Self-optimization of Large Scale Wildfire Simulations

Jingmei Yang', Huoping Chen', Salim Hariri', and Manish Parashar’

! University of Arizona,
{jm_vyang, hpchen, hariri}@ece.arizona.edu
% Rutgers, The State University of New Jersey,
parashar@caip.rutgers.edu

Abstract. The development of efficient parallel algorithms for large scale
wildfire simulations is a challenging research problem because the factors that
determine wildfire behavior are complex. These factors make static parallel
algorithms inefficient, especially when large number of processors is used
because we cannot predict accurately the propagation of the fire and its
computational requirements at runtime. In this paper, we propose an Autonomic
Runtime Manager (ARM) to dynamically exploit the physics properties of the
fire simulation and use them as the basis of our self-optimization algorithm. At
each step of the wildfire simulation, the ARM decomposes the computational
domain into several natural regions (e.g., burning, unburned, burned) where
each region has the same temporal and special characteristics. The number of
burning, unburned and burned cells determines the current state of the fire
simulation and can then be used to accurately predict the computational power
required for each region. By regularly monitoring and analyzing the state of the
simulation, and using that to drive the runtime optimization, we can achieve
significant performance gains because we can efficiently balance the
computational load on each processor. Our experimental results show that the
performance of the fire simulation has been improved by 45% when compared
with a static portioning algorithm.

1 Introduction

For over fifty years, attempts have been made to understand and predict the behavior
of wildfires. However, the factors that determine wildfire behavior are complex and
the computational loads associated with regions in the domain vary greatly both in
time and space. Load balancing and efficient parallel execution of these simulations
on large numbers of processors present significant challenges.

Optimizing the performance of parallel applications through load balancing is well
studied and can be classified as either static or dynamic. The static approaches [3][4]
assign work to processors before the computation starts and can be efficient if we
know how the computations will progress a priori. If the workload cannot be
estimated beforehand, dynamic load balancing strategies have to be used [5][6][7][8].
Some global schemes [9][10] predict future performance based on past information or
based on some prediction tools such as Network Weather Service (NWS)[11]. Other
optimization techniques are based on application-level scheduling [12][13]. AppLeS

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 6151622 2005.
© Springer-Verlag Berlin Heidelberg 2005

616 J. Yang et al.

[12] assumes the application performance model is static and provided by users and
GHS system[13] assumes the applications computation load is a constant.

There are a few techniques that assume adaptive applications [14][15][16].
However, the wildfire simulation is a continuously changing application and requires
adaptive and efficient runtime optimization techniques. In this paper, we present an
Autonomic Runtime Manager (ARM) that continuously monitoring the computing
requirements of the application, analyzing the current state of the application as well
as the computing and networking resources and then making the appropriate planning
and scheduling actions at runtime. The ARM control and management activities are
overlapped with the application execution to minimize the overhead incurred.

The reminder of this paper is organized as follows: Section 2 gives a brief
overview of the ARM system and a detailed analysis of the wildfire simulation.
Results from the experimental evaluation of the ARM system are presented in Section
3. A conclusion and outline of future research directions are presented in Section 4.

2 Autonomic Runtime Manager (ARM) Architecture

The Autonomic Runtime Manager(ARM) is responsible for controlling and managing
the execution for large-scale applications at runtime. The ARM main modules include
(Fig. 1): 1) Online Monitoring and Analysis Module and 2) Autonomic Planning and
Scheduling Module. The online monitoring and analysis module monitors the state of
the application and underlying system and determines whether the online planning
engine should be invoked. The planning and scheduling engine uses the resource
capability models as well as performance models associated with the computations,
and the knowledge repository to select the appropriate models and partitions for each
region and then decompose the computational workloads into schedulable
Computational Units (CUs). In this paper, we will use the wildfire simulation as a
running example to explain the main operations of the ARM modules.

