
An Autonomic Service Architecture for Self-
Managing Grid Applications

Hua Liu, Viraj Bhat, Manish Parashar, and Scott Klasky

Abstract—The scale, heterogeneity and dynamism of Grid
applications and environments require Grid applications to be
self-managing or autonomic. This paper presents the Accord
autonomic services architecture that addresses this
requirement. Accord enables service and application behaviors
and their interactions to be dynamically specified and adapted
using high-level rules, based on current application
requirements, state and execution context. The design,
implementation and evaluation of Accord are presented. An
autonomic data streaming application is used to illustrate the
self-managing behaviors enabled by Accord.

Index Terms—Grid programming system, autonomic
computing, service based architecture, adaptive data
streaming.

I. INTRODUCTION

he goal of the Grid concept is to enable a new
generation of applications combining intellectual and

physical resources that span many disciplines and
organizations, providing vastly more effective solutions to
important scientific, engineering, business and government
problems. The key characteristics of Grid execution
environments and applications include: (1) Heterogeneity:
Both Grid environments and applications aggregate multiple
independent, diverse and geographically distributed
elements and resources; (2) Dynamism: Grid environments
are continuously changing during the lifetime of an
application. Applications similarly have dynamic runtime
behaviors including the organization and interactions of its
elements; (3) Uncertainty: Uncertainty in Grid environments
is caused by multiple factors, including dynamism that
introduces unpredictable and changing behaviors, failures

Manuscript received June, 2005. The research presented in this paper is
supported in part by the National Science Foundation via grants numbers
ACI 9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS 0305495,
CNS 0426354 and IIS 0430826 and by a subcontract from the Princeton
Plasma Physics Laboratory.

Hua Liu (e-mail: marialiu@caip.rutgers.edu), TASSL, Dept. of Electrical
and Computer Engineering, Rutgers Univ., Piscataway, NJ 08854. Viraj
Bhat (e-mail: virajb@caip.rutgers.edu), TASSL, Dept. of Electrical and
Computer Engineering, Rutgers Univ., Piscataway, NJ 08854. Contact
author: Manish Parashar (e-mail: parashar@caip.rutgers.edu), TASSL,
Dept. of Electrical and Computer Engineering, Rutgers Univ., Piscataway,
NJ 08854. Phone: (732) 445-5388. Fax: (732) 445-0593. Scott Klasky
(email: sklasky@pppl.gov), Princeton Plasma Physics Laboratory, Princeton
University, NJ.

that have an increasing probability of occurrences as
system/application scales increase, and incomplete
knowledge of global state, which is intrinsic to large
distributed environments; (4) Security: A key attribute of
Grids is secure resource sharing across organization
boundaries, which makes security a critical challenge [1].

The characteristics listed above require that Grid
applications must be able to detect and dynamically respond
during execution to changes in both, the state of execution
environment and the state and requirements of the
application [1]. This requirement suggests that (1) Grid
applications should be composed from discrete, self-
managing elements (components/services), which
incorporate separate specifications for functional, non-
functional and interaction/coordination behaviors; (2) The
specifications of computational (functional) behaviors,
interaction and coordination behaviors, and non-functional
behaviors (e.g. performance, fault detection and recovery,
etc.) should be separated so that their combinations are
compose-able; and (3) policy should be separated from
mechanisms and used to orchestrate a repertoire of
mechanisms to achieve context-aware adaptive runtime
behaviors. Given these features, a Grid application requiring
a given set of computational behaviors may be integrated
with different interaction and coordination models or
languages (and vice versa) and different specifications for
non-functional behaviors such as fault recovery and QoS to
address the dynamism and heterogeneity of application state
and the execution environment.

This paper presents the Accord autonomic services
architecture that addresses these requirements and enables
self-managing Grid applications. Accord extends the
service-based Grid programming paradigm to relax static
(defined at the time of instantiation) application
requirements and system/application behaviors and allows
them to be dynamically specified using high-level rules.
Further, it enables the behaviors of services and applications
to be sensitive to the dynamic state of the system and the
changing requirements of the application, and to adapt to
these changes at runtime. This is achieved by extending Grid
services to include the specifications of policies (in the form
of high-level rules) and mechanisms for self-management,
and providing a decentralized runtime infrastructure for
consistently and efficiently enforcing these policies to

T

Grid Computing Workshop 20051320-7803-9493-3/05/$20.00  2005 IEEE

enable autonomic self-managing functional, interaction, and
composition behaviors based on current requirements, state
and execution context. The design and implementation of
Accord is presented. Accord is part of Project AutoMate [2],
which provides required middleware services.

This paper also describes the use of Accord to enable the
adaptive transfer of multi-terabyte data from live simulations
running on supercomputers at NERSC and ORNL to local
visualization and analysis clusters at PPPL while minimizing
overheads to the simulation.

