PARALLEL IMPLEMENTATION OF MULTIPHYSICS MULTIBLOCK
FORMULATIONS FOR MULTIPHASE FLOW IN SUBSURFACE*

QIN LU t, MANISH PARASHAR }, MAIGORZATA PESZYNSKA , AND MARY F.
WHEELER#

Abstract. We present the design, implementation and experimental evaluation of parallel solu-
tions that support adaptive, multiblock and multiphysics applications arising in subsurface modeling.
In these applications, the underlying computational domain is subdivided into blocks (subdomains)
and the most appropriate physical model is independently applied to each block. The models are
coupled using numerical algorithm based on mortar spaces, which provides a rigorous formulation of
the overall problem. Efficient parallel implementation of this application presents significant compu-
tational challenges. The solutions presented in this paper include (1) MACE computational engine
that provides programming, dynamic data-management and mortar-based coupling support, (2) a
communication substrate that provides communication contexts for model-based interactions and
(3) model-sensitive load-balancing strategies. These solutions are implemented within the IPARS
reservoir simulation framework, and support arbitrary numbers of blocks, models, and processors.
Results presented in this paper demonstrate efficiency and parallel scalability of the implementation.

Key words. Parallel subsurface modeling, multiphase flow, multiblock, multimodel, multi-
physics, mortar spaces, model sensitive load balancing.

AMS subject classifications. 65Y05 65M55 76 T30 76505

1. Introduction. Modeling of oil and gas recovery as well as the study of con-
tamination scenarios in unsaturated zones often require large scale computations to
understand the design and to optimize the output of the proposed engineering system.
The overall goal of the new generation of reservoir simulators is to support realistic,
high-resolution reservoir studies with a million or more grid elements, with model-
ing elements dynamically selected based on the current characterization and state of
reservoir.

The underlying phenomena are those of multiphase flow and multicomponent
transport in subsurface. Mathematical models of such phenomena are highly nonlin-
ear, coupled, time-dependent, systems of partial differential equations which locally
may be of parabolic, hyperbolic or elliptic type. Moreover, these subsurface processes
frequently have a highly local spatial and temporal character which in one part can
be described by fewer or different type variables than in another part. However,
even though availability of multiple models has become an industrial standard and
is popular in academic and other research institutions [36, 16, 44], when modeling a
phenomenon occurring in a large connected domain, scientists using traditional sim-
ulation tools must select one physical model that is a superset of all the local models.
Naturally, computational requirements of a physical model depend on its complexity -
typically, a more complicated model requires more computational time and resources.
Using the traditional approach leads therefore to inefficiency: since even if a complex
model is necessary for only a small part of the domain, it will have to be used for the

* supported by NSF EIA-0120934 (ITR), EIA 0103674 (NGS) and ACI 9984357 (CAREERS),
and DOE ASCI/ASAP (Caltech) PC295251, also by DOE: DE-FG03-99ER25371, DOD: PET2/
UTAO01-347, and the NSF grants: SBR 9873326, ITR EIA-0121523, NPACI 10181410

fLandmark Graphics Corp.qlu@lgc.com

iThe Applied Software Systems Laboratory, Department of Electrical &Computer Engineering,
Rutgers, The State University of New Jersey,parashar@caip.rutgers.edu

§Texas Inst. for Comp. and Appl. Math., Univ. of Texas at Austin mpesz@ticam.utexas.edu,
mfwQticam.utexas.edu

entire domain. This drawback is somewhat similar to using a uniform fine grid over
entire computational domain when such fine resolution is necessary only in a small
region in the domain, but that may be alleviated with local adaptive grid refinement.
In this paper we present the multiblock multiphysics solution methodology that al-
lows physical models to be adaptively selected to match the characteristics of local
domain. Moreover, this methodology can be combined with local grid refinement and
time stepping, and used for upscaling [33]. While such a formulation leads to advan-
tageous cost/accuracy ratios [19], it also leads to nontrivial modeling and numerical
issues. Furthermore, scalable parallel implementation of these simulations presents
significant challenges in programming, data-management, runtime management and
load-balancing.

The parallel adaptive multiblock, multimodel formulation presented in this paper
lifts the traditional paradigm of reservoir simulation and allows for great increase of
computing efficiency without loss of accuracy. The methodology and solutions are an
integral part of IPARS (Integrated Parallel Accurate Reservoir Simulator) framework
developed at the Center for Subsurface Modeling at the University of Texas at Austin
[25, 40, 43]. A unique feature of IPARS is the ability to handle multiple physical
models assigned to different blocks. Specifically, we handle Ng blocks (subdomains)
which are gridded independently and which are separated by Ny interfaces. Assume
that we are given Nj; models, with Ny, < Np. From computational point of view,
each of the blocks can be considered as an independent domain and implemented as a
separate object. However, physically they are part of the same reservoir. Therefore,
these blocks and models need to be connected by (i) underlying physical principles of
continuity of relevant and appropriate quantities such as mass, momentum, emergy
etc., (ii) numerical algorithm defining the discrete form of this continuity and (iii) a
computational object that serves as “glue” positioned between these blocks. In this
paper we focus on mass flow and transport in subsurface and in i) the continuity of
mass and momentum is enforced. Second, in ii) we use mortar spaces for mixed finite
element methods [2]. Finally, for iii), we use Multiblock Adaptive Computational
Engine (MACE). MACE implements a mortar space as a dynamic, semantically spe-
cialized distributed shared memory that enables the blocks to transparently share
information in spite of their distributions.

Denote by N¢ the total number of cells in computational domain which will be
considered fixed in this paper, with N¢(b), Nco(p), No(M) denoting number of cells
assigned to a block b, processor p or model M. Assume that we are given Np > 1 pro-
cessors. Our parallel implementation builds on the Message Passing Interface (MPI)
[38, 15]. The communication substrate defines the parallel operators required to (i)
update primary unknowns and other variables in ghost layers (UPDATE) as well as
to (ii) communicate scalar properties across processors (GLOBAL_REDUCE). For
N = Ny = 1 we follow the SPMD (Single Program Multiple Data) paradigm
where all processors execute the same code and, aside of synchronization issues,
most communication calls occur from the same point in the program. Next, assume
Ny =1, Ng > 1. This is the case of multiblock single-model execution mode, typical
for previous generation of domain decomposition simulators [10, 9] where typically it
is required that Np = Np. In our case Np is arbitrary. A key issue here is that the
different blocks interact on different levels and in different ways. Ensuring physical
and numerical continuity across blocks requires communications between processors
working on adjacent blocks and it is realized using mortar spaces and communications
realized in MACE. Finally, use arbitrary Ng, Ny, Np, in which case different models

3

execute on different blocks whose cells are distributed across processors and we follow
the MPMD (Multiple Program Multiple Data) paradigm. Since processors execute dif-
ferent models or codes, it is critical to preserve the independence of block and model
decomposition from parallel decomposition and enable proper interactions between
the different models to avoid conflicts or deadlocks. This problem is addressed by the
multiblock communication substrate, which builds on the MPI multi-communicator
support. Each model and mortar maintains its own communication context. Some
global interaction contexts are also defined to ensure, in particular, global mass bal-
ance. The substrate is tuned for parallel scalability. Finally, since different models
have different computational cost and simulation speeds and run on grid of different
sizes, model-sensitive load balancing is critical to ensure efficient parallel execution.
In particular, in this paper we are concerned with decreasing overall computational
time CT(N¢, Np, Ng, Nar), mainly considering the parallel MPMD issues for Njs > 1
and increasing Np. Solver or grid adaptivity issues will be discussed elsewhere.

