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Stable characteristic evolution of generic 3-dimensional single-black-hole spacetimes
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We report new results which establish that the accurate 3-
dimensional numerical simulation of generic single-black-hole
spacetimes has been achieved by characteristic evolution with
unlimited long term stability. Our results cover a selection
of distorted, moving and spinning single black holes, with
evolution times up to 60, 000M .
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Accurate numerical simulation of black holes is neces-
sary to calculate gravitational waveforms in the nonlin-
ear regime that cannot be approximated by perturbation
theory. The importance of such waveforms to the success
of the LIGO gravity wave detector was a prime factor in
organizing the Binary Black Hole Grand Challenge Al-
liance, whose goal is to provide the capability of obtaining
waveforms from the inspiral and merger of binary black
holes [EI] The Alliance is developing a code consisting of
a Cauchy module matched to an outer boundary module
using either a characteristic or perturbative method. For
reports on the Cauchy and perturbative modules see [E]
and [E], respectively. Here we report two new tests of a
3-dimensional characteristic evolution module [@,E] that
establish its unlimited capability to accurately simulate
a generic single black hole spacetime and that establish
a calibrated tool to attack the binary problem: (i) We
have evolved a black hole of mass M moving with peri-
odic time dependence induced by a coordinate wobble for
a time of 60,000M/; and (ii) we have evolved an initially
distorted, spinning black hole up to the final equilibrium
state, which remains stationary to within machine round-
off error and is a discretized version of the Kerr black hole
spacetime. (We use units with Newton’s constant G = 1
and the speed of light ¢ = 1. Thus M = GM/c is a
time. Also, M = GM/c? is a length.)

In the 1970s and 1980s, the difficulty of stably simulat-

ing even a strictly spherical (one spatial dimension) single
black hole led to the formulation of “the Holy Grail of
numerical relativity”, a list of requirements for * a code
that simultaneously

e Avoids singularities

e Handles black holes

e Maintains high accuracy

e Runs forever.” [{]

The results reported here definitely achieve this goal in
the 3-dimensional, single black hole case. The challenge
for the 1990s and beyond is the Binary Black Hole prob-
lem. The results here may become directly applicable to
that multiple black hole stage.

The characteristic algorithm is a new computational
treatment of hyperbolic systems. The theoretical frame-
work is the characteristic initial value problem, pioneered
by Bondi [fJ] and Penrose [f] in the 1960s. Almost all nu-
merical modeling of hyperbolic systems has been based
upon the Cauchy initial value problem, which evolves
fields on spacelike hypersurfaces along a discrete sequence
of time steps. The major new idea in the characteristic
approach is to evolve fields on outgoing (or ingoing) light
cones along a sequence of retarded (or advanced) time
steps. Figure 1 shows the schematic setup for the out-
going case. A world tube I' has been placed as an inner
boundary on the light cones (characteristics) to excise
caustics from the evolution domain. Boundary data on
I' and data on the initial light cone Ny determine a unique
exterior evolution.

Characteristic evolution has several advantageous fea-
tures [d]: The evolution variables reduce to one com-
plex function related to the two gravitational polariza-
tion modes; the Einstein equations reduce to propaga-
tion equations along the light rays; and there are no con-
straints on the initial data. Furthermore, because the
light cones are the spacetime hypersurfaces along which
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waves propagate, such propagating disturbances appear
fairly smooth along them. This feature allows implemen-
tation of Penrose’s spacetime compactification [E] to in-
clude points at future lightlike infinity (in the case based
on outgoing light cones), where the waveform is calcu-
lated in the numerical grid. The major disadvantage is
the difficulty in treating caustics. One early strategy for
a characteristic algorithm proposed tackling the caustics
head-on as part of the evolution [[L(]. But to date this has
only been accomplished for point caustics in axisymmet-
ric spacetimes [Ell], and the extension to 3D would be pro-
hibitive on present-day machines. Cauchy-characteristic
matching is a strategy for combining the complementary
strengths of Cauchy and characteristic evolution.

The implementation and calibration of the 3D charac-
teristic module has been described elsewhere [@@] For
a grid of discretization size A, the numerical solutions
converge in the continuum limit to exact analytic values
in a wide variety of test beds, with O(A?) error. The
long term stability of the outgoing problem has also been
established [[]. In these studies, the inner world tube
I" was chosen to be the ingoing branch of the r = 2M
horizon in a Schwarzschild spacetime. The initial data
consisted of a pulse of ingoing radiation on Ny. This
set the data for the scattering of a pulse of radiation
by a Schwarzschild black hole, the classic problem first
studied perturbatively by Price [[J]. The angular mo-
mentum of the ingoing pulse leads to a final black hole
with spin. The pulse is partially transmitted into the
black hole and partially scattered to (compactified) in-
finity along outgoing light cones, where its waveform is
obtained. The evolution handles highly distorted black
holes with backscattered radiation a thousand times more
massive than the initial black hole and with a peak power
~ 10° in dimensionless units (equivalent to conversion of
our galaxy’s mass into gravitational waves in 1 second).