The rest of the paper is organized as follows. Section II
describes the design and implementation of the Accord
autonomic service architecture. Section III illustrates self-
managing behaviors enabled by Accord using the autonomic
data streaming application. Section IV discusses related
work. Section V presents a conclusion.

II. ACCORD AUTONOMIC SERVICES ARCHITECTURE

Accord defines conceptual, implementation and
enforcement models for utilizing human knowledge (in the
form of rules) to guide the execution and adaptation of
services. This is achieved by adapting the behaviors of
individual services and their interactions (communication/
coordination) to changing application requirements/state and
execution environments based on dynamically defined rules.

A. Definition of Autonomic Services

Function
control

Performance
control

Interaction
control

Service manager

Rule base

Service

Interaction rules

Performance data

Adaptation rules

Invocations of
service interfaces

Service
port

Control
port

Figure1. An autonomic service in Accord.

An autonomic service (see Figure 1) extends a Grid
service with a control port for external monitoring and
steering, and a service manager that monitors and controls
the runtime behaviors of the managed service according to
changing requirements and state of applications as well as
their execution environment based on user-defined rules.

The control port consists of sensors that enable the state
of the service to be queried, and actuators that enable the
behaviors of the service to be modified. The control port and
service port are used by the service manager to control the
functions, performance, and interactions of the managed
service. The control port is described using WSDL and may
be a part of the general service description, or may be a
separate document to control access to it. An example of the

control port is shown in Figure 5. Rules are simple if-
condition-then-action statements described using XML and
include service adaptation and service interaction rules. An
example of a rule is shown in Figure 6.

B. The Runtime Infrastructure

The Accord runtime infrastructure (shown in Figure 2)
consists of a user/developer portal, peer service and
application composition/coordination managers, the
autonomic services, and a decentralized rule enforcement
engine. An application composition manager decomposes
incoming application workflows (defined by the user or a
workflow engine) into interaction rules for individual
services, and forwards these rules to corresponding service
managers. Service managers execute these rules to establish
interaction relationships among services by negotiating
communication protocols and mechanisms and dynamically
constructing coordination relationships in a distributed and
decentralized manner.

Application managers also forward incoming adaptation
rules to appropriate service managers. Service managers
execute these rules to adapt the functional behaviors of the
managed services, and evaluate and tune their performance.
These adaptations are realized by invoking appropriate
control (sensors, actuators) and functional interfaces.

Accord portal / composition manager

Application workflow Adaptation strategies
application requirements

Interaction
rules

Service
manager

service

Service
manager

service
Service

manager

service

WS services

Adaptation
rules

Interaction
rules

Adaptation
rules

Interaction
rules

Adaptation
rules

Figure 2. Accord runtime infrastructure. Solid lines indicate interactions
among services and dotted lines represent invocation of WS instances

providing supporting services such as naming and discovery.

Adaptation rules are typically used to adapt the behaviors
of individual services and do not change their functionalities
(described in service ports as contracts), and are therefore
transparent to other services. This localized adaptation
simplifies the specification and execution of adaptation rules
by limiting the conditions monitored and actions performed
to within individual services.

Interaction rules are used to adapt service interactions, for
example communication paradigms and/or coordination
relationships. When local optimization of individual services
cannot satisfy the global objectives, interaction rules are

133

used to modify the application composition.
Rules are evaluated and executed by service managers as

shown in Figure 3. In the figure, the condition part of the
sample rule consists of three triggers belonging to service A
and B, and the action part has two actions that invoke the
actuators exposed by service A and C. Triggers are injected
into corresponding service managers A and B, and their
results are collected by the service manager A. Service
manager A evaluates the condition, invokes actuator1 and
notifies service manager C to invoke actuator2.

rule

service manager A

trigger1 trigger2

trigger3

actuator1

service manager B service manager C

actuator2

Figure 3. Execution of a sample rule.

Rule execution at the service managers consists of three
phases: condition inquiry, condition evaluation and conflict
resolution, and batch action invocation. During condition
inquiry, the service managers query the sensors used by the
rules in parallel, assimilates their current values, and fire
corresponding triggers.

During the next phase, condition evaluations for all the
rules are performed in parallel. Rule conflicts are detected
during this phase when the same actuator is invoked with
different values. These conflicts are resolved by relaxing the
rule condition, using user-defined strategies, until the
actuator-actuator conflict is resolved. If the conflicts are not
resolved, errors are reported to users. If interacting services
try to use different communication/coordination paradigms
as a result of their independent adaptation behaviors, for
example, one of the interacting services try to use RPC and
the other proposes to use notification, the services negotiate
with each other to resolve the conflict [3].