Our experience has been mainly with subsurface modeling applications. However,
the ideas presented in this paper can be applied to many other heterogeneous domain
decomposition problems like those in fluid-structure interactions [13], or biomedical
applications. In addition, there is a wide variety of applications in which different
codes are coupled by some form of interface, e.g. see [11, 1]. Our methodology may
be applicable to parallel implementation of many of such tight couplings.

The rest of the paper is organized as follows. In Section 2 we define the computa-
tional problem. In Section 3 we describe building blocks of our multiblock multiphysics
parallel implementation. In Section 4 we present results demonstrating the perfor-
mance and scalability of the implementation. Section 5 presents our conclusions and
an outline of our current and future work.

Results presented in this paper come from multiblock multiphysics implementa-
tion under IPARS framework. We would like to acknowledge contributions of John
Wheeler, Carter Edwards and Ivan Yotov to the code and to algorithmic development
to this implementation.

2. Problem description: multiphase flow and transport in subsurface.
In this section we briefly discuss a general model of isothermal multiphase multicom-
ponent flow and transport in subsurface. Discretization of such equations must be
conservative and it must accurately describe transfer of mass of individual components
between parts of the domain. The complexity of the physical model and low regular-
ity of its solutions constrain choice of the grid as well as the order of approximation.
Here we focus on cell centered finite differences (CCFD) which remain probably the
most common numerical technique in reservoir simulation. CCFD are conservative
as well as have optimal order of convergence for model problems, and are easily im-
plemented as “ijk” grids. The disadvantage of CCFD grids is in their small ability
to be adapted to the geological features of a reservoir which may include irregular
boundaries, faults, and permeability layers or barriers, or to allow for local refinement
around wells. In addition, in traditional setup, all parts of a reservoir are described
by the same model. These disadvantages can be lifted by employing the multiblock
and multiphysics paradigm described below.

2.1. Physical and numerical models in a single block. Consider a sub-
surface reservoir C IR® whose pores are filled with fluids which can flow or be
immobile. We distinguish between phases and components within these fluids which
are denoted by subscripts ¢ and C, respectively. Assume isothermal and equilibrium
conditions and no chemical reactions and no adsorption. Use general conservation of

4

mass equation for each component [27] as follows:

(2.1) 6(¢7‘NC)+V'VC:(]0.
ot

where concentration N¢ of component C is defined as No =), pcScnec, with phase
density p. and saturation S, for phase c¢. Since a component can exist in more than
one phase, we define n.c as the mass fraction of component C in phase ¢. Source
term is denoted by g¢ and flux V¢ is the overall mass flux of component C. Porosity
d(z,t),z € Q,t > 0 is a spatially and pressure-dependent property of the porous
medium. Consider advective flux of a component V¢ = 3" p.n.cU., where U, is the
velocity of phase ¢, defined by Darcy’s law which expresses momentum conservation
and states

(2.2) U.=-K\(VP, — p.GVD).

In general, Forchheimer, Navier-Stokes, or other law, can be used. Here K(z),z € Q
denotes a general (intrinsic) permeability tensor which in this work for simplicity
is assumed diagonal and isotropic in both horizontal directions with anisotropy be-
tween horizontal and vertical directions; K = diag(Kpor, Knor, Kvert). D(z) de-
notes depth and G is the gravity constant. Each phase has an associated pressure
P,, relative permeability k. and viscosity p., with mobility A, = % Note that
>eSe =1, .ncc = 1. System is closed by adding capillary pressure relationships
and equations of state which specify dependence of density p. and viscosity p. on
pressure P, and composition n.c. Model is complemented by a set of appropriate
initial and boundary conditions. Finally, it has associated a set of primary unknowns
T which can be used to uniquely identify the state of the system, i.e., to compute
values of all the other unknowns. The number of variables in Y is decided upon with
Gibbs phase rule [39, 18] and in general, the choice of T is not unique.

This general model includes many submodels. When a component (phase) is not
present at x € (2, then its concentration (phase saturation) N¢g(xz) = 0 (S.(z) = 0)
(Here we ignore the distinction between stationary and absent components/phases.) A
specific (sub)model arises when it is clear i) which phases and components are present
and flowing, ii) what restrictions are placed on n.c, and iii) which application specific
constitutive relationships are used. Some of such specific models are very well-known,
understood, and widely used, in both petroleum and environmental engineering [27,
18]. These include in particular 1) a popular single phase incompressible flow modeled
by an elliptic equation, 2) a two-phase flow model which is a parabolic-hyperbolic
system of 2 equations, and 3) a black-oil model: a coupled system of 3 equations
[8, 32, 19, 7, 6] and 4) a compositional model [8, 18] with large number of components.
The single phase flow problem is solved for one variable only (pressure of phase c)
so T = (P.). Two-phase flow problem is solved simultaneously for two variables
(typically, one phase pressure and one other unknown), for example, T = (P,, Np) (oil
phase pressure and oil component concentration). Black-oil model has three primary
unknowns (typically, one pressure and two other unknowns), e.g., T = (P,, No, Ng)
with the latter unknown denoting gas component concentration.

Numerical model. Consider now computational domain 2 covering 2, which
is composed of rectangular ijk grid cells. For simplicity we assume {2, = €2, In general,
Qp, doesn’t have to be a parallelepiped and any curved boundary can be approximated
by keyed-out cells. Moreover, the grid must only be locally logically rectangular [4, 3].

We apply cell centered finite difference formulation (CCFD) to (2.1) to get

09N
ot

Next, we discretize Eq. (2.2) in order to define (V - V¢)¥*. Note that, under certain

circumstances, CCFD is equivalent, up to quadrature error, to the expanded mized

finite element method using RTO spaces [34, 5, 3]. In particular, discrete form of (2.2)
in 4’th direction reads, with gravity terms omitted for simplicity

(2.3) + (V- Ve)iik = gk,

Ki+1/2,j,k)\i+1/2,j,k

(2_4) U’i+1/2ajik — (Pcl“l‘lv]ak _ Pzajvk)
C)

0Zi41 /2
where Kit1/2:0:k \EFL/20k p the edge i + 1/2, 4,k between cells i, j, k and i + 1, jk,
are obtained by harmonic averaging of permeabilities K;L’Z’Tk and K’;’gi’j’k, and by
upwinding, respectively. Definition of (V-V ¢)¥* follows in a straightforward manner,
see [30] for details. In general, boundary conditions are accounted for in (2.4).

Now, assume that values of primary unknowns Y at time ¢y are given, and define
an appropriate temporal discretization, in other words, define how T,T:“, n=20,1,...
is computed. Usually, additional equations and constraints are directly incorporated
to eliminate the need for extra unknowns. For example, an implicit scheme stems
from backward-Euler time discretization

1,ijk prnt1l,ijk ,ijk AT,k
¢n+ 1] NC’ _¢nz] NC
ot

and requires solution of a nonlinear algebraic problem for TZH using a Newton-
Raphson algorithm [30]. In general, other temporal discretizations, splittings, and
time-lagging procedures are possible; each has its specific advantages related to its
stability, convergence, and computational complexity. Regardless of details, most
share common structure presented in the Figure 2.1.

(2.5) +(V- Vc)n+1,ijk _ qg+1,z'jk7

Step n: given primary unknowns T} =: TZH’O
Iterate K =1,... Keony

i) compute nonlinear properties (all other unknowns) using ’I‘ZH’K_I

fy s L. 1,K—1
ii) incorporate boundary conditions and sources at t"*!, use TZ"' '

iii) assemble matrix and rhs of a linear system
iv) solve linear system and update primary unknowns TZ+1’K
Step n + 1: computed Y7+ .= YPH1Keone

F1G. 2.1. Time stepping for a single model over a single block. Kcony is determined by New-
tonian convergence criterium for implicit models, Kcony = 1 for sequential procedures.