The calculation of the waveform at infinity for the bi-
nary problem can be posed in a similar way by matching
a Cauchy interior module matched at a worldtube I'" to
a characteristic outer module. (See [f] for an alternative
perturbative matching scheme). In model 3D nonlinear
problems, Cauchy-characteristic matching dramatically
outperforms other existing outer boundary conditions for
Cauchy evolution [[14]. It has been successful in 1D gen-
eral relativity [@, but its efficacy in 3D general rela-
tivity is yet to be determined, because a stable matching
scheme has not yet been found.

A simple transformation switches an outgoing charac-
teristic evolution module into an ingoing module [E,E]
In this case, to uniquely define a black hole spacetime,
boundary data is prescribed on an outer worldtube and
on an incoming light cone (I" and Nj in Fig. 2); and in
order to excise the singular region interior to the black
hole, an inner boundary is constructed at a world tube
traced out by a marginally trapped surface (T in Fig. 2).
This extends to characteristic evolution the strategy ini-

tially proposed by Unruh (see [E}) for Cauchy evolution
of black holes.

This strategy is based upon the properties of trapped
surfaces [L§). Normally, the light rays emitted in the out-
ward normal direction to a (topologically) spherical sur-
face form an expanding beam. But strong gravitational
lensing can make such an outgoing spherical beam ev-
erywhere convergent. Such a surface whose outgoing and
ingoing rays all converge is called trapped. A marginally
trapped surface (MTS) is the borderline case in which
the outward light cone neither expands nor converges.
Under reasonable assumptions, a MTS cannot lie outside
a black hole (see [[LY]). Consequently, if the worldtube I
in Fig. 2 is outside the black hole then the ingoing light
cone Ny must extend some finite distance inward from T’
before reaching a MTS (S in Fig. 2). In all known exam-
ples of black holes the singularities are located inside a
MTS. Excision of the interior of the MTS thus protects
the evolution from encountering a singularity.

In order to implement this strategy (i) the evolution
module must be equipped with an MTS finder and (ii)
the singular region inside the MTS must be excised from
the computational grid without influencing the exterior
evolution. In a characteristic evolution, item (i) is facili-
tated by locating the MTS in a natural way by deforming
an initial guess along the ingoing light rays [E] Similarly,
item (ii) is facilitated because the excision of the interior
of the MTS reduces to a 1-dimensional problem with re-
spect to a radial grid variable. There is no need for any
further boundary condition on the MTS: by construc-
tion, waves emitted from its surface cannot expand into
the exterior region. This theoretical property is built into
the characteristic algorithm.

Details and calibration of the ingoing module are given
in [{]. In initial simulations of a non-spinning black hole,
data on I' was induced from the exterior geometry of a
Schwarzschild spacetime and initial data on Ny consisted
of a Schwarzschild black hole of mass M distorted by a
pulse of radiation. The worldtube I" was also placed in
motion relative to the static symmetry of the exterior
Schwarzschild spacetime to produce a time dependent
location of the black hole in the numerical grid. The
dynamics was monitored by tracking the surface area
A of the MTS. For a non-spinning black hole in equi-
librium, this surface area equals its Schwarzschild value
As = 16w M?. Calculation of A is an especially demand-
ing test when the world tube is offset from the spherical
symmetry of the Schwarzschild exterior and then placed
in a periodic circular orbit. This periodic wobble of the
coordinates leads to a periodic time dependence of both
the metric and the location of the MTS, even in the fi-
nal state of intrinsically static equilibrium. The area of a
MTS determines its Hawking mass @] and gives a useful
measure of the energy inside it. Initially, A < As due to
the energy content of the initial pulse on Ay. The MTS
grows as this energy falls into it. For a non-spinning



black hole, A — Ag as the MTS settles into equilibrium,
even though the metric and the location of the MTS vary
periodically (see Fig. 3).

It is important to establish that the ingoing charac-
teristic module has no long term instabilities and that it
can handle spinning black holes. We now present two new
tests which demonstrate that it can essentially evolve a
generic black hole “forever”.

Since “forever” cannot be rigorously attained in any
finite simulation, we appeal to a characteristic time nec-
essary to obtain accurate waveforms for the inspiral and
merger of two black holes. If one of the holes is small
then the test particle approximation can be used. Con-
sider a test particle in a quasi-circular orbit about a
Schwarzschild black hole, where the final stable orbit is at
r = 6M. From the quadrupole approximation (see [Ld]),
the radiation rate per orbit is ~ 1072 of the binding en-
ergy, suggesting hundreds of orbits for the transition from
inspiral to merger. The period measured by an observer
at infinity is 127v/6M ~ 90M for this orbit so that the
decay time would be ~ 10,000M . For black holes of com-
parable mass, perturbation theory cannot reliably treat
the regime intermediate between an orbital separation
of 12M and merger. However, as estimated in the
decay time for this stage is = 1500M and to join the evo-
lution smoothly to a post-Newtonian orbit at 20M would
require an evolution time of ~ 10,000M .