After rule conflict resolution, the actions are executed in
parallel. Note that the rule execution model presented here
focuses on correct and efficient execution of rules, providing
mechanisms to detect and resolve conflicts at runtime.
However, correctness of rules and conflict resolution
strategies are the responsibilities of the users.

C. Autonomic Service Adaptation and Composition

Autonomic service adaptations, defined by adaptation
rules, include modification of service parameters and
dynamic selection of algorithms and implementations to
optimize and tune service performance, meet QoS
requirements, correct detected errors, avoid or recover from
failures, and/or to protect the service. These adaptations are
local to individual services and independent of and
transparent to other services.

Dynamic and autonomic compositions are enabled in
Accord using combinations of interaction and adaptation
rules. Composition consists of defining the organization of
services and the interactions among them [3]. The service
organization describes a collection of services that are
functionally compose-able, determined semantically (e.g.,
using OWL [4]) or syntactically using WSDL [5].
Interactions among services define the coordination between
services and the communication paradigm used, e.g.,
message passing, RPC/RMI, or shared spaces.

Once a workflow has been generated (e.g., using the
mechanism in [6]), and the services have been discovered
(using middleware services), the Accord composition
manager decomposes the workflow into interaction rules.
This decomposition process consists of mapping workflow
patterns [7] in the workflow into corresponding rule
templates [3]. Accord provides templates for basic
communication paradigms such as notification,
publisher/subscriber, rendezvous, shared spaces and
RPC/RMI, and control structures such as sequence, AND-
split, XOR-split, OR-split, AND-join, XOR-join, and OR-
join. More complex interaction and coordination structures
(e.g., loops) can be constructed from these basic patterns.

The interaction rules are then injected into corresponding
service managers, which execute the rules to establish
communication and coordination relationships among
involved services. Note that there is no centrally controlled
orchestration. While the interaction rules are defined by the
composition manager, the actual interactions are established
by service managers in a decentralized and parallel manner.
Also note that the communication paradigms and
coordination relationships among the interacting autonomic
services can be dynamically changed according to current
application state and execution context by
replacing/changing the related interaction rules.

The two adaptation approaches, adaptation within
individual services and dynamic composition of services,
can be used separately or in combination to enable the
autonomic self-configuring, self-optimizing and self-healing
behaviors of services and applications [3].

D. Implementation Overview

The current prototype implementation of the Accord
autonomic services architecture extends the Apache Axis [8]
Toolkit and is being integrated with the Globus toolkit GT4
[9]. In our current implementation, both control ports and
service ports are implemented as WSDL documents. Service
ports are used by interacting services in the normal way, and
control ports are used by managers to manage the services.
The publication/subscription structure is used for
interactions between managers. Each manager maintains a
subscription table consisting of triggers of interest, and
publishes trigger information to subscribing managers as
XML messages.

Further, the prototype uses middleware services provided

134

by AutoMate [2] to enable (1) content-based
routing/discovery, associative messaging, and a
decentralized reactive tuple space for
interaction/coordination among service managers, and (2)
context-based access control for service authorization and
authentication. An experimental evaluation of the Accord
prototype and its overheads are presented in [3].

III. AUTONOMIC DATA STREAMING USING ACCORD

A. Application Setup

This section illustrates the self-managing behaviors
enabled by the Accord autonomic service architecture using
an autonomic data streaming service. The overall application
is presented in Figure 4. The application consists of the
G.T.C. fusion simulation that runs for days on a parallel
supercomputer at NERSC (CA) and generates multi-
terabytes of data. This data is analyzed and visualized live,
while the simulation is running, at PPPL (NJ). The data also
has to be archived either at PPPL (NJ) or ORNL (TN). Data
streaming techniques from a large number of processors
have been shown to be more beneficial for such a runtime
analysis than writing data to the disk [10]. The goal of the
autonomic data steaming service is to stream data from the
live simulation to support remote runtime analysis and
visualization at PPPL while minimizing overheads on the
simulation, adapting to network conditions, and eliminating
loss of data. The application workflow consists of following
five core services:
1. The Simulation Service (SS) executes in parallel on 6K

processors of Seaborg an IBM SP machine at NERSC
and generates data at regular intervals that has to be
transferred at runtime for analysis and visualization at
PPPL, and archived at data stores at PPPL or ORNL.

2. The Data Analysis Service (DAS) runs on a 32 node
cluster located at PPPL. This service analyzes and
visualizes the steamed data.

3. The Data Storage Service (DSS) archives the streamed
data using the Logistical Networking backbone [11],
which builds a Data Grid of storage services located at
ORNL and PPPL.