Computational time CT required for one time step of such a numerical model on
a single processor machine can be roughly estimated as

(2.6) CT(Ng,1,1,1) = CT(Ne, 1,1, {M}) ~ Car No™™

where a s, Chyr depend on model M. In particular, aps depends mainly on the iterative
linear and nonlinear solvers and associated preconditioners, in our experience usually
1 < apy < 2. Cy includes dependence on the number njys of (primary) unknowns in
T for model M.

2.2. Multiblock mortar formulation. Here we consider a domain decom-
position method in which the domain Q is decomposed into non-overlapping sub-
domains (blocks) @ so that Q = Ué\fl Q. We assume that each Q, = (Q)n.
Interfaces between blocks are denoted by I';,l = 1...N; and for each [there is
(bi,b;) : Iy = 0y, N O8p,;. Denote I' = vaz’l T;. The original problem (2.1) posed
over (1 is formulated as an interface problem on I in which one seeks values of interface
primary unknowns A(s),s € T' so that a certain complementary condition is satisfied
which we write as B(A) = 0. Values of A(s)|rnag, are understood as boundary con-
ditions for subdomain (block) problem on block b which are solved for (subdomain)
primary unknowns Y|g,. Values of B(A) are found from Y|g,,b=1...Ng.

In discrete formulation, if the grids are matching, the individual subdomains
communicate their data by way of Lagrange multipliers Aj which are defined at
appropriate grid points on I'. For grids that are non-matching across the interface
we follow the development of mortar spaces which provide a numerically convergent
technique of coupling the blocks together [2]. Figure 2.3 shows a multiblock domain
and mortars on block interfaces. Note that mortar grid is completely independent of
the subdomain grids. (In general, it has to satisfy some conditions [2]). Regardless
whether grids are matching or not, here for simplicity we assume mortar spaces are
always used. The algorithm with the use of mortars follows the interface formulation
B(A) = 0 and it is enhanced by operations defined between mortar grids and sub-
domain grids and vice versa. (These operations are counterparts of L? projections
between finite element spaces defined on subdomains and on mortar grids.) Mortar
interface problem Bp(Ap) = 0 is formulated and solved.

For example, consider multiblock formulation for the incompressible single-phase
flow problem. A transmission problem for this elliptic equation [37] requires that on
the interface we impose i) continuity of pressures (which can be used as Dirichlet
boundary condition for the subdomains) and ii) continuity of fluxes (which can be
used as the complementary condition). Mortar multiblock formulation for mixed
methods for this problem, with Ay defined as (mortar) pressures and By (Ap) defined
as jump of the flux across the interface, has been proven to be optimally convergent
[2]. Symbolically, we write A = (P,) and B(A) = ([V w]) where [-] denotes jump (in
appropriate weak sense).

Next, consider a general model M as in Eq. (2.3). Here the set of interface
primary unknowns A(s), s € T, must have a one-to-one correspondance to Y (s) and it
represents values of any unknowns which can be used to impose a boundary condition.
One choice is to use A = Y. For example, in implicit two-phase oil-water model
mentioned above, this choice gives A = (P,, No) and B(A) = ([Vo],[Vw]). Another
choice is A = (Py,Np) and B(A) = ([Vw],[Vo]). Since the problem (2.1), in
general, is nonlinear, the choice of A and B(A) may not be straightforward and in
implementation some choices may be more efficient than others, e.g., see discussion for
two-phase immiscible flow in [29, 30]. After all additional constraints are eliminated,
the system B(A) = 0 should be square with dimension of A(s) equal to the number
of components njs specific to a model M following from Gibbs’ rule which is equal to
the number of component fluxes.

For numerical solution, we solve By(Ay) = 0 which is square as well, with di-
mension of Ay equal to nys X ny, where ny, denotes the number of (mortar) degrees of
freedom. In fact, at every time step t,, we solve B} (A}) = 0. Time-stepping for inter-
face formulation doesn’t have to match the time-stepping in individual subdomains.
In general, it follows the iterative procedure shown in Figure 2.2 with I =1,... I.ony

7

iterations where I.,,, is determined by an interface stopping criterium based on very-
fying whether appropriate norm of || BZ(AZ’I“"”) [|~ 0.

Step n: given APTH := AT and Y}|q,,b=1...Np
Tterate I =1,...1.0ny: given current guess AZH’I
a) solve in all blocks b =1... Np: iterate K = 1,... K.ony(I)
i)... ii) ... use AZH’I as boundary condtitions for block b
iii)... iv) ... find YT Keone Do)
b) compute Bh(AZ'H’I) and determine new guess AZ'H’I
Step n + 1: computed APTt ;= AR+l Ieon
and T H g, = APt Keoneleonsd) — 1 Ny

Fic. 2.2. Time stepping for a multiblock single model

We remark that in our implementation, the number of iterations K opn,(I) in
finding TZ+1’K“°"”(I)|Qb is actually the same for all blocks. This is because, even
though blocks are decoupled, the stopping criterium applied in all blocks involves a
sum (or maximum) of norms over all blocks. In other words, the overall nonlinear and
linear systems solved is block diagonal, with each block corresponding to a subdomain.
Therefore, even if residuals in one block are close to zero, iterative linear solver will
keep working until residuals in all remaining subdomains are zero. This procedure is
easy in implementation and guarantees parallel scalability. Additionally, we assume
for simplicity here that vectors A(s), B(A)(s), and consequently Ay, By (Ap) have the
same number and type of components for all s € I'. All these constraints including
making K.ony = Keony(b) could easily be lifted in implementation, if needed.

Extending Eq. (2.6), we get

(2.7) CT(N¢,1,Np,{M}) = L.ony (CI +Cu ZB Nc(b)"M)

b=1

where, C7 is the cost of operations between blocks and mortars per interface iteration.
I.ony depends on the quality of interface solver and preconditioners and it is a function
of npr X np on I'. Tt our applications it turns out that Cj is dominated by the other
terms therefore CT(N¢, 1, Np,{M}) = I.onyCum Eé\fl Ng(b)om,

2.3. Multiphysics multiblock formulation. For many reasons it is advanta-
geous to apply different models in different parts of the domain. For example, large
parts of subsurface reservoirs are filled with water only which can be modelled using
a simple single-phase flow model. At the same time, such parts may be connected to
oil and gas reservoirs which require a compositional or a black-oil model. Such condi-
tions may persist throughout the life of a reservoir or at least throughout the desired
simulation time. It is frequently possible to predict a-priori what models should be
assigned to what parts of the domain.

In a simple example, consider a reservoir {2 filled with oil O and water W described
by a comprehensive two-phase immiscible flow model. In this case, consider multiblock
formulation with A(s) = (Py, No) and B(A)(s) = ([Vw,Vo]),s € I'. Consider time
t and sjngle—phase model M; apd two-phase model M, ang a decomp~osition of Q =
QL (t)uQ?(t) defined as follows: Q*(t) = {z : No(=z;t) = 0}, Q%(t) = Q\Q(¢). Physical

Mortar 2
Block|B, N Model M
Mortar 1 g I—i,
~. = ‘,1‘ = 0 \I—Z,g
% | Blogk B, rl% Model M,
Mortar 3
Model M,
Block B,

F1g. 2.3. Left: mutliblock grid. Right: multiphysics assignment of models to blocks. Choice of
unknowns A‘Fz,s must be consistent with A|1"1’2 because they both provide boundary conditions to
model Ma. Mortar grids on each part of I are independent of each other and of block grids.

meaning of these sets is that Q! (¢) is a domain containing water only which can be
described by model M;. Note that at a given ¢, each of Q' (t), Q2(t) (but not both) may
be empty, and that in most reservoirs water (or at least some of its residual quantities)
is present everywhere. Assume therefore Q' (t) # (). Define the free boundary T2 (t) =
AN (t) N Q% (t) between the single- and two-phase region. In general, it is difficult
to track T'™?(¢) in numerical computations and it would be difficult and impractical
to assign a specific model to a time-varying domain Q'(t). Therefore, consider the
time-independent decomposition of Q@ = Q! U Q? where Q! C Nic(o.1) Q'(t). The
actual definition of Q! is allowed to vary, see below. For completeness, 2% = Q \ Q.
Define the interface between the two models T''2 = 99! N 9N2.