2.1 An Illustrative Example - Wildfire Simulation

In the wildfire simulation model, the entire area is represented as a 2-D cell-space
composed of cells of dimensions length x breadth. For each cell, there are eight major
wind directions as shown in Fig. 2. When a cell is ignited, its state will change from
“unburned” to “burning”. During its “burning” phase, the fire will propagate to its
eight neighbors. The direction and the value of the maximum fire spread rate within
the burning cell can be computed using Rothermel’s fire spread model [2]. When the
simulation time advances to the ignition times of neighbors, the neighbor cells will
ignite. In a similar way, the fire would propagate to the neighbors of these cells. With
different terrain, vegetation and weather conditions, the fire propagation could form
very different spread patterns within the entire region.

Our wildfire simulation model is based on fireLib [1], which is a C function library
for predicting the spread rate and intensity of free-burning wildfires. We parallelized
the sequential fire simulation using MPI. This parallelized fire simulation divides the
entire cell space among multiple processors such that each processor works on its own

Self-optimization of Large Scale Wildfire Simulations 617

Autonomic Runtime Manager (ARM)

oOnline Monitoring and Analysis Autonomic Planning and Scheduling

TS TN e

Database ’ =
‘Applicatiol 1
State
Resource', —— ﬁa{ljvslls f 1
lodule
et Invoke

Knowledge
Repository

gpu

System
Memory [Capability
it Module

Runtime
Performance
Madel

Computational
Unit

Heterogeneous, Dynamic Ty

Resource History
Module

Fig. 1. Autonomic Runtime Manager (ARM) architecture Fig. 2. Fire direction
after ignition

portion and exchanges the necessary data with each other’s after each simulation time
step. At each time step, each processor computes and maintains the ignition maps of
the 8 neighbors of the current ignited cell. Then the ignition map changes are
exchanged between processors.

In our current implementation, a coordinator processor gathers the ignition map
changes from each worker processor and then broadcasts them to all processors. Since
there are only a few cells whose ignition times are changed at each time step, we
believe the communication overhead with the coordinator is low. Thus the estimated
execution time at time ¢ for processor P;can be defined as follows:

T.(t)=T,, (P.t)+T,, (P.t) (1)

comp comm

where T,,,,,(B,1) and T, (P, are the computation and communication time at step ¢

for processor P;, respectively.
The application computational workload (ACW) of the simulation is defined as:

ACW(t)=N, ()T, + N, ()T, @)

where Np(t) and Ny(t) are the number of burning and unburned cells at time #; Tz and
Ty are the estimated computation times of each burning and unburned cell. T > Ty
because burning cells are more computation intensive than unburned cells, which
contribute significantly to the imbalance conditions at runtime. Let o; be the fraction
of the workload assigned to processor P, it will be given a workload of ¢;xACW() .

Therefore, the expected computation time for processor P; can be defined as follows:

T mp (R’t) = 6{1 (NB (t)TB + NU (t)TU) = NB(E’I)TB-'—NU (R’I)TU (3)

col

where Np(P;, t) and Ny(P; t) are the number of burning cells and unburned cells
assigned to processor P; at time step 7.

618 J. Yang et al.

The communication cost T,,,,.(P;t) includes the time required for data gathering,
synchronization and broadcasting, which can be defined as follows:

7::nmm (R ’ t) = Tgulher (R ’ t) +];anc (R ’ t) +];zr:usz (t) (4)

Data gathering operation can be started once the computation is finished. The data
gathering time of processor P; at time step ¢ is given by:

T‘gaﬂu’r (PI 2 t) = mTByreNz' (R 2 t) (5)

where m is the message size in bytes sent by one cell, y.(P,7)is the number of cells

assigned to processor P; whose ignition time are changed during the time step f, and
Ty is the data transmission time per byte. It is important to notice that broadcast
operation can only start after the coordinator processor receives the data from all
processors. Consequently, the data broadcasting time can be defined as:

T =mT,, > "N (B.1) ©

Then, the estimated execution time of the wildfire simulation on processor i can be
computed as:

Nr
Lo, = 22,5 T0) 7

where N, is the number of time steps performed by the wildfire simulation.