4. The Autonomic Data Streaming Service (ADSS) is
constructed using the Accord autonomic services
architecture and manages the streaming of data from SS
(at NERSC) to DAS (at PPPL) and DSS (at
PPPL/ORNL). It is a composite service composed of
two services:
a. The Buffer Manager Service (BMS) manages the

buffers allocated by the service based on the rate
and volume of data generated by the simulation and
determines the granularity of blocks used for data
transfer.

b. Data Transfer Service (DTS) manages the
transfer of blocks of data from the buffers to remote
services for analysis and visualization at PPPL, and

archiving at PPPL or ORNL. The data transfer
service uses the IBP [12] protocol to transfer data.

SS

NERSC

PPPL

ORNL

ADSS

DASDSS

DSS

Grid middleware,
Logistical Networking

backboneBMS DTS

Figure 4. The autonomic data streaming application.

As mentioned above, the objective of ADSS is to
minimize overheads of data transfer on the simulation, adapt
the transfer to network conditions, and ensure that there is
no loss of data. Three self-managing scenarios using ADSS
are described below.

B. Self-Managing Scenarios

Scenario 1: Self-optimizing behavior of BMS.
This scenario illustrates the self-optimizing behavior of

the BMS. BMS selects the appropriate blocking technique,
orders blocks in the buffer and optimizes the size of the
buffer(s) used to ensure low latency high performance
steaming and minimize the impact on the execution of the
simulation. The adaptations are based on the current state of
the simulation and more specifically the following three
runtime parameters. (1) The data generation rate, which is
the amount of data generated per iteration divided by the
time required for the iteration, and can vary from 1 to 400
Mbps depending on the domain decomposition and the type
of analysis to be performed. (2) The network connectivity
and the network transfer rate. The latter is limited by the 100
Mbps link between NERC and PPPL. (3) The nature of data
being generated in the simulation, e.g., parameters, 2D
surface data or 3D volume data. BMS provides three
algorithms:

Uniform Buffer Management: This algorithm divides
the data into blocks of fixed sizes, which are then
transmitted by the DTS. This static algorithm is more
suited for the simulations generating data at a small or
medium rate (50Mbps). Using smaller block sizes have
significant advantages at the receiving end as less time
is required for decoding the data and processing it for
analysis and visualization.
Aggregate Buffer Management: This algorithm
aggregates blocks across iterations and the DTS
transmits these aggregated blocks. This algorithm is
suited for high data generation rates, i.e., between 60-
400 Mbps.
Priority Buffer Management: This algorithms orders
data blocks in the buffer based on the nature of the data.

135

For example, 2D data blocks containing visualization or
simulation parameters are given higher priority as
compared to 3D raw volume data. To enable
adaptations, the BMS exports two sensors,
“DataGenerationRate” and “DataType”, and one
actuator, “BlockingAlgorithm” as part of its control port
shown in Figure 5. This document describes the name,
type, message format and protocol details for each
sensor/actuator. Further, the BMS self-optimization
behavior is governed by the rule shown in Figure 6,
which states that if the data generation rate is greater
than the peak network transfer rate (i.e., 100 Mps), the
aggregate buffer management is used otherwise the
uniform buffer management algorithm is used.

Figure 5. The control port for BMS.

The resulting adaptation behavior is plotted in Figure 7. The
figure shows that BMS switches to aggregate buffer
management during simulation time intervals 75 sec to 150
sec and 175 sec to 250 sec, as the simulation data generation
rate peaks to 100Mbps and 120 Mbps during these intervals.
The aggregation is an average of 7 blocks. Once the data
generation rate falls to 50Mbps, BMS switches back to the
uniform buffer management scheme, and constantly sends 3
blocks of data on the network. Figure 7 (b) plots the
percentage overhead on simulation execution with and

without autonomic management. Overhead is computed as
the absolute difference between the time required to
generate data without the ADSS service and the time
required to stream the data using ADSS
service.

Figure 6. The adaptation rule for BMS.

The plot shows that the BMS switches from uniform buffer
management to aggregate buffer management at data
generation rates of around 80-90 Mbps. This increases the
overhead slightly, however the overheads remains less than
5%. Without autonomic management, the overheads
increase to about 10% for higher data rates as BMS
continues to use uniform buffer management.
When the simulation service generates 2D visualization data
in addition to 3D data, the priority buffer management
algorithm is triggered. The 2D data blocks are given higher
priority and are moved to the head to data transmission
queue. As a result, transmission of the 2D data is expedited
with almost no impact to the 3D data.

