, only component C1 
and C2 are associated with component managers for 
dynamic management. 

The manager functionalities are provided by compo- 
nents instead of being integrated within the Ccaffeine 
framework. This prevents the framework from be- 
ing ’overweight’ and thus avoids the resulting perfor- 
mance and maintenance implications. 

a By encapsulating the manager functionality into these 
components and providing abstract interfaces for in- 
voking this functionality, we can modify and improve 
the manager functionality without affecting other com- 
ponents and the framework. We can either add addi- 
tional functionality into the manager components, or 
create other components that deal with specific man- 
agement functions and integrate them with the man- 
ager components via the ‘uses-provides design pat- 
tern' [7] .  

’ 3.2.1 The Component Manager 

Component managers provide the RulePon shown in Fig- 
ure 1 .  They are instantiated only after the other applica- - 
tion components are composed together. Their instantiation 
consists of two steps: first, instances of managed compo- 
nents expose their sensors and actuators to their respective 

lErL Ncde z 

Figure 3. Distributed self-managing applica- 
tion shown in figure 2 executed on three 
nodes. The black lines across nodes denote 
the interactions among manager instances. 
The dotted lines are port connections con- 
structing the management framework within 
one node. 

component manager instances by invoking the ‘addSensor’ 
and ‘addActuator’ methods, and second, component rules 
are then loaded into component manager instances, possibly 
from disk files, by invoking the ‘1oadRules’ method. This 
initialization of component manager instances is a one-time 
operation. 

Management operations are performed during applica- 
tion quier intervals. The managed components (or their 
proxies) invoke the ‘fire’ method of the RulePort to inform 
the component managers that they have entered into a quiet 
interval. This behavior must be explicitly programmed, 
possibly at the beginnindend of a computation phase or 
once every few phases, to establish the self-management 
frequency. Adaptations made during a quiet interval will 
be applied during the next computation phase. 

3.2.2 The Composition Manager 

The composition manager also provides the RulePorr 
(shown in Figure 1). Composition manager instances are 
initialized by the CCA driver component to load in compo- 
sition rules (possibly from a disk file) using the ‘1oadRules’ 
method. These rules are then decomposed into sub rules, 
and delegated to corresponding component managers. The 
driver component notifies composition manager instances 
of quiet intervals by invoking the ‘fire’ method. During ex- 
ecution of the composition rules, composition manager in- 
stances collect results of sub rule execution from component 
manager instances, evaluate the combined rule, and notify 
component managers of actions to be performed. Possible 
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actions include adding, deleting, or replacing components. 
When replacing a managed component, the new component 
does not have to provide and use the exact same ports as the 
old one. However, the new component must at least provide 
all the active ports (those used by other components in the 
application) that are provided by the old component. 

3.2.3 Rde Execution Model 

A three-phase rule execution model [ 1 X] is used by the com- 
ponent managers to ensure consistent and efficient parallel 
rule execution. The three phases of rule execution are ( I )  
batch condition inquiry, (2) condition evaluation and con- 
flict resolution and reconciliation, and (3) batch action in- 
vocation. 

During the batch condition inquiry phase, each compo- 
nent manager queries in parallel all the sensors used by the 
rules, gets their current values, and then generates the pre- 
condition. During the next phase, condition evaluation for 
all the rules is performed in parallel. And rule conflicts are 
detected at runtime when rule execution will change the 
pre-condition (defined as sensor-actuator conflicts), or the 
same actuator will be invoked with different values (defined 
as actuator-actuator conflicts). Sensor-actuator conflicts are 
resolved via disabling those rules that will change the pre- 
condition. Actuator-actuator conflicts are resolved through 
relaxing the pre-condition according to user-defined strate- 
gies until no actuator will be invoked with different values. 

For example, consider component C1 with 3 algorithms: 
algorithm 1 has better cache pedormance but consumes a 
large communication bandwidth, algorithm 2 has compara- 
tively more cache misses but only consumes a small band- 
width, and algorithm 3 demonstrates an acceptable cache 
m i s s  and communication delay but has lower precision. It 
is possible that under certain conditions, rule evahation 
may results in the selection of algorithm 1 and 2 at the 
same time to simultaneously decrease cache misses and 
communication delay, and maintain high-precision compu- 
tation. This codict  is detected and resolved by relaxing the 
high-precision requirement, and therefore algorithm 3 can 
be selected. Further, the framework also provides mech- 
anisms for reconciliation [ 181 among manager instances, 
which is required to ensure consistent adaptations in parallel 
SCMD applications, since each processing node may inde- 
pendently proposes different adaptation behaviors based on 
its local state and execution context. 