The main idea is to apply models M;, My in Q! and Q2, and to couple them by
interface conditions on I'"»2. Note that Q! can be chosen in any way that is convenient
for modeling or computational purposes. In particular, it is desirable for Q! to be as
large as possible in order to save computational time and so that I'**? has convenient
geometry. In addition, consider multiblock decomposition of so that Q! and Q2 are
covered each by a separate union of N} and N3 subdomains (blocks), respectively.
Consider T' = TP UT22UTh2 so that TV =T'NQ! —TH2 and T2 =TNO2 -T2,

To reformulate the interface conditions locally on different parts of T', we note
first that A = T = (P,, No) has to be retained on I'>2. However, there is no need
to account for oil-related components inside Q. In fact, since I'' := T UT12 C
Q'(t),Vt, we use Alp1 = (Pw7N0|Q1(t) = 0) and construct a map A|r1 — Y|g2|m
which follows from definition of Q' (t). There is also a natural map Alr = Y1 |p
which follows by ignoring the second coordinate. In summary, A|p:1 = (Py,0) can be
used as a boundary condition in both Q! Q2. Next, in the definition of B(A)|r: we
set the jump of the flux of the (missing) oil component to zero.

In general, assume that Njs sub-models can be defined on Ng blocks with Ng >
N, each on at least one block, with primary unknowns Y™ € IR™ for model M.
There are also [=1,... Ny interfaces. The numbering of models is arbitrary and the
choice of unknowns on each interface I'; has to be considered on a case-by-case basis
depending on the physical conditions and on the models defined on both sides of this
interface, see Figure 2.3, also see [19, 41, 28] for other examples and modeling details.
Time stepping for a multiphysics run on a single processor is shown in Figure 2.4.

9

Now, assume that there is a comprehensive model Momp, defined over Q for
which T € R"™™" neomp > nar, VM,. The multiphysics procedure in the discrete
form amounts to reduction of the algebraic system Bp(Ap) = 0, with Ap of size
Neompr X Ny o0 I' as in Eq. (2.7), to a different system, of size n; x nj, locally on
each interface I';. Note that this reduction really amounts to removing some columns
and rows from original system By(Ap) = 0 and that this way, we reduce .o,y from
Eq. (2.7). Moreover, overall computational complexity is decreased in Eq. (2.7) be-
cause subdomain solvers assigned to each block are faster than a comprehensive model
solver. In fact, dropping C;, we have

Num
(28) CT(NC;]-aNB;NM) ~ Iconv (Z CM(NC(M))QM> .
M=1

Overall, this last feature dominates the efficiency of multiphysics procedures, see [33,
19]. Finally, in case the comprehensive model doesn’t exist or has trouble describing
degenerate conditions, the multiphysics coupling procedure described here provides a
template for a tight coupling of separate models.

Step n: given AtH! =: AT and Y}|q,,b=1...Np
Tterate I = 1,...I o, given current guess AZ'H’I
ma) solve for each model M =1... Ny
a) solve in blocks b=1... Ng(M): iterate K = 1,... K.onyo (I, M)
i).. iv)

mb) compute Bj(A7™"") and determine new guess A7 !

Step n + 1: computed ApTt ;= ARt Teone
and Y1H g, := YPHhKeonolleons M) 4 g Ny

F1c. 2.4. Time stepping for a multiphysics multiblock problem

3. Parallel implementation. The multiblock, multimodel formulation described
in previous section has been implemented in reservoir simulation framework TPARS
and tuned for parallel performance. IPARS (Integrated Parallel Accurate Reservoir
Simulator) framework provides the infrastructure common to most simulators, such
as memory management, grid generation, free-form keyword input, parallel runtime
support, and formatted output for visualization, and allows the user to concentrate on
the physical model of interest. This paper describes enhancements that enable IPARS
to handle multiple blocks and multiple models and an arbitrary number of processors.
Each physical or numerical model may have different primary variables, units system,
numerical discretization and solutions method (e.g. its own time-stepping or solver)
associated with it. The enhancements include (1) the MACE computational engine
that provides programming, dynamic data-management and mortar-based coupling
support, (2) communication contexts for interactions within and across physical mod-
els, especially when they span multiple blocks and processors, and (3) model sensitive
load-balancing strategies that take into account computational heterogeneity of the
different physical models used while balancing load.

In what follows we first describe the parallel implementation of a single-block
single-model under IPARS. We then describe implementation of multiblock simula-

10

tions using MACE, and implementation of multimodel simulation including model-
sensitive load-balancing.

3.1. Single-block implementation. Here Ng = 1 and, hence, Ny = 1. Con-
sider a time step for a single-block single-model algorithm as shown in Figure 2.1 and
an ijk grid. For Np > 1, use a spatial decomposition, assigning pieces of grid to each
processor so that dividing lines between processors are aligned with cell boundaries.
Since the values of primary unknowns are cell-centered, each cell belongs to at most
one processor. Each processor computes the same single-model algorithm as others
on its own part of the grid, therefore we realize a SPMD paradigm.

This implementation requires appropriate communications between the proces-
sors. First, CCFD have associated a certain stencil such as 7-pt stencil in Eq. (2.4)
which requires that each cell communicates with its six neighbors (larger stencils are
also possible). To enable this communication, each processor pads its part of the grid
with layers of ghost cells. These cells serve as place holders for values that are com-
puted on adjacent processors and these are updated using basic MPI[38, 15] point-to-
point message passing primitives send(), receive() encapsulated in an UPDATE
call provided by TPARS. Next, the overall algorithm relies on iterative solution of
an algebraic problem, and therefore it requires some scalar values such as the total
mass of a component, or the maximum residual of a linear or nonlinear system, to be
computed. The GLOBAL _REDUCE operation encapsulated in IPARS is realized
using either MPI collective communication primitives such as MPI._ ALLREDUCE or
simple asynchronous send and receive operations. Note that GLOBAL_REDUCE
requires a rendez-vous synchronization for all Np processors. See Figure 3.1 for sum-
mary. All processors are part of one general MPI communicator group which we will
denote Cyp = {Py,...Pn, }.

Step n: given T} =: Y70, UPDATE(Y})
Tterate K =1,... Keono
after i) UPDATE(other unknowns)
after ii) UPDATE(source terms, boundary conditions)
after iii) UPDATE(matrix,residual)
in iv) UPDATE(solution), GLOBAL_REDUCE(stop for linear solver)
GLOBAL_REDUCE(stop for nonlinear iteration, global mass)
Step n + 1: computed Y7+ .= YpH1Keone

FiG. 3.1. Parallel operations in SPMD implementation for a single model over a single block

Efficiency of this implementation depends on communication costs and on load
balancing. Accordingly, the number of ghost cells should be minimized and each
processor should be assigned approximately the same amount of work. For single-
model algorithms and most of the models that we’re concerned with in this paper,
the work (load) per cell is approximately the same throughout the whole simulation.
Exceptional cases with complicated well or boundary conditions, with severe local
heterogeneity which require extra work from the solver, or with entirely explicit models
with reaction phenomena, require dynamic load balancing and will not be discussed
here. Disregarding these cases, static and grid-based load balancing strategy described
below works quite well for most subsurface applications.