<rule name=”BlockingRule" attribute=”active”>
 <trigger name=”2D” sensor=”DataType” op=”EQ” value=”2D” type=”string”/>
 <trigger name=”DGR” sensor=”DataGenerationRate” op=”GT”
value=peakRate type=”float”/>

 <when>
 <and>
 <operand trigger=”2D”/>
 <operand trigger=”DGR”/>
 </and>
 </when>
 <do>
 <action actuator=”BlockingAlgorithm”>
 <input value=”priorityAggregation” type=”string”/>
 </action>
 </do>

 <when>
 <and>
 <operand trigger=”2D”/>
 <not>
 <operand trigger=”DGR”/>
 </not>
 </and>
 </when>
 <do>
 <action actuator=”BlockingAlgorithm”>
 <input value=”priority” type=”string”/>
 </action>
 </do>

 <when>
 <and>
 <operand trigger=”DGR”/>
 <not>
 <operand trigger=”2D”/>
 </not>
 </and>
 </when>
 <do>
 <action actuator=”BlockingAlgorithm”>
 <input value=”aggregate” type=”string”/>
 </action>
 </do>

 <else>
 <action actuator=”BlockingAlgorithm”>
 <input value=”uniform” type=”string”/>
 </action>
 </else>
</rule>

<controlPort name=”BMS_controlPort” service=”BufferManagerService”>
 <types>
 <sensor name=”DataGenerationRate”>
 <element name=”DataGenerationRateReq” type=”string”/>
 <element name=”DataGenerationRateResp” type=”double”/>
 </sensor>
 <sensor name=”DataType”>
 <element name=”DataTypeReq” type=”string”/>
 <element name=”DataTypeResp” type=”string”/>
 </sensor>
 <actuator = name=”BlockingAlgorithm”>
 <element name=”BlockingAlgorithmReq” type=”string”/>
 </actuator>
 </types>

 <message name=”GetDataGenerationRateIn”>
 <part name=”body” element=”DataGenerationRateReq”/>
 </message>
 <message name=”GetDataGenerationRateOut”>
 <part name=”body” element=”DataGenerationRateResp”/>
 </message>
 <message name=”GetDataTypeIn”>
 <part name=”body” element=”DataTypeReq”/>
 </message>
 <message name=”GetDataTypeOut”>
 <part name=”body” element=”DataTypeResp”/>
 </message>
 <message name=”SetBlockingAlgorithm”>
 <part name=”body” element=”BlockingAlgorithmReq”/>
 </message>

 <portType name=”BMSControlPortType”>
 <operation name=”SensorDataGenerationRate”>
 <input message=”tns:GetDataGenerationRateIn”/>
 <output message=”tns:GetDataGenerationRateOut”/>
 </operation>
 <operation name=”SensorDataType”>
 <input message=”tns:GetDataTypeIn”/>
 <output message=”tns:GetDataTypeOut”/>
 </operation>
 <operation name=”ActuatorBlockingAlgorithm”>
 <input message=”tns:SetBlockingAlgorithm”/>
 </operation>
 </portType>
</controlPort>

136

Simulation Time (sec)
0 50 100 150 200 250 300 350 400

N
u

m
b

er
 o

f
B

lo
ck

s
S

en
t

(1
0M

B
/b

lo
ck

)

2

4

6

8

10

12

14

100Mbps 120Mbps

Aggregate Buffer Management

Uniform Buffer Mangement
 50Mbps

Figure 7(a). Self-optimization behaviors of the Buffer Management Service
(BMS) – BMS switches between uniform blocking and aggregate blocking

algorithms based on application data generation rates, network transfer rates
and the nature of data generated.

 Data Generation Rate (Mbps)
0 20 40 60 80 100 120 140 160

%
 O

ve
rh

ea
d

o
n

 t
h

e
S

im
u

la
ti

o
n

0

5

10

15

20

%Overhead vs Mbps using Autonomic Management
%Overhead vs Mbps without Autonomic Management

Figure 7(b). Percentage overhead on simulation execution with and without
autonomic management.

Scenario 2: Self-configuring/self-optimizing behavior of
ADSS.
The effectiveness of the data transfer between the simulation
service at NERSC and the analysis/visualization service at
PPPL depends on the network transfer rate, which depends
on data generation rates and/or network conditions. Falling
network transfer rates can lead to buffer overflows and
require the simulation to be throttled to avoid data loss. One
option to maintain data throughputs is to use multiple data
streams. Of course, this option requires multiple buffers and
hence uses more of the available memory. Implementing this
option requires the creation of multiple instances of ADSS.
In this scenario, ADSS monitors the effective network
transfer rate, and when this rate dips below a threshold, the
service causes another instance of the ADSS to be created
and incorporated into the workflow. Note that the maximum
number of ADSS instances possible is predefined. Similarly,
if the effective data transfer rate is above a threshold, the
number of ADSS instances is decreased to reduce memory
overheads. The upper and lower thresholds have been

Figure 8. The adaptation rule for ADSS.