The reconciliation for component rules consists of iden- 
tifying and propagating the actions proposed by a majority 
of the nodes, If a majority is not found, an error is reported 
to the user. Composition rules are statically assigned one 
of the two priorities. A high priority means that the re- 
composition is necessary, while a low priority means the 
re-composition is optional. For the actions associated with 

composition rules with high priority are propagated to aIl 
the nodes. If there are multiple high priority rules with col- 
lisions, a runtime error is generated and reported to the user. 
The actions associated with composition rules with low pri- 
ority, a cost model is used to approximate the performance 
gain of each action set and the action set with the best over- 
all gain is selected and applied by all the nodes. 

After conflict resolution and reconciliation, the post- 
condition, consisting of a set of actuators and their new val- 
ues, is generated. And then during the batch action invo- 
cation phase, the actuators are actually set to the values in 
parallel. 

Note that the rule execution model presented here fo- 
cuses on correct and efficient execution of rules and provid- 
ing mechanisms to detect and resolve conflicts at runtime. 
However, correctness of rules and conflict resolution strate- 
gies are responsibilities of the users. 

3.3 Supporting Performance-driven Self- 
management 

The TAU f4] framework is used for monitoring the per- 
formance of components and applications, and supporting 
performance-driven self-management. TAU can record in- 
clusive and exclusive wall-clock time, process virtual time, 
hardware performance metrics such as data cache misses 
and floating point instructions executed, as well as a combi- 
nation of multiple performance metrics, and help track ap- 
plication and runtime system level atomic events. Furrher, 
TAU is integrated with external libraries such as PAP1 [Z] 
or PCL [3] to access low-level processor-specific hardware 
performance metrics and low latency timers. 

In our framework, TAU APIs are directly instrumented 
into the computational components, or into proxies in case 
of third-party and legacy computational components, and 
performance data is exported as sensors to component man- 
agers. Optimizations are used to reduce the overheads of 
performance monitoring. For example, as the cache-hit rate 
will not change unless a different algorithm is used or the 
component is migrated to another system with a different 
cache size andlor cache policies, monitoring of cache-hit 
rate can be deactivated after the first a few iterations and 
only re-activating when an algorithm is switched or the 
component is migrated. Similarly, inter-processor conunu- 
nication time is measured per message by default but this 
can be modified using the ‘setFrequency’ method in the 
RdePort to reduce overheads. Another possibility is to 
restrict monitoring to only those components that signifi- 
cantly contribute to the application performance. Compo- 
sition managers can identify these components at runtime 
using mechanisms similar to those proposed in [26] and 
enable or disable monitoring as required. Finally, in case 
of homogeneous execution environments only a subset of 
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Figure 4. “Wiring” diagram of the shock-hydrodynamics simulation. A second-order RungGKutta 
(RK2)integrator drives InviscidFlw component - transformation into left and right (primitive) states 
is done by States and the Riemann prdblem solved by GodunovFlux. Sundry other components for 
determining characteristics’ speeds (U + a, U - a, U), cell-centered interpolations etc. complete the 
code. 

nodes may be monitored. 

4 Case Studies 

The operation of the programming system presented 
in this paper is illustrated using two applications, (1) a 
self-managing hydrodynamics shock simuIation and (2) a 
self-managing CH4 ignition sitnufation. An experimental 
evaluation of the programming system on a 64 node be- 
owulf cluster is also presented. The cluster contains 64 
Linux-based computers connected by 100 Mbps full-duplex 

. switches. Each node has an Intel(R) Pentium-4 1.70GHz 
CPU with 5 12MB RAM and is running Linux 2.4.20-8 (ker- 
nel version). 