2.2 Online Monitoring and Analysis

The online monitoring module collects the information about the wildfire simulation
state, such as the number and the location of burning cells and unburned cells, and the
computation time for the last time step. At the same time, it monitors the states of the
underlying resources, such as the CPU load, available memory, network load etc. The
runtime state information is stored in a database. The online analysis module analyzes
the load imbalance of the wildfire simulation and then determines whether or not the
current allocation of workload needs to be changed.

Figure 3 shows the breakdown of the execution time and type of activities
performed by four processors. Processor Py has the longest computation time because
it is handling a large number of burning cells. Consequently, all the other three
processors have to wait until processor Py finishes its computation and then the data
broadcasting can be started. To balance the workload, the online analysis module
should quickly detect large imbalance and invoke the repartitioning operation. To
quantify the imbalance, we introduce a metric, Imbalance Ratio (/R) that can be
computed as:

Max" (T

IR(t) = i=0 \< comp

(P,1)— Ml‘n,ial (’1:;0771,1 (B.1) 8)
Minii;)] (T;‘omp (E > t))

x100%

We use a predefined threshold IR, es0q to measure how severe the imbalance is. If
IRt)> IR, . . > the imbalance is considered severe and repartitioning is required.

Then the automatic planning and scheduling module will be invoked to carry the
appropriate actions to reparation the simulation workload.

Self-optimization of Large Scale Wildfire Simulations 619

l:l Computation Time T, (1) l:l Synchronization Time T, ()

|:| Data Gathering Time T (1) - Broadcasting Time T, (1)

Fig. 3. The breakdown of the processor execution time at time step ¢

The selection of the threshold IR .0 can significantly impact the effectiveness of
the self-optimization approach. If the threshold chosen is too low, too many load
repartitioning will be triggered and the high overhead produced outweigh the
expected performance gains. On the other hand, when the threshold is high, the
imbalance conditions cannot be detected quickly. In the experimental results
subsection, we show how we can experimentally choose this threshold value.

2.3 Autonomic Planning and Scheduling

The autonomic planning and scheduling module partitions the whole fire simulation
domain into several natural regions (burning, unburned) based on its current state and
then assigns them to processors by taking into consideration the states of the
processors involved in the fire simulation execution. To reduce the rescheduling
overhead, we use a dedicated processor to run the ARM self-optimizing algorithm and
overlap that with the worker processors that compute their assigned workloads. Once
the new partition assignments are finalized, a message is sent to all the worker
processors to read the new assignments once they are done with the current
computations. Consequently, the ARM self-optimization activities are completely
overlapped with the application computation and the overhead is very minimum less
than 4% as will be discussed later.

3 Experimental Results

The experiments were performed on two problem sizes for the fire simulation. One is
a 256*256 cell space with 65536 cells. The other is a 512*512 cell domain with
262144 cells. To introduce a heterogeneous fire patterns, the fire is started in the
southwest region of the domain and then propagates northeast along the wind
direction. To make the evaluation accurate, we maintain total number of burning cells
during the simulation is about 17% of the total cells for both problem sizes.

We begin with an examination of the effects of the imbalance ratio threshold on
application performance. We ran the fire simulation with a problem size of 65536 on
16 processors and varied the IR;,emoq Values to determine the best value that
minimizes the execution time. The results of this experiment are shown in Fig. 4. We
observed that the best execution time, 713 seconds, was achieved when the IR, esmo1

620 J. Yang et al.

2 1300 450

8 400 | —A— Without Self-

2200 Ontimizati

) ’0\350 p imization

E 4100 L s —[1— With Self-

F 9 300

5 1000 4 3 250

=] 1]

© 0t g 200

X 8 150

% 800 + 3

g E 100

S 70 50

<800 Attt oLE

0 500 1000 1500 2000
0 750 100 150 200 250 300 350 400 450 Time Step
[Rthreshold (%)

Fig. 4. The sensitivity of the fire simulation Fig. 5. Imbalance ratios for 2000 time steps of
to the IR jreshold Value the fire simulation, problem size = 65536,

number of processors = 16, IR 1010 = 50%

is equal to 30%. Figure 5 shows how the imbalance ratio increases as the simulation
progresses using static partitioning algorithm and compares that with our self-
optimization algorithm. For example, at time step 2000, the imbalance ratio in the
static parallel algorithm is about 450% while it is around 25% in our approach. Using
our approach, the imbalance ratio is kept bound within a small range.