11

Consider an ijk grid superimposed over a reservoir {2 and aligned with the per-
meability layers. Most reservoirs are much larger in horizontal (aerial) direction than
in vertical direction where “vertical” is the gravity direction or one close to it (here
assumed as the k direction). Grid spacing in direction & is usually much smaller than
in the aerial directions i X j in order to properly account for gravity effects, includ-
ing fluid segregation due to density differences. At the same time, anisotropy ratio
Khor/Kyert may be as large as 10, which makes flow in k direction slow. Overall,
the maximum number of cells in the vertical dimension N, is typically much smaller
than those in horizontal directions N, N,. IPARS solvers exploit this fact and are
optimized to handle N, in its internal loops; they may constrain the shape of a region
assigned to a processor [17].

Now consider aerial i x j view of the grid and evenly divide the cells in this 2D
view between processors so that Ng(p) cells on each processor p form a region as
close as possible in shape to a ball (this minimizes the number of ghost cells). For an
almost rectangular (2 for which total number of cells N¢ ~ N, N, N, we have

N¢

(3.1) Ne(p) ~ Ny

= (NmNy/Np)Nz,p =]., .. Np.
This grid-based load balancing strategy has been shown to lead to nearly optimal, and
in some cases, to super-linear parallel scalability [42]. By linear scalability we mean

that the speedup s(Np) = % is close to Np. Here we do not consider

scaled speedup [14] in which number of cells per processor is fixed primarily because,
if N¢ increases with grid refinement, the conditioning of the linear system deteriorates
and scaled speedup depends critically on quality of preconditioner which is beyond
the scope of this paper.

3.2. Multiblock implementation. Multiblock Adaptive Computational En-
gine (MACE) is part of a family of unifying computational engines aimed at enabling
interoperability between application frameworks and solution methodologies which
support a family of adaptive PDE solution techniques with multiple structures, mul-
tiple scales, and multiple physics [24]. MACE implements a semantically specialized
distributed shared memory, extending simple access semantics to dynamic, heteroge-
neous, and physically distributed data objects spanning different storage types. It en-
capsulates distributions, communications, coordination, and load balancing. MACE
[25, 40, 26] supports multiblock grids where multiple distributed and adaptive blocks
with heterogeneous discretizations are coupled together with lower dimensional (also
distributed and adaptive) mortar grids.

A separation of concerns in the design of MACE leads to a layered architecture.
The lowest layer implements a Hierarchical Distributed Dynamic Array (HDDA),
which provides array semantics to hierarchical and physically distributed data. The
next layer adds application semantics, implementing objects such as grids, meshes and
trees, and providing an object-oriented programming interface for directly expressing
multiscale, multi-resolution computations. As the application- and method-specific
data objects are based on a common HDDA object, different adaptive solution meth-
ods can interact and be combined within a single application. The primary objective
for defining such a generalized array data-structure is that most application domain
algorithms are formulated as operations on grids and their implementation is defined
as operations on arrays. Providing an array interface to the dynamic data-structures
allows implementations of new parallel and adaptive algorithms to reuse existing ker-
nels at each level of the HDDA hierarchy. A key feature of HDDA is its ability to

12

extract out the data locality requirements from the application domain and main-
tain this locality despite its distribution and dynamics. Two important concepts
that underlie the design [23, 20, 22] are hierarchical index spaces using space-filling
mappings [35] and extendible hashing storage mechanism [12].

The computational engines provides intuitive programming abstractions and as-
sociated operations upon which different formulations can be simply and directly
implemented [21]. The abstractions themselves are independently and efficiently im-
plemented on target systems. MACE provides four key abstractions, see Figure 2.3.
The Block abstraction defines a distributed and adaptive grid hierarchy for each block
that is logically rectangular and can be independently refined. It encapsulates dis-
tribution, load-balancing and communications. Operations on this abstraction class
include adding, deleting and clustering refinements, as well as accessing components
grids at a particular level. The Mortar Grid (Mortar) abstraction represents the
interface grid between Blocks. It is essentially a dynamic, semantically specialized,
distributed shared space for information exchange between adjacent interfaces of fault
blocks. Each Block and its associated processors can write to their corresponding por-
tion of the Mortar and can read the entire Mortar. Mortars support refinement and
coarsening for mutigrid and adaptive methods. The Grid Function abstraction repre-
sents application fields defined on the Block or Mortar grids and defines application
data elements and variables. Locally, this abstraction can be viewed as an array
that can be indexed in the usual way. Finally, the Grid Geometry abstractions in-
clude points and boxes and provide a convenient tool for addressing regions in the
computational domain.

In implementation, at startup, Blocks and Mortars are identified and defined along
the adjacent interfaces T';. Application specific Grid Functions are defined indepen-
dently on each Mortar. The Mortar Grid and its associated functions are shared by
all processors that have parts of adjacent interfaces. During setup, appropriate in-
teraction contexts and schedules are setup using MPI communicator C'y 4cg. These
include contexts to enable processors to update the corresponding portion of the
shared Mortar or to read from the entire Mortar, and to enable processors which own
block cells on either side of the Mortar to synchronize. Consistency of mortar data
is implicitly managed. At runtime MACE defines operations for Block-Mortar and
Mortar-Block interactions, see Figure 3.2. In particular, Block-Mortar interactions
consist of transferring data from Blocks to the Mortar. In this case each processor
updates only its part of the Mortar. Local updates are gathered and aggregated
by MACE and can then by committed onto the shared Mortar. Now processors on
adjacent blocks can read data from this shared object. The actual communication
handlers underlying these operations build using asynchronous send and receive oper-
ators provided by MPI and avoid the expensive collective communication operators.

Finally, we note that as shown in Figure 2.2, the interface operations and sub-
domain operations involve two levels of iterations which are sequential with respect
to each other. Therefore, for Np > 1, the interface code never locks the subdomain
(Block) operations. Overall paradigm is MPMD with Blocks executing one “program”,
Mortars executing another “program”, and Block-Mortar interactions representing yet
another “program”.

As for computational cost and load-balancing for multiblock single-model imple-
mentation, we notice that interface costs Cr in Eq. (2.7) now include MACE com-
munication costs. However, in our experience these are very small compared to the
subdomain costs which represent the remaining terms in Eq. (2.7). For that reason,

13

LK S
j :
=
of Blockl
Block -> Local Mortar: Each processor Block <- Local Mortar: Each processor can
updates its part of the mortar access the entire mortar

Local Mortar <- Local Mortar: Images of the
Local Mortar can synchronize using defined
aggregation operation

Block <- Mortar: After synchronization, each
processor can access the entire mortar

Fic. 3.2. Multiblock interactions in MACE.

we extend the grid-based load-balancing strategy to handle multiple blocks by through
a straightforward generalization of Eq (3.1): each processor handles approximately

(3.2) Ne(p) = (f: NN,)/Np)N.,p=1...Np.

n=1

where we have assumed for simplicity that approximately N, ~ N,; & - N,y .
CT(Ng,1,Ng,1)

This strategy leads to an almost ideal speedup s(Np) = T (NG o No 1)

~ Np,
with Np independent of Np, as reported in [33].

3.3. Multimodel implementation. As mentioned above, IPARS framework
has been designed for multiple physical models that can be defined, implemented,
and combined within a single executable. Each model defines its own time-stepping
and selects the most appropriate solver from a selection of linear solvers and precon-
ditioners. The models may execute simultaneously over multiple subdomains (blocks)
which may be connected or disconnected. If they are connected, the mortar interface
formulation is used to solve B(A) = 0 and MACE abstractions are actively used at
run-time. A user assigns models to blocks and, if they are connected, must decide on
the choice of interface variables A|r, for every interface I';.

Consider the algorithm for handling multiple models presented in Figure 2.4 which
is straightforward to carry out with Np = 1 or with Nys = 1. In general, parallel
execution for Nys > 1 must be carefully designed to prevent locking and to allow for
reasonable parallel scalability. Since different cells execute different algorithms, the
underlying paradigm is one of MPMD. We avoid message conflicts by using multiple
MPI communicators[15] which require synchronization only between processors within
the same communicator.