4.1 A Self-Managing Hydrodynamics Shock Sim- 
ulation 

This application simulates the interaction of a hydrody- 
namic shock with a density-stratified interface. The system 
is modelIed using the 2D Euler equation (inviscid Navier- 
Stokes). DetaiIs of the equations used and the interaction 
are presented in [20,24,25]. Figure 4 shows the assembly 

- 

of components for the CCA-based implementation of the 
simulation. The simulation uses structured adaptive mesh 

I refinement. In this implementation, the Runge-Kutta time 
integrator (RKZ) with an InviscidFlux component supplies 
the right-hand-side of the equation on a patch-by-patch ba- 
sis. This component uses a ConstructLRStates component 
to set up a Riemann problem at each cell interface, which 
is then passed to GodunovFlux for the Riemann solution. 
A ConicalInterfacelC component sets up the problem - a 
shock tube with Air and Freon (density ratio 3) separated by 
an oblique interface that is ruptured by a Mach 10.0 shock. 
The shock tube has reflecting boundary conditions above 
and below and outflow on the right. The AMRMesh and 
GodunovFlux are the significant components in this sim- 
ulation from the performance point of view, and is used to 
illustrate self-managing behaviors in the discussion below. 

4.1.1 Scenario 1: Self-optimization via component re- 
’ ’ placement 

An EFM algorithm, which is based on a gas-kinetic 
scheme [19], may be used instead of h e  Godunov method 
with RK2 in the implementation described above. Go- 
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dunovFIux and EFMFlux demonstrate different perfor- 
mance behaviors and mean execution times as the size of 
the input array size increases, as shown in Figure 5 .  This 
difference in performance is primarily due to the difference 
in data locality and cache behaviors for the two implemen- 
tations. GodunovFlux is more expensive than EFMFlux 
for large input arrays. 

A m y  Size A m y  Size 

Figure 5. Average execution time for EFMFlux 
and GodunovFlux as a function of the array 
sire (machine effects have be averaged out). 

The appropriate choice of algorithm (Godunov or EFM) 
depends on simulation parameters, its runtime behaviors 
and the cache performance of the execution environment, 
and is not known a priori. In this scenario we use informa- 
tion about cache misses for GodunovFlux obtained using 
TAUPCWPAPI, to trigger self-optimization, so that when 
cache misses increase above a certain threshold, the cor- 
responding instance of GodunovFIux is replaced with an 
instance of EFMFIux. 

To enable the component replacement, one component 
manager is connected to GodunovFlux through the Rule- 
Port to collect performance data, evaluate rules, and per- 
form runtime replacement. The component manager (1) lo- 
cates and instantiates EF’MFtw from the component repos- 
itory, (2) detects all the provides and uses ports of Go- 
dunovFlux, as well as all the components connected to it, 
(3) disconnects GodunovFIux and delete all the rules re- 
lated to GodunovFlux, (4) connects EFMFlux to related 
components and load in new rules, and finally (5) destroys 
GodunovFlux. The replacement is performed at a quiet in- 
t e n d .  From the next calculation step, EFMlFlux is used 
instead of GodunovFlux. However, other components in 
the application do not have to be aware of the replacement, 
since the abstract interfaces (ports) remain the same. After 
replacement, the cache behavior improves as seen in Fig- 
ure 6. 

1 -  I EFM 

Figure 6. Replacement of GodunovFlux with 
EFMFlux to decrease cache misses. 

4.1.2 Scenario 2: Self-optimization via component 

The AMRMesh component supports structured adaptive 
mesh-refinement and provides two communication mech- 
anisms. The first exchanges messages on a patch by patch 
basis and results in a large number of relatively small mes- 
sages. The second packs messages from multiple patches 
to the same processor and sends them as a single message, 
resulting in a small number of much larger messages. De- 
pending on the current latency and available bandwidth, the 
component can be dynamically adapted to switch the com- 
munication mechanism used. 