 Data Generation Rate (Mbps)
0 20 40 60 80 100 120 140 160

 %
N

et
w

o
rk

 t
h

ro
u

g
h

p
u

t

0

20

40

60

80

100

N
u

m
b

er
o

f
A

D
S

S
 In

st
an

ce
s

0

1

2

3

4

5

% Network throughput vs Mbps
Number of ADSS Instances vs Mbps

Figure 9. Effect of creating new instances of the ADSS service when the
%Network Throughput dips to below the user defined 50% threshold.

determined using experiments in [10].
The self-configuration behavior of ADSS is governed by the
rule shown in Figure 8. When the network transfer rate is
below a pre-defined threshold, ADSS will use Accord to
create new instances of ADSS including BMS and DTS and

<rule name=”SplitRule" attribute=”active”>
 <trigger name=”SmallNTR” sensor=”NetworkTransferRate”
 op=”LT” value=lowerthreshold type=”float”/>
 <trigger name=”LargeNTR” sensor=”NetworkTransferRate”
 op=”GT” value=upperthreshold type=”float”/>
 <trigger name=”ADSSNum” sensor=”NumOfADSS” op=”LT”
 value=num type=”integer”/>

 <when>
 <and>
 <operand trigger=”SmallNTR”/>
 <operand trigger=”ADSSNum”/>
 </and>
 </when>
 <do>
 <action actuator=”Accord:NewInstances”>
 <input value=”BMS” type=”service”/>
 </action>
 <action actuator=”Accord:LoadRules”>
 <input value=”BMS” type=”service”/>
 <input value=”BMSRuleName” type=”string”/>
 </action>
 <action actuator=”Accord:NewInstances”>
 <input value=”DTS” type=”service”/>
 </action>
 <action actuator=”Accord:LoadRules”>
 <input value=”DTS” type=”service”/>
 <input value=”DTSRuleName” type=”string”/>
 </action>
 </do>

 <when>
 <operand trigger=”LargeNTR”/>
 </when>
 <do>
 <action actuator=”Accord:GetInstances”>
 <input value=”BMS” type=”service”/>
 <output value=”BMSInstanceList” type=”serviceInstanceList”/>
 </action>
 <action actuator=”Accord:DelInstances”>
 <input value=”BMSInstanceList” type=”serviceInstanceList”/>
 <input value=”number" type=”integer”/>
 </action>
 </do>
</rule>

137

load corresponding rules into the new BMS and DTS
instances to enable interactions between them. When the
network transfer rate is above a pre-defined threshold,
ADSS obtains the list of exiting ADSS instances using the
Accord runtime, and deletes a pre-defined number of
instances.

The resulting behaviors are plotted in Figure 9. This
figure plots the percentage of network throughput, which is
the difference between the current network transfer rate and
the maximum network rate between PPPL and NERSC, i.e.,
100 Mbps. The figure shows that the number of ADSS
instances first increases as the network throughput dips
below the 50% threshold (corresponding to data generation
rates of around 25 Mbps in the plot), as defined by the rule
in Figure 8. This causes the network throughput to increase
to above 80%. Even more instances of ADSS services are
created at data generation rates of around 40 Mbps and the
network throughput once again jumps to around 80Mbps.
The ADSS instances increase until the limit of 4 is reached.

Scenario 3: Self-healing behavior of ADSS
This scenario addresses data loss in the cases of extreme

network congestion or network failures. These cases cannot
be addressed using simple buffer management or replication.
One option in these cases to avoid loss of data is to write
data locally at NERSC rather than streaming. However, this
data will not be available for analysis and visualization until
the simulation complete, which could be days. Writing data
to the disk also causes significant overheads to the
simulation [10]. ADSS addresses these cases by temporarily
or permanently switching the streaming of the data to the
DSS at ORNL instead of PPPL. NERSC and ORNL are
connected by a low latency [13] link which has a lower
probability of being saturated. The data can be later
transmitted from ORNL to PPPL. Congestion is detected by
observing the buffer - when the buffer is filled to a capacity,
the ADSS switches subsequent streaming to ORNL, and
when the buffer is no longer saturated, switches the
steaming back to PPPL. If the service observes that buffer is
being continuously saturated, it infers that there is a network
failure and permanently switches the streaming to ORNL. In
this case, the blocks already in the PPPL buffer are
transferred to the ORNL queue. The rule specifying this
self-management behavior is listed in Figure 10.