First consider a simple example with two blocks and two models M4 and Mp
running on Np = 7 processors, see Figure 3.3, left. Assume first the blocks are not
connected so Ny = 0 and no Mortars are necessary. Values in the ghost cells belonging
to model M4 need only be communicated to other cells in that same model and the
stopping criterium for solver associated with this model checks only cells in model
My4. As aresult, any model specific UPDATE and GLOBAL_REDUCE operations
only apply to model M4 and any rendez-vous required by model M4 only involves

14

Communicatorl Model & Model B Toodel & Tindel B
Communicator2

PO P1 PO P2 PO P2

Model A P4 1 =’ 1 1
P6 | Model B i P PI i Pl | Null Pl | PL
P2 P3 H i i
P3 : :
Commuricator] Comrminicat 012

Fi1G. 3.3. Multiple communicators for two models. Left: general idea. Right: overlapping
communicators. P; ezecutes two models, but Py and P> ezecute one model only. When Pi is
working as a member of communicator C1 = {Py, P1}, it does not impact model B

processors Fy..P;. Similar observations apply to model Mp. Therefore it is only
natural to define two communicators: communicator Cy(M,4) = {Py, P1, P, Ps} and
C2(Mp) = {P4, Ps, Ps}. Furthermore, since no mass flows between the two models,
no global communication is necessary.

Now consider the case in which the two blocks are connected. In addition to
the block calculations, there is need for interface calculations. Therefore, a MACE
specific communicator Cpacp is used. Moreover, mass flows between blocks and
therefore, communication between some processors from communicators C; and Cy
must be allowed. This is achieved by introducing a global communicator Cy which
groups the first of the processors in each Cy and Cs, in this case Co = {Py, Py}

In general, in order to ensure complete independence of Ny, Ng, Np, we must
allow for overlapping communicators. For example, only one processor Np = 1 may
be available at run-time with Ng > 1. Or, consider situation in Figure 3.3, right, with
Np =2 = Nj; and Np = 3. Overlapping communicators are considered for flexibility
and portability only because, in general, they lead to poor parallel performance.

In summary, the above strategy is realized as follows. At the beginning of simula-
tion, we split processors into multiple communicator groups: there is a communicator
Cwur assigned to each model M. In addition, we define a global communicator Cy and
we also have MACE communicator Cyracp- At each instant, we use the concept of
“current communicator”: only processors belonging to it are allowed to communicate.
The current communicator is changed and message tags are reset each time i) a model
changes or ii) a global communicator or iii) MACE communicator is necessary. Each
processor executes the algorithm shown in Figure 3.4. Of course, each processor ex-
ecutes only the steps which are relevant to it: in other words, it works only on the
models and blocks that it owns.

3.4. Load Balancing. Traditional grid-based load balancing strategy as de-
scribed by Eq. (3.1) works reasonably well for single model simulations, also for
Np > 1 [33]. However, a straightforward application of this strategy to multimodel
case may lead to overlapping communicators which lead to poor parallel performance.
Therefore, we develop a model-sensitive (model-based) load balancing strategy. First,
if possible, we ensure that a processor does not handle more that one model. Second,
we attempt to make the number of processors assigned to a model proportional to its
computational complexity.

Consider an example with Ng = 3, Ny = 2, Np = 4 as in Figure 3.5. The first
and the third block have model M4, the middle block has model Mp. First, consider
the traditional grid-based distribution (shown on the left) which requires overlap in
communicators Cy(A) N C2(B) # 0 as C1(4) = { P, P, P>, P3},Cy = {P1,P}. All
processors are busy during a time step executed by model M 4. On the other hand,

15

Step n: given AptH!t = A7 and T}|o,,b=1...Np
Tterate I = 1,...I.opny: given current guess AZ'H’I, choose CyracE
pma) Solve M =1...Nps. Choose C(M) as current communicator.
a) Solve in blocks b=1... Ng(M): iterate K = 1,... Kony (I, M)
i).. iv) Use C(M) in all UPDATE and GLOBAL _REDUCE calls.
pmb) Compute Bh(AZ'H’I) and determine new guess AZ‘H’I
Choose Cy as current communicator, GLOBAL_REDUCE(global mass).
Step n + 1: computed ATF! := AJHhleone
and T’;’7l+1|9b = T:+1,KCMU(ICOM,M)|Qb’b =1...Ng

Fic. 3.4. Multiphysics multiblock problem in parallel: use of multiple communicators

Model B Model B
Model A 7 Model A Model A Model A
i
PO Pl | P2 PO PO
i P2
IR I
Fl P3 P1 P3

F1G. 3.5. Load balancing for a 3-block, 2-model case on 4 processors. Left: traditional. Right:
model-sensitive

during a time step for model Mp processors Py and P3 are idle.

Next, consider model-sensitive load balancing. Here each processor is assigned
only one model but may span more than one block, for example processor Py in Fig-
ure 3.5 (right) owns part of block 1 and block 3. In this case C1(M4) = {Po, P, Ps},
and Cy(Mp) = {P2}. There is no overlap of communicators and both groups of
processors can simultaneously execute time steps for their respective models. How-
ever, the loads for processors associated with different models may be different and
therefore some processors may remain idle while others work to complete their job.
Therefore, if complexity of model M4 is higher than that of model Mg, we should
proportionally allocate more processors to model M4 than to model Mg. In other
words, the size (rank) of the communicators should be proportional to the relative
computational complexity of the models. Ideally, we would assign Np(M) processors
to every QM so that, for each two models My, M,

Np(M) CT(Nc¢(Mi),1,Ng(M1),{M1})
Np(M,) ™ CT(Nc(My), 1, Ng(My), {M})’

Note that to satisfy the above strategy, the total number of processors must be
Np =3, Np(M). In reality, the total number of processors is limited. In addition,
it is difficult to precisely estimate the load ratio between models prior to their use in
a coupled simulation. This is because the physical conditions with and without the
coupling are not the same. Moreover, the load depends on static as well as on time-
varying factors. Static factors which can be determined once for simulation include
number of cells, number of unknowns per cell and of those per ghost cell that need
to be communicated in UPDATE calls, and character of time-stepping (implicit,

16

sequential, semi-implicit). Time-varying factors include efficiency of a linear solver
and of the underlying preconditioners, interaction of the model with sources, with
boundary conditions on 0f2 as well as on interface I', convergence tolerance and others.
In one example from our experience, the ratio of execution times for the same physical
problem simulated by a two-phase implicit and black-oil model ranges between 1.5
and 4 when they are coupled and between 3.5 and 8 when they are not.

These difficulties can be overcome by careful tuning of parallel decomposition as
well as of model distribution.

4. Numerical Examples. In this section we focus on demonstrating efficiency
of parallel implementation understood as scaling of CT(N¢, Np, Ng, Nys) for increas-
ing Np. In fact, we show that a linear speedup s(Np) = CCTIEJ(VI\CTCJ’\};NJ@];NI(‘,”N)I) ~ Np,
can be obtained. We note that single-processor efficiency of multiphysics procedures
understood as CT'(N¢,1,Ng,Nu) < CT(Ng,1,1,{Mcompr}) was shown elsewhere
[19, 33] for Mompr being black-oil model. Also, it is clear from Eq. (2.8) that
CT(N¢,1,Ng,Ny) < CT(N¢,1,Ng,{Mcompr})- In particular, for cases reported
below the CT(N¢, 1,3, { My, M3}) = 7046 while CT(N¢,1,3,{M3}) = 11850. Combi-
nation of these facts suggest that it is critical to study s(Np) to determine that effi-
ciency of multiphysics implementation is not destroyed by suboptimal load-balancing.