In this scenario, we use the current system communica- 
tion performance to adapt the communication mechanism 
used. As FAPI [2], PCL [3], and TAU [4] do not directly 
measure network latency and bandwidth, this is indirectly 
computed using communication times and message sizes. 
AMRMesh exposes communication time and message size 
as sensors, which are used by the component manager to get 
the current bandwidth as follows: 

adaptation 

(1) 

Here, ‘wmmTimel ’ and ‘co”Time2’ represent the 
communication times for messages with sizes ‘msgSizel’ 
and ‘msgsizez’ respectively. When the bandwidth falls be- 
low a threshold, the communication mechanism switches to 
patch by patch messaging (i.e., algorithm 1). This is illus- 
trated in Figure 7. The algorithm switching happens at iter- 
ation 9 when channel congestion is detected, and results in 
comparatively smaller communication times in the follow- 
ing iterations. 

m m T i m e l  - co”Time2 
msgSizel - msgSize2 bandwidth = 

4.1.3 Scenario 3: Self-healing via component replace- 
ment 

While Godunov methods with RK2 tend to be more accu- 
rate, they become unstable for stronger shocks and larger 
density ratios. One solution is to replace GodunovFlux in 
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1 3 5 7 9 11 13 15 17 IS 21 23 

these cases with EFMFlux. The appropriate choice of algo- 
rithm (Godunov or EFMFlux) depends on the Mach number 
and the density ratio, and is once again not known a priori. 
In the best of cases, an algorithm will operate for some time 
before failing to converge and indicating an error; at other 
times, it will work “reliably” and produce wrong (even qual- 
itatively wrong) results. In the case where an error can be 
identified, we have the option of dynamically replacing one 
algorithm bj, another by simply replacing the component 
implementing the algorithm. Of course, the same change 
has to be performed on all the processors. While dynam: 
ically changing components does raise some fundamental 
issues (e.g. in this case,’ the simulation is neither purely 
Em-based nor Godunov-based, and is not mathematically 
consistent either), it is expected that the results will be at 
least qualitatively correct. Since such simulations often re- 
quire substantial computational resources, obtaining quali- 
tative answers may .be preferable to simply exiting with an 
error. 

In this scenario we investigate the dynamic replacement 
of GodunovFlux with EFMFlux so that it continues to pro- 
vide qualitatively correct results. The adaptation is trig- 
gered when GodunovFlux fails to converge, i.e., its iter- 
ation count increases above a certain threshold, and causes 
the instance of component GodunovFlux to be replaced by 
an instance of component EFMFlux. The replacement pro- 
cess is the same as that described in scenario 1 above. 

4.2 A Self-Managing CHq Ignition Simulation 

This section focuses on the overall performance im- 
provement of the C-H, ignition simulation. The ignition 
process is represented by a set of chemical reactions, which 
appear and disappear when the fuel and oxidizer react and 
give rise to the various intermediate chemical species. In the 
simulation application, the chemical reactions are modelled 
as repeatedly solving the ChemicalRates equation (G) [ 11 
with different initial conditions and parameters using one 
of a set of algorithms (called backward difference formuIa 

Figure 7. Dynamically switch algorithms in 
AMRMesh. 
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or BDF}. The algorithms are numbered from 1 to 5, indi- 
cating the order of accuracy of the algorithm. BDF5 is the 
highest order method, and is most accurate and robust. It 
may, however, not always be the quickest. As a result, the 
algorithm used for solving the equation G has to be selected 
based on current condition and parameters. In this applica- 
tion, the bulk of the time is spent in evaluating the equation 
,G. Therefore, reducing the number of G evaluation is a 
sufficient indication of speed independent of experimental 
environments. 

As shown in Figure 8, the rule-based execution decreases 
the number of invocation to equation G, and the percentage 
decrease i s  annotated for each temperature value. It results 
in an average 11.33% computational saving. As the prob- 
lem becomes more complex (the computationat cost of G 
increase), the computational saving will be more significant. 

I I 

Figure 8. Comparison of rule based and non 
rule based execution of CH, ignition. 

4.3 Experimental Evaluation 

Figure 9. Overhead due to execution of com- 
position rules. 

An experimental evaluation of the overheads of the pro- 
gramming system is presented in this section. The first ex- 
periment evaluates the average execution time of a compo- 
sition rule. The overhead of replacing GodunovFlw with 
EFMFlux is presented in Figure 9. The figure shows that, 
as the number of processors increases, the average execu- 
tion time does increase but only.slightly. This slight in- 
crease is primarily due to the time for reconciliation among 

. 



composition manager instances, which depends on the num- 
ber of nodes involved. Once reconciliation is completed, 
component manager instances perform the replacement in 
parallel. 

Figure 10. Overhead due to execution of com- 
ponent rules. 