The resulting self-healing behavior is plotted in Figure 11.
The figure shows that as the ADSS buffer(s) get saturated,
the data streaming switches to the DSS at ORNL, and when
the buffer occupancy falls below 20% it switches back to
PPPL. Note that while the data blocks are written to ORNL,
data blocks already queued for transmission to PPPL
continue to be streamed. The figure also shows that, at
simulation time 1500 (X axis), the PPPL buffers once again
get saturated and the streaming switches to ORNL. If this
persists, the steaming would be permanently switched to
ORNL.

Figure 10. The interaction/adaptation rule for ADSS.

Buffer full
Local Storage Service Triggered

Simulation Time(sec)
0 500 1000 1500 2000

%
 B

u
ff

er
 O

cc
u

p
an

cy

0

20

40

60

80

100

120

D
at

a
S

en
t

to
 L

o
ca

l D
S

S
(M

B
)

Data Sent to Local DSS (at ORNL) vs Simulation Time(sec)
% Buffer Occupancy vs Simulation Time (sec)

Buffer full second time
Local Storage Service Triggered

Figure 11 Effect of switching from the DSS at PPPL to the DSS ORNL in
response to network congestion and/or failure.

IV. RELATED WORK

Management behaviors tend to be application-specific.
For example the selection of parameters or algorithms and
the usage of specific communication and coordination
paradigms are determined by application requirements,
formulations and inputs, and its execution context. However,
the approaches and mechanisms to support runtime self-
management/adaptation are independent of applications.

Existing systems that support autonomic management can
be classified based on the way in which the management
behaviors are specified and enforced. Management
behaviors can be either statically or dynamically specified.
Several existing systems use templates [14] or adaptation
classes [15], special scripts [16] or languages [17] to
statically specify management behaviors a priori. However,
a key drawback of these static approaches is that all the
possible adaptation must be known a priori and coded into

<rule name=”TransferRule" attribute=”active”>
 <trigger name=”transferFailed” sensor=”DataTransfer”
 op=”EQ” value=”0” type=”integer”/>
 <trigger name=”transferSwitch” sensor=”NumOfSwitches”
 op=”LT” value=switchThreshold type=”integer”/>

<when>
 <and>
 <operand trigger=”transferFailed”/>
 <operand trigger=”transferSwitch”/>
 </and>
</when>

<do>
 <action actuator=”TransferAlgorithm”>
 <input value=”remote” type=”string”/>
 </action>
</do>

<when>
 <not>
 <operand trigger=”transferSwitch"/>
 </not>
<do>
 <action actuator=”TransferAlgorithm”>
 <input value=”remote” type=”string”/>
 </action>
 <action actuator=”Accord:SetRuleAttribute”>
 <input value=”TransferRule” type=”string”/>
 <input value=”inactive” type=”string”/>
 </action>
</rule>

138

the application. If new adaptations are required or if
application requirements change, the application code has to
be modified and the application possibly re-compiled.
Accord enables adaptive management behaviors, in the form
of rules, to be dynamically added, removed and modified at
runtime. Other systems that support dynamic specification of
adaptations include [18] and [19].

Different approaches have also been proposed to enforce
management behaviors. The mobile agent approach presents
power and flexibility in specification and deployment [20],
but requires virtual machines or milieus to support the
execution of mobile agents and may lead to possible security
problems such as masquerading, denial of service,
unauthorized access, eavesdropping, alteration, repudiation,
etc. [21]. Code instrumentation [22], superimposition [23],
and wrapping [24] have also been used to enforce
management behaviors. When source code is not accessible,
filters [25] and proxies [26] can be interposed between
services to manipulate the interacting messages or re-direct
messages to different services, to introduce dynamic
adaptations into the execution of the application.

V. CONCLUSION

This paper presented the Accord services architecture for
self-managing Grid applications. Accord enables the
development of autonomic services and the formulation of
autonomic applications as the dynamic composition of
autonomic services, where the runtime computational
behavior of the services as well as their compositions and
interactions can be managed at runtime using dynamically
injected rules. As a result, applications are capable of
adapting their runtime behaviors to deal with the dynamism
and uncertainty of Grids and Grid applications. An
autonomic data streaming application is used to illustrate the
self-managing behaviors enabled by Accord.

As platforms change and applications evolve, adaptation
rules may need to be changed and thresholds may need to be
modified. In the current Accord prototype, rule maintenance
is manual, however, autonomic methods for deriving
thresholds [27] is under investigation.

REFERENCES

[1] M. Parashar and J.C. Browne, Conceptual and Implementation Models
for the Grid, Proceedings of the IEEE, Special Issue on Grid
Computing, IEEE Press, Vol. 93, No. 3, pp 653 – 668, March 2005.

[2] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang and S.
Hariri, AutoMate: Enabling Autonomic Grid Applications. Cluster
Computing: The Journal of Networks, Software Tools, and
Applications, Special Issue on Autonomic Computing, Kluwer
Academic Publishers, 2006.