Our examples involve three blocks (subdomains) as shown in Figure 4.1. On each
block we use rectangular grid 60240’ x 60240’ x 1023'. Subdomains are connected
by relatively small interfaces with piecewise linear mortar space on grid 1x1 per each
interface. The total number of cells is 108K ; it would be almost twice as much without
multiblock approach.

We consider two relatively simple examples based on this grid. The choice of such
a simple grid and of relatively simple physical conditions is motivated by the focus of
this paper on parallel implementation; in general, our simulator is capable of handling
much more sophisticated geometry and modeling issues [19, 33]. The examples are
run on a 64-node PC cluster connected by a 1.28 GB/sec Myrinet network, with
total 32 GB RAM and over 200 GB collective storage; each node is a 300 M H z Intel
Pentium II processor. We only use up to Np = 16; communication costs dominate
for larger Np even in SPMD mode.

We consider couplings between the following three models: an implicit black-oil
model M3, a two-phase implicit model Ms, and a sequential two-phase model Mj.
Number of subdomain iterations Kon,(M) for the implicit models M, M3 depends
on a combination of absolute and relative tolerance for Newtonian solver in subdomain
related to a constant Veony(M) = 1078 and in cases shown here was between 1 and
3. For sequential model, K o,y (M) = 1. For simplicity, we run both examples using
the same time steps in all models.

First example involves the coupling of M3 and M> which are assigned, respectively,
to the blocks at opposite ends of reservoir and to the middle block, respectively. This
assignment is motivated by physical conditions assumed in this example which involve
i) difference in the depth over all blocks, and ii) well placement: two production wells
completed at opposite ends of the reservoir and one injection well completed in the
middle block. See pressure solution in Figure 4.2. Most of the flow occurs from the
middle block out to the ends of reservoir. Reservoir is initially filled with water and
oil, the latter saturated with gas. During production, pressure is lowered and free
gas (gas phase) starts coming out of the solution, see oil concentration in Figure 4.2.
Average I.on, per time step here is 1.3.

Our second example involves two-phase flow across reservoir with two wells, both

17

Fic. 4.1. Geometry, grids and assignment of models. Left: 3D view and assignment of models
in example 1. Right: 2D view and assignment of models in example 2.

PWAT: 1972 1983 1995 2006 2018 COIL: 3 10182533

»

0

Fi1c. 4.2. Results for example 1. Left: pressure solution. Right: oil concentration. Injection
wells are marked by high pressure region and production well are marked by low pressure region. Oil
contours show effects of gravity (more oil collects on top than at the bottom) and presence of free
gas (gas collects at production wells where pressure is low) and displaces oil

at opposite ends of reservoir, and with no depth variation across the field. In this case
we employ the coupling of two different numerical models for two-phase flow: M, is
used in the subdomains which contain the wells and M; is used in the middle block
where no well is present. Motivation behind this assignment follows from the fact
that high velocities around wells are handled in a more accurate and stable fashion by
an implicit model than by a sequential model which is constrained by CFL condition.
More details and examples on this multinumeric coupling are provided in [31]. For
lack of space, we do not show the solution.

From the point of view of parallel simulation, in spite of very different physical
conditions, both examples are somewhat similar because of similar speed-ratio be-
tween models, see Table 4.1, left. This is reflected in our tests of parallel speedup in
which we consider both the traditional as well as the model-sensitive load-balancing
strategies. Table 4.1, right, shows the number of processors assigned to different
models and blocks. Figure 4.3 shows parallel speedup obtained for both examples.

The results reported in Figure 4.3 show that the speedup with model-sensitive
load balancing is close to the ideal linear speedup and that in some cases it is su-
perlinear. Also, in general, traditional load balancing in multimodel setting may not
scale even though for Np = 3,6,9 it leads processor decomposition not crossing model

18

Np Np(b)
b=1,3|b=2
1 1 1*
2 1 %%

N¢ = || 1000 [10000 | 100000 3 1 1
My 1.20 17.70 | 301.59 4 2 1
M, 5.62 | 86.57 | 1527.48 5 2 1
M3 22.93 | 271.72 | 4986.74 6 2 9
8 3 2

9 3 3

11 4 3

16 6 4

TABLE 4.1

Left: CT(N¢,1,1,{M}) (in seconds) for M = Mi, M2, M3 and N¢ = 1K,10K,100K cells,
using different models operating in comparable physical conditions, running for 100 days, with the
same time stepping and compatible tolerances. Right: number of processors per block assigned to
different models in examples 1 and 2.

Draditional load 14 O Traditional load
12+ balancing b balancing

114

u BModel-based 1 mModel-based
o] load balancing o load balancing

M -
4 7
6
6
5+) o i
47 4
37 3
27 2
19 1

123456 7 8 910111213 141516 123456 7 8 910111213 14 15 16
Number of processors Number of processors

Speedup

Speedup

F1G. 4.3. Parallel speedup in multimodel coupling. Left: speedup for coupling of M3 and M.
Right: speedup for coupling of Ma and M;.

boundaries. For small Np therefore it gives similar speedup as model-sensitive load
balancing.

Another observation is that the parallel scaling was better in the first example
than in the second. This can be explained by the fact that given a fixed total number of
processors Np the speed ratio for first example fits the given distribution of processors
better than the one in second example.

5. Conclusions. We have discussed parallel implementation of multiblock mul-
tiphysics algorithms for subsurface flow and transport and shown that it leads to opti-
mal parallel scalability. The strategy employed uses MPI and its multi-communicator
concept as well as MACE library for block-mortar interactions and it was implemented
in subsurface flow simulator TIPARS. This implementation allows an arbitrary num-
ber and combination of processors and models, Model-based load balancing strategies
have been applied to achieve ideal speedup; in some cases, superlinear speedup can be
obtained. Ideas and solutions presented in this paper can be applied to many heteroge-
noeus domain decomposition problems especially those that involve tight couplings of
different models or codes.

Future work includes couplings with compositional model and adaptive aspects of

19

mortar multiphysics formulation and implementations; for example, varying ny, as well
as N¢(b), No(M), Kcony(b) which may require dynamic load balancing. Moreover,
a large scale computational study of CT(N¢, Np, Ng, Nar), with all the parameters
varying simultaneously, is underway. Open questions include definition of multiphysics
efficiency for cases where a comprehensive model doesn’t exist.

REFERENCES

V. Aizinger and C. N. Dawson. Discontinuous Galerkin methods for two-dimensional flow and
transport in shallow water. Advances in Water Resources, 25:67-84, 2002.

. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite element methods on
non-matching multiblock grids. STAM J. Numer. Anal., 37:1295-1315, 2000.

. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov. Enhanced cell-
centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comp.,
19(2):404-425, 1998.

T. Arbogast, P. T. Keenan, M. F. Wheeler, and I. Yotov. Logically rectangular mixed methods
for Darcy flow on general geometry. In Thirteenth SPE Symposium on Reservoir Simula-
tion, San Antonio, Tezas, pages 51-59. Society of Petroleum Engineers, Feb. 1995. SPE
29099.

T. Arbogast, M. F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with
tensor coefficients as cell-centered finite differences. STAM J. Numer. Anal., 34(2):828-852,
1997.

L. Bergamaschi, S. Mantica, and G. Manzini. A mixed finite element—finite volume formulation
of the black-oil model. STAM J. Sci. Comput., 20(3):970-997 (electronic), 1999.

Z. Chen. Formulations and numerical methods for the black oil model in porous media. SIAM
J. Numer. Anal., 38(2):489-514 (electronic), 2000.

K. H. Coats, L. K. Thomas, and R. G. Pierson. Compositional and black oil reservoir simulator.
In the 13th SPE symposium on reservoir simulation, San Antonio, Texas, Feb 12-15 1995.