The second experiment evaluates the average execution 
of a component rule. The overhead of dynamically switch- 
ing algorithms within the component AMRMesh is plotted 
in Figure 10. As seen from Figures 9 and 10, the average 
execution time of a composition rule is much larger than 
that of a component rule. This is because, in order to re- 
place a component, the manager has to instantiate a new 
component, connect it to other components, and load new 
rules. However, the execution of component rules only in- 
volves invoking the component's actuators. 

Note that while the framework does introduce overheads, 
the benefits of self-management would outweigh these over- 
heads. Further, the overheads are not significant when com- 
pared to the typical execution time of scientific applications, 
which can be in hours, days, and even weeks. 

5 Related Work 

Related research efforts investigating systems for Sup- 
porting dynamically adaptive applications can be classified 
based on the nature of the adaptations supported. In systems 
supporting statically-dejned adaprations, adaptations must 
be defined at compiIe time and coded into the applications. 
These include systems that enable adaptations (1) by ex- 
tending existing programming languages through providing 
templates (e.g., for adaptive scheduling as in [8]) or adapta- 
tion classes (e.g., to enable adaptive components as in [SI), 
or (2) by defining new adaptation languages (e.g., [ll]). 
Systems in this category require that all possible adaptations 
must be known a priori. If new adaptations are required or 
application requirements change, the application code has 
to be modified and the application probably re-compiled. 

In systems supporting dynamically-defined adupfurion, 
adaptations (in the form of code, scripts or rules) can be 
added, removed and modified at runtime. The framework 
presented in this paper and system presented in 123, 281 
fall into this category. These systems separate adaptation 

. 

as an aspect and express it in terms of rules (conditions 
and actions) that can be dynamically managed. In 1281, 
adaptations can only be performed at pre-defined method 
invocations, similar to 'injectors' and 'filters' [6 ] .  Adapta- 
tion across multiple invocations are not supported. In the 
framework presented in this paper, rules are systematically 
composed of pre-defined sensors and actuators to provide 
more comprehensive adaptation behaviors. In this frame- 
work adaptations can occur at any quiet state rather than 
at pre-defined method invocations, Further, the framework 
differs from systems such as [23] in that it nor only sup- 
ports monitoring and steering within components but also 
enables management across components, e.g., by dynami- 
cally switching components. 

ALua [27] is probably most closely related to the system 
presented in this paper. Both these systems separate con- 
figuration from computation and perform interaction, co- 
ordination and adaptation i n  an interpretive manner. FLU- 
her, they both support the execution of dynamically de- 
fined adaptation behaviors (in the form of code, scripts or 
rules) to adapt application behaviors. However, the frame- , 

work presented here uses components as the unit of adap- 
tation, which allows more control of application consis- 
tency through encapsulation. The adaptation of individual 
components, such as setting the value of a variable or se- 
lecting an algorithm, are encapsulated within these com- 
ponents and access to them is controlled by constraints 
defined on the sensors and actuators. Similarly, the ad- 
ditioddeletiodreplacement of components is restricted by 
their functional signatures and system requirements. 

The performance-based self-management presented in 
this paper is also addressed in [lo]. Adaptive behaviors 
such as algorithm selection and parameter adjustment pre- 
sented in [ 101 are also supported in the framework presented 
here, both at the composition and the component levels. 
However, this framework differs from [ 101 in that adapta- 
tion behaviors are specified as rules that can be dynamically 
defined, rather that using hard-coded algorithms within the 
server. 

6 Conclusion 

This paper presented a programming system that enables 
self-managing component-based scientific applications ca- 
pable of detecting and dynamically responding to changing 
requirements, state and execution context. The program- 
ming system extends the common component architecture 
(CCA) and the Caffeine framework. It enables the behav- 
iors and interaction of components and applications to be 
defined using high level rules and provides a runtime frame- 
work for the correct and efficient execution of these rules. 
Mechanisms for detecting and resolving rule conflicts are 
provided. The operation of the programming system was il- 
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lustrated using a self-managing hydrodynamics shock sim- 
ulation and a self-managing CH4 ignition simulation. A 
performance evaluation was presented. 

Current efforts include the investigation of additional 
scientificfengineering applications and additional adapta- 
tion behaviors, as well as deploying and evahating the sys- 
tem on large HPC platforms such as Datastar, SDSC's IBM 
terascale machine. . 
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