Figure 6 shows the computation time for each processor at time steps 1, 300 and
600 with and without the ARM self-optimization. For example, at time step 1, the
computation load is well balanced among most processors for both static partitioning
and self-optimization. However, as shown in Fig. 6(a), at time step 300, processor Py
and P, experience longer computation times while other processors keep the same
computation time as before. This is caused by having many burning cells assigned to
these two processors Py and P; At time step 600, more and more cells on processor
Py and P; are burning and the maximum computation time of 0.24 seconds is
observed for P;. However, if we apply the ARM self-optimization algorithm, all
processors finish their computations around the same time for all the simulation time
steps (see Fig. 6 (b)). For example, the maximum execution time of 0.1 seconds is
observed for processor P, at time step 600, which is 58% reduction in execution time
when compared to the 0.24 seconds observed for the static portioning algorithm.

Tables 1 and 2 summarize the comparison of the execution time of the fire
simulation with and without our self-optimization algorithm. Our experimental results
show that the self-optimization approach improves the performance by up to 45% for
a problem size of 262144 cells on 16 processors. We expect to get even better
performance as the problem size increases because it will need more simulation time
and will have more burning cells than smaller problem sizes.

In our implementation, one processor is dedicated to the autonomic planning and
scheduling operations while all the worker processors are running the simulation
loads assigned to them. Consequently, our self-optimization algorithm will not have
high overhead impact on the fire simulation performance. The only overhead incurred
is the time that ARM sensors collect the runtime information and the time that worker
processors read new assigned simulation loads. To quantify the overhead on the
whole system, we conducted experiments to measure the overhead. Based on our

Self-optimization of Large Scale Wildfire Simulations 621

0.25 0.25
§ 02 @ Time Step 1 3 02 | @ Time Step 1
ot W Time Step 300 5 @ Time Setp 300
Eos O Time Step 600 2o | O Time Step 600
F
=1
2 o g o1l
g 2
a2 El
?0'05 2.0.05
S g
0 © 0
PO P1 P2 P3 P4 P5 P6 P7 PO PL P2 P3 P4 P5 P6 P7
Processor Number Processor Number
(a) (b)

Fig. 6. Computation times of different time steps on 8 processors. Each group of adjacent bars
shows the computation time of time step 1, 300 and 600, respectively. (a) Without self-
optimization (b) With self-optimization

Table 1. Performance comparison for the fire simulation with and without self-optimization for
different number of processors, problem size = 65536, and IR 5010 = 30%

Number of | Execution Time without | Execution Time with Self- Performance
Processors static partitioning (sec) Optimization (sec) Improvement
8 2232.11 1265.94 43.29%
16 1238.87 713.17 42.43%

Table 2. Performance comparison for the fire simulation with and without self-optimization for

different number of processors, problem Size = 262144, and IR, c510a = 30%

Number of | Execution Time without | Execution Time with Performance
Processors | Self-Optimization (sec) | Self-Optimization (sec) | Improvement
16 17276.02 9486.3 45.09%

32 9370.96 5558.55 40.68%

experiments, we observed that the overhead cost is less than 4% of the total execution
time for both problem sizes of the fire simulation.