In our first test, we have successfully evolved
an initially distorted, moving (but non-spinning)
Schwarzschild black hole for a time of 60,000M , clearly
as long as needed for a smooth transition from the post-
Newtonian regime to merger, if this success could be du-
plicated in the ultimate binary code. The run was termi-
nated because it had achieved a steady state, with no
sign of instability, and could be extended further. It
was carried out in a wobbling coordinate system (see
Fig. 3) which induces an “artificial” time dependence.
(The wobble of the outer worldtube I' in the vicinity of
r = TM is the only time dependence seen at late times
in the evolution). This capability is important because it
may not be possible to simulate a binary in coordinates
which become exactly stationary after the merger and
ring-down to final equilibrium.

Our second test establishes that the ingoing charac-
teristic module handles spinning black holes. The outer
world tube data is induced from the exterior geometry of
a Kerr spacetime with mass M and angular momentum
parameter a = M /5 (spin equal to M?/5). The metric is
written in the Cartesian Kerr-Schild form [pJ]

ds? = —dt* + da® + dy® + d2* + 2Hk,k,da"dz”, (1)

where £, is tangent to an ingoing congruence of twisting
light rays and H is a potential (which equals M/r in the
a = 0 nonspinning case). The outer worldtube I' is lo-
cated at x2 +y? + 22 = 49M?2. The module requires this

worldtube data in Bondi coordinates, which are spherical
coordinates based upon the light cones emanating inward
from I' (advanced time coordinates). The transforma-
tion from Cartesian Kerr-Schild coordinates to spheri-
cal Bondi coordinates is carried out numerically in the
neighborhood of the worldtube by an extraction module
which forms part of the Alliance’s Cauchy-characteristic
matching procedure ,@] The initial data for a Kerr
black hole on the ingoing light cone N is complicated
to specify analytically (the geodesic equation leads to el-
liptic integrals). Instead, we choose initial data which
approximates Kerr data but distorts the black hole. The
amount of distortion can be measured in terms of the ini-
tial surface area of the MTS as compared with the Kerr
value Ax = 87 M (M + vV M? — a?). In Fig. 3, we plot
A wvs time for both the initially distorted Kerr and wob-
bling Schwarzschild cases. Tests show that at late times
A converges to the exact (Kerr or Schwarzschild) value
as the discretization size A — 0.

The Kerr evolution was run for a time of 15,000M,
at which the only changes were at machine round-off.
As apparent from Fig. 3, the final Kerr equilibrium is
effectively reached at 20M.

The success of the ingoing characteristic module sug-
gests a possible strategy for excising the singularities in
the binary case (see Fig. 4). Two disjoint characteristic
evolutions based upon ingoing light cones are matched
across worldtubes I'; and I's to a Cauchy evolution of the
shaded region between them. The ingoing light cones are
each truncated at a MTS surrounding the singularities.
The outer boundary I' of the Cauchy region is matched to
an exterior characteristic evolution based upon outgoing
light cones extending to infinity, where the waveform is
calculated. This global strategy has been successfully
implemented for spherically symmetric self-gravitating
scalar waves evolving in a single black hole spacetime [E]

Just as several coordinate patches are necessary to de-
scribe a spacetime with nontrivial topology, an effective
attack on the binary black hole problem could be to patch
together regions of spacetime handled by different algo-
rithms. The Cauchy-characteristic modules are in place
and calibrated for accuracy. The Alliance’s Cauchy mod-
ule [f] has evolved a Schwarzschild black hole for a time
of 475M. Tts performance and stability are now being
studied in a wide variety of tests. (For Cauchy evolution
of a black hole with another 3D code, see [24]). The key
missing ingredient is the long term stability of matching,
which is a major current project.

This work was supported by the Binary Black Hole
Grand Challenge Alliance, NSF PHY/ASC 9318152
(ARPA supplemented). Computer time was provided by
the Pittsburgh Supercomputing Center.



FIG. 1. The outgoing formulation: The exterior of I' is
covered by a sequence of outgoing light cones.

B

FIG. 2. The ingoing formulation: The interior of I' is
covered by a sequence of ingoing light cones. The interior of
T is excised from the evolution.
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FIG. 3. Surface area vs time for a wobbling hole (with

rotation frequency 0.1, offset 0.1 and mass 0.5) and an initially
distorted spinning hole (Kerr mass 0.5). The inset shows three
different snapshots of the MTS in the case of the “wobble”.

FIG. 4. A matching scheme for two orbiting black holes
(in a co-rotating frame which eliminates the major source of
time dependence).
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