L. C. Cowsar, J. Mandel, and M. F. Wheeler. Balancing domain decomposition for mixed finite
elements. Math. Comp., 64:989-1015, 1995.

L. C. Cowsar, A. Weiser, and M. F. Wheeler. Parallel multigrid and domain decomposi-
tion algorithms for elliptic equations. In D. E. Keyes et al., editors, Fifth International
Symposium on Domain Decomposition Methods for Partial Differential Equations, pages
376-385. SIAM, Philadelphia, 1992.

M. Discacciati, E. Miglio, and A. Quarteroni. Mathematical and numerical models for coupling
surface and groundwater flows. submitted to Applied and Numerical Mathematics, 2001.

R. Fagin. Extendible hashing-a fast access mechanism for dynamic files. ACM TODS, 4:315-
344, 1979.

C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the FETI domain
decomposition method. Comput. Methods Appl. Mech. Engrg., 115(3-4):365-385, 1994.

1. Foster. Designing and Building Parallel Programs. Addision-Wesley, 1995.

W. Group, E. Luak, and A. Skyjellum. Using MPI. The MIT Press, 1994.

J. Killough and D. Commander. Scalable parallel reservoir simulation on a Windows NT-based
workstation cluster. In SPE paper 51883 presented at the Fifteenth SPE Symposium on
Reservoir Simulation, February, 1999, pages 41-50, 1999.

S. Lacroix, Y. Vassilevski, and M. F. Wheeler. Iterative solvers of the implicit parallel accurate
reservoir simulator (IPARS). Numerical Linear Algebra with Applications, 4:537-549, 2001.

L. W. Lake. Enhanced oil recovery. Prentice Hall, 1989.

Q. Lu, M. Peszynska, and M. F. Wheeler. A parallel multi-block black-oil model in multi-model
implementation. SPE Journal, 7(3):278-287, September 2002. SPE 79535.

M. Parashar and J. C. Browne. Distributed dynamic data-structures for parallel adaptive
mesh-refinement. In Proceedings of the International Conference for High Performance
Computing, pages 22-27. IEEE Computer Society Press, Dec. 1995.

M. Parashar and J. C. Browne. Object-oriented programming abstractions for parallel adaptive
mesh-refinement. In Parallel Object-Oriented Methods and Applications (POOMA), Santa
Fe, NM, Feb. 1996.

M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In Pro-
ceedings of the 29th Annual Hawaii International Conference on System Sciences (HICSS
96), pages 604-613, Maui, Hawaii, Jan. 1996. IEEE Computer Society Press.

M. Parashar and J. C. Browne. System engineering for high performance computing software:

=

—

20

(24]

25]

[41]
42]

(43]

[44]

The HDDA /DAGH infrastructure for implementation of parallel structured adaptive mesh
refinement. In S. B. Baden, N. P. Chrisochoides, D. B. Gannon, and M. L. Norman, editors,
IMA Volume 117: Structured Adaptive Mesh Refinement (SAMR) Grid Methods, pages
1-18. Springer-Verlag, Jan. 2000.

M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowsky. A common data management
infrastructure for parallel adaptive algorithms for pde solutions. In Proceedings of Super-
computing ’97, San Jose, CA, Nov. 1997. ACM Sigarch and IEEE Computer Society, IEEE
Computer Society Press.

M. Parashar, J. A. Wheeler, G. Pope, K. Wang, and P. Wang. A new generation EOS compo-
sitional reservoir simulator. Part II: Framework and multiprocessing. In Fourteenth SPE
Symposium on Reservoir Simulation, Dalas, Tezas, pages 31-38. Society of Petroleum
Engineers, June 1997.

M. Parashar and I. Yotov. An environment for parallel multi-block, multi-resolution reser-
voir simulations. In Proceedings of the 11th International Conference on Parallel and
Distributed Computing and Systems (PDCS 98), pages 230-235, Chicago, IL, Sep. 1998.
International Society for Computers and their Applications (ISCA).

D. W. Peaceman. Fundamentals of numerical reservoir simulation. Elsevier Scientfic Publishing
Company, Amsterdam-Oxford-New York, first edition, 1977.

M. Peszyniska. Multiphysics coupling of three-phase and two-phase models of flow in porous
media. submitted.

M. Peszynska. Advanced techniques and algorithms for reservoir simulation III. Multiphysics
coupling for two phase flow in degenerate conditions. In J. Chadam, A. Cunningham, R. E.
Ewing, P. Ortoleva, and M. F. Wheeler, editors, IMA Volume 131: Resource Recovery,
Confinement, and Remediation of Environmental Hazards, pages 21-40. Springer, 2002.

M. Peszynska, E. Jenkins, and M. F. Wheeler. Boundary conditions for fully implicit two-
phase flow model. In X. Feng and T. P. Schulze, editors, Recent Advances in Numerical
Methods for Partial Differential Equations and Applications, volume 306 of Contemporary
Mathematics Series, pages 85-106. American Mathematical Society, 2002.

M. Peszyniska, Q. Lu, and M. F. Wheeler. Coupling different numerical algorithms for two phase
fluid flow. In J. R. Whiteman, editor, MAFELAP Proceedings of Mathematics of Finite
Elements and Applications, pages 205-214, Uxbridge, U.K., 1999. Brunel University.

M. Peszynska, Q. Lu, and M. F. Wheeler. Multiphysics coupling of codes. In L. R. Bentley,
J. F. Sykes, C. A. Brebbia, W. G. Gray, and G. F. Pinder, editors, Computational Methods
in Water Resources, pages 175-182. A. A. Balkema, 2000.

M. Peszyriska, M. F. Wheeler, and I. Yotov. Mortar upscaling for multiphase flow in porous
media. Computational Geosciences, 6:73—100, 2002.

T. F. Russell and M. F. Wheeler. Finite element and finite difference methods for continuous
flows in porous media. In R. E. Ewing, editor, The Mathematics of Reservoir Simulation,
pages 35-106. STAM, Philadelphia, 1983.

H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

Schlumberger Technology Corporation. Eclipse-100, Reference Manual, 1998.

R. E. Showalter. Hilbert space methods for partial differential equations. Pitman, London,
1977. Monographs and Studies in Mathematics, Vol. 1.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dong arra. MPI: the complete reference.
The MIT Press, 1996.

J. W. Tester and M. Modell. Thermodynamics and Its Applications. Prentice Hall, 1997.

P. Wang, I. Yotov, M. F. Wheeler, T. Arbogast, C. N. Dawson, M. Parashar, and
K. Sepehrnoori. A new generation EOS compositional reservoir simulator. Part I: For-
mulation and discretization. In Fourteenth SPE Symposium on Reservoir Simulation,
Dalas, Tezas, pages 55-64. Society of Petroleum Engineers, June 1997.

. F. Wheeler and M. Peszyriska. Computational engineering and science methodologies for
modeling and simulation of subsurface applications. Advances in Water Resources, in press.

. F. Wheeler, M. Peszynska, X. Gai, and O. El-Domeiri. Modeling subsurface flow on PC
cluster. In A. Tentner, editor, High Performance Computing, pages 318-323. SCS, 2000.

. F. Wheeler, J. A. Wheeler, and M. Peszyniska. A distributed computing portal for cou-
pling multi-physics and multiple domains in porous media. In L. R. Bentley, J. F. Sykes,
C. A. Brebbia, W. G. Gray, and G. F. Pinder, editors, Computational Methods in Water
Resources, pages 167-174. A. A. Balkema, 2000.

M. White, M. Oostrom, and R. Lenhard. Modeling fluid flow and transport in variably saturated

porous media with the STOMP simulator. 1. Nonvolatile three-phase model description.
Advances in Water Resources, 18(6), 1995.

£

=

£