4 Conclusions and Future Work

In this paper, we described an Autonomic Runtime Manager that can self-optimize the
parallel execution of large-scale applications at runtime by continuously monitoring
and analyzing the state of the computations and the underlying resources, and
efficiently exploit the physics of the problem being optimized. In our approach, the
physics of the problem and its current state are the main criterion used to in our self-
optimization algorithm. The activities of the ARM modules are overlapped with the
algorithm being self-optimized to reduce the overhead. We show that the overhead of
our self-optimization algorithm is less than 4%. We have also evaluated the ARM

622 J. Yang et al.

performance on a large wildfire simulation for different problem sizes and different
number of processors. The experimental results show that using the ARM self-
optimization, the performance of the wildfire simulation can be improved by up to
45% when compared to the static parallel partitioning algorithm.

References

1. <http://www.fire.org>
Rothermel, R. C.: A Mathematical Model for Predicting Fire Spread in Wildland Fuels.
Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station(1972)

3. Ichikawa, S., Yamashita, S.: Static Load Balancing of Parallel PDE Solver for Distributed
Computing Environment. Proc. 13™ Int'l Conf. Parallel and Distributed Computing
Systems (2000) 399-405

4. Cierniak, M., Zaki, M. J., Li, W.. Compile-Time Scheduling Algorithms for
Heterogeneous Network of Workstations. Computer J., vol. 40, no. 6(1997) 256-372

5. Willebeek-LeMair, M., Reeves, A.P.: Strategies for Dynamic Load Balancing on Highly
Parallel Computers. IEEE Trans. Parallel and Distributed Systems, vol.4, no. 9 (1993) 979-
993

6. Lin, F. C. H, Kelle, R. M. r: The Gradient Model Load Balancing Method, IEEE Trans. on
Software Engineering, vol. 13, no. 1 (1987) 32-38

7. Cybenko, G.: Dynamic Load Balancing for Distributed Memory Multiprocessors. J.
Parallel and Distributed Computing, vol. 7, no.2 (1989) 279-301

8. Horton, G.: A Multi-Level Diffusion Method for Dynamic Load Balancing. Parallel
Computing, vol.19 (1993) 209-229

9. Nedeljkovic, N., Quinn, M. J.: Data-Parallel Programming on a Network of Heterogeneous
Workstations. 1* IEEE HPDC (1992) 152-160

10. Arabe, J., Beguelin, A., Lowekamp, B., Seligman, E., Starkey, M., Stephan, P.: Dome:
Parallel Programming in a Heterogeneous Multi-User Environment. Proc. 10th Int’l
Parallel Processing Symp. (1996) 218-224

11. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Journal of Future Generation
Computing Systems (1998) 757-768

12. Berman, F., Wolski, R., Casanova, H., Cirne, Dail, W., H., Faerman, M., Figueira, S.,
Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov,
D.: Adaptive Computing on the Grid Using AppLeS. IEEE Trans. on Parallel and
Distributed Systems, vol. 14, no. 4(2003) 369--382

13. Sun, X.-H., Wu, M.: Grid Harvest Service: A System for Long-Term, Application-Level
Task Scheduling. Proc. of 2003 IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2003)(2003)

14. Oliker, L., Biswas, R.: Plum: Parallel Load Balancing for Adaptive Unstructured Meshes”,
J. Parallel and Distributed Computing, vol. 52, no. 2(1998) 150-177

15. Walshaw, C., Cross, M., Everett, M.: Parallel Dynamic Graph Partitioning for Adaptive
Unstructured Meshes. J. Parallel and Distributed Computing, vol. 47(1997)102-108

16. Zhang, Y., Yang, J., Chandra, S., Hariri, S., Parashar, M.: Autonomic Proactive Runtime
Partitioning Strategies for SAMR Applications. Proceedings of the NSF Next Generation
Systems Program Workshop, IEEE/ACM 18th International Parallel and Distributed
Processing Symposium (2004)

	Introduction
	Autonomic Runtime Manager (ARM) Architecture
	An Illustrative Example - Wildfire Simulation
	Online Monitoring and Analysis
	Autonomic Planning and Scheduling

	Experimental Results
	Conclusions and Future Work
	References