[3] H. Liu, A Programming System for Autonomic Self-Managing
Applications, PhD thesis, Rutgers University, October 2005.

[4] OWL Web Ontology Language Overview,
http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004.

[5] Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl, 2001.

[6] M. Agarwal and M. Parashar, Enabling Autonomic Compositions in
Grid Environments, Proceedings of the 4th International Workshop on

Grid Computing (Grid 2003), Phoenix, AZ, USA, IEEE Computer
Society Press, pp 34 - 41, November 2003.

[7] W. M. P.Van Der Aalst, A. H. M. Ter Hofstede, B Kiepuszewski and
A P. Barros, Workflow patterns, In distributed and parallel databases,
14(3), pages 5-51, 2003.

[8] Axis, http://ws.apache.org/axis/.
[9] Globus Toolkit, http://www.globus.org/toolkit/.
[10] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune and M. Parashar,

High Performance Threaded Data Streaming for Large Scale
Simulations. Proceedings of the 5th International Workshop on Grid
Computing (Grid 2004), Pittsburgh, PA, USA, IEEE Computer
Society Press, pp 243-250, November 8, 2004.

[11] J.S. Plank and M. Beck, The Logistical Computing Stack -- A Design
For Wide-Area, Scalable, Uninterruptible Computing, DNS: 2002
Dependable Systems and Networks, Workshop on Scalable,
Uninterruptible Computing, Bethesda, Maryland, USA, June, 2002.

[12] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany and R.
Wolski, The Internet Backplane Protocol: Storage in the Network,
NetStore99: The Network Storage Symposium, Seattle, WA, USA,
1999.

[13] Energy Sciences Network, http://www.es.net/.
[14] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,

S. Figueira, J. Hayes, G. Obertelli, J Schopf, G. Shao, S. Smallen, N.
Spring, A. Su and D. Zagorodnov, Adaptive Computing on the Grid
Using AppLeS. IEEE Transactions on Parallel and Distributed
Systems, 14(4):369–382, April 2003.

[15] P. Boinot, R. Marlet, J. Noy, G. Muller and C. Cosell, Declarative
Approach for Designing and Developing Adaptive Components.
Proceedings of 15th IEEE International Conference on Automated
Software Engineering, pages 111–119, 2000.

[16] D. Beazley and P. Lomdahl, Controlling the data glut in Large-Scale
Molecular-Dynamics Simulations. Computers in Physics, 11(3), 1997.

[17] G. Duzan, J. Loyall and R. Schantz, Building adaptive distributed
applications with middleware and aspects. In the 3rd International
Conference on Aspect-oriented Software Development, pages 66–73,
Lancaster, UK, 2004.

[18] S. M. Sadjadi and P. K. McKinley, Transparent Self-Optimization in
Existing CORBA Applications. In the first international conference
on autonomic computing, NYC, NY, USA, 2004.

[19] C. Ururahy, N. Rodriguez and R. Ierusalimschy, Alua: Flexibility for
parallel programming. Computer Languages, 28(2), 2002.

[20] B. Kohn, E. Kraemer, D. Hart and D. Miller, An Agent-based
Approach to Dynamic Monitoring and Steering of Distributed
Computations. In International Association of Science and
Technology for Development (IASTED), Las Vegas, Nevada, 2000.

[21] S. Fischmeister, Mobile code paradigms.
http://www.softwareresearch.net/site/teaching/WS0203/PDFdocs.2002
.

[22] S. Parker and C. Johnson, An Integrated Problem Solving
Environment: The SCIRun Computational Steering Environment. In
HICCS-31, 1998.

[23] J. Bosch, Superimposition: A Component Adaptation Technique,
Information and Software Technology, 1999.

[24] E. Truyen, W. Joosen, P. Verbaeten and B. N. Jorgensen, On
Interaction Refinement in Middleware. In the 5th International
Workshop on Component-Oriented Programming, 2000.

[25] S.R. Ponnekanti and A. Fox, SWORD: A Developer Toolkit for Web
Service Composition. In Proceedings International WWW
Conference(11), Honolulu, Hawaii, USA, 2002.

[26] J. Ray, N. Trebon, R. C. Armstrong, S. Shende and A. Malony,
Performance Measurement and Modeling of Component Applications
in a High Performance Computing Environment: A Case Study. In the
18th International Parallel and Distributed Processing Symposium
(IPDPS04), Santa Fe, NM, USA, 2004.

[27] K. Appleby and G. Goldszmidt, Using automatically derived load
thresholds to manage compute resources on-demand, In the 9th
IFIP/IEEE International Symposium on Integrated Network
Management, Nice-Acropolis, Exhibition Hall, Nice, France, 15-19
May 2005.

